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Abstract

Distributed acoustic sensing underlies an increasingly
important class of sensor network applications, from habi-
tat monitoring and bioacoustic census to security applica-
tions and virtual fences. VoxNet is a complete hardware
and software platform for distributed acoustic monitoring
applications that focuses on three key goals: (1) rapid de-
ployment in realistic environments; (2) a high level pro-
gramming language that abstracts the user from platform
and network details and compiles into a high performance
distributed application; and (3) an interactive usage model
based on run-time installable programs, with the ability to
run the same high level program seamlessly over live or
stored data. The VoxNet hardware is self-contained and
weather-resistant, and supports a four-channel microphone
array with automated time synchronization, localization,
and network coordination. Using VoxNet, an investigator
can visualize phenomena in real-time, develop and tune on-
line analysis, and record raw data for off-line analysis and
archival. This paper describes both the hardware and soft-
ware elements of the platform, as well as the architecture
required to support distributed programs running over a
heterogeneous network. We characterize the performance
of the platform, using both microbenchmarks that evaluate
speci�c aspects of the platform and a real application run-
ning in the �eld.

1. Introduction

Acoustic sensing is a key component in a broad range
of sensor network applications, including gunshot localiza-
tion [23], weapon classi�cation [28], acoustic intrusion de-
tection [5], biological acoustic studies [17, 30, 3], person
tracking [25], speaker localization [8], and smart confer-
ence rooms [29]. Existing work has described speci�c al-
gorithms, and in some cases custom hardware. This paper
is about a �exible hardware and software solution that can

potentially target any of these applications, evaluated based
on a speci�c bio-acoustic application.

The speci�c application we consider relates to the prob-
lem of automated census ofin-situ animal populations us-
ing bio-acoustic signals such as animal calls [6, 27, 9, 16].
This application requires sophisticated localization, signal
enhancement, and classi�cation algorithms to process the
acoustic time-series data, as well as statistical algorithms
to process the resulting animal call event traces. In some
cases automated census may require combining acoustic
detections with other sensor inputs such as imagers trig-
gered based on timely results from the acoustic data pro-
cessing pipeline. While algorithms have been developed
for census and population measurement for many speci�c
species [17, 6, 27, 9, 16], for some species and environ-
ments this is quite challenging, and general solutions re-
main elusive.

Because acoustic monitoring applications present many
challenges that are not readily addressed by existing plat-
forms [20, 19], previous work in acoustic applications has
typically required signi�cant investment in platform devel-
opment [28, 17, 5]. Several key challenges complicate the
development and deployment of acoustic applications:

� Acoustic data is generated and processed at high rates,
placing a heavy computational burden on the sensor
platform. Even with large memories and fast 32-bit
processors, the processing pipeline must be highly op-
timized to perform well.

� Developing on-line processing algorithms generally
requires pilot studies to collect sample data. These pi-
lot studies are often similar to the eventual deployment
in terms of the logistical efforts and hardware function-
ality required.

� While some acoustic applications require on-line pro-
cessing, others require retrieval of complete traces, or
some balance between the two, perhaps dynamically
con�gurable at run-time. Both on-line processing and



storage contribute to system load and impact platform
requirements.

The design of our platform, called VoxNet, stems
from considering these observations in the context of bio-
acoustics applications, with a particular focus on animal
tracking and census problems, but with the potential to be
applied in other domains thanks to a �exible, deployable
hardware platform and a high-performance distributable
programming interface.

Software �exibility is required to support multiple con-
current applications, and in particular to allow recon�gu-
ration and tuning of applications running in the �eld. For
example, concurrently with continuously running an ani-
mal call localization application, a researcher might want
to archive raw data or test out a new detection algorithm
without disturbing the running system. To achieve this we
implemented an interface for VoxNet that allows new pro-
grams to be installed in a running system without inter-
rupting existing applications. Distributed VoxNet applica-
tions are written as a single logical program, abstracting the
programmer from the details of the network and particu-
lar hardware platforms. These programs can operate over a
combination of live and static data, residing in a distributed
system of sensors and backend servers. This model enables
users to tune and further develop applications during pilot
deployments, and enables the system to be used as an in-
teractive measurement tool while it is deployed. This is im-
portant for many short-term scienti�c deployments, because
it allows a scientist to immediately explore newly observed
phenomena. Installing program updates at run time is also
useful in other contexts such as security monitoring.

Usually, greater run-time programmability incurs a cost
in performance. To address this, VoxNet builds on prior
work designing the WaveScript [10] language and compiler,
which we extended to support the sensor interfaces and net-
work functionality of VoxNet. VoxNet is the �rst embed-
ded target for the WaveScript compiler, and developing the
VoxNet backend motivated many new features and opti-
mizations. Implementing our animal localization applica-
tion using the WaveScript programming language and op-
timizing compiler results in a 30% reduction in processor
load and 12% in memory usage, compared with the hand-
coded C implementation used in a previous version of the
application (see Section 5).

Thus, the main contributions of this work are:

1. To develop a platform capable of rapid deployment in
realistic environments for bioacoustic applications;

2. To provide a high level programming interface that ab-
stracts the user from platform and network details and
compiles into a high performance distributed applica-
tion; and

3. To de�ne an interactive usage model based on run-time
installable programs, with the ability to run the same
high level program seamlessly over live or stored data.

2. Related work

Our related work is concerned with both platforms
for network tasking, and processing frameworks for high-
frequency domains (acoustic, seismic).

2.1. Platforms and architectures

Tenet [14] advocates a tiered networking approach to in-
network processing, where less capable platforms have
clearly de�ned roles and are tasked by more powerful plat-
forms. The reasoning behind this type of architecture is that
the complex aspects of a computation should stay on more
powerful platforms, because it is less costly and error prone
than push the computation to less capable platforms.

Tenet's goals differ from ours. In the reference imple-
mentation, Tenet nodes are Mica2/TelosB class devices, and
micro servers are Stargate class processors. In contrast, our
lowest-tier sensor nodes must be much more capable than
Mica or TelosB motes to deal with high-frequency data, and
we do not enforce a boundary between processing tiers. In
fact, one of our aims is to make this boundary more trans-
parent, so it can feasibly adapt to changes in application and
environment.

VanGo [15] is a system which is designed to capture high
frequency phenomena using devices which are constrained
not only by processing capability, but also network commu-
nication bandwidth. A focus of VanGo is therefore to sup-
port data reduction after suitable application-speci�c char-
acterization.

VanGo forms a program as a linear chain of �lters, de-
signed to reduce data from its original form into events of
interest. These �lters can be enabled or disabled, and there
are a library of different �lters, such as FIR, event detection
and classi�cation. Again, our work focuses on a different
class of devices than VanGo, and the programming model
provided is, accordingly, much more general. Whereas
VanGo is limited to a linear chain of �lters, VoxNet allows
an arbitrary data�ow graph and operators are not limited to
�lter semantics.

Mate/ASVM [24] provides a framework for application
speci�c virtual machines (ASVMs), to allow developers to
created customized runtimes which are application depen-
dent. Network reprogramming is a key focus of virtual ma-
chines such as Mate. In our target domains, as well, phe-
nomena are often not well-characterized, and application re-
quirements may vary over the lifetime of the network. How-
ever, we choose native code compilation for our programs
in order to achieve the level of performance required for in-
tensive signal processing. Because VoxNet has a relatively



fast wireless network, uploading new binaries on demand is
tractable.

The Acoustic ENSBox[13] is an ARM-based embedded
platform for rapid development and deployment of dis-
tributed acoustic sensing applications. The VoxNet node
hardware is based on the ENSBox hardware design, al-
beit greatly improved. Software is developed for the ENS-
Box using the Emstar [11] framework, and provides ser-
vices such as time synchronization [7] and self-localization.
However, multi-hop IP networking support is not provided
on the ENSBox, and so multi-hop communication is pro-
vided through �ooding interfaces, which does not scale
well. This also means TCP connections cannot span mul-
tiple hops. Several deployments have used the Acoustic
ENSBox and its related software support to record time syn-
chronized acoustic data for of�ine bioacoustic analysis, or
run on-line event detectors. However, due to the heavy load
placed on the embedded CPU, and the latency incurred in
writing to �ash memory, it is not possible to run both of
these applications in tandem. It was also not possible to
perform other signal processing operations whilst the on-
line event detector was running. Due to the optimizations
of WaveScript, VoxNet can enable more functionality whilst
incurring less CPU and memory overhead.

2.2. Processing tools and frameworks

There are many signal processing tools to carry out
acoustic research. However, the selection of systems that
support real-time processing, or embedded and distributed
processing, is much more limited.

General purpose frameworks.Matlab [2] provides a gen-
eral purpose mathematical environment and programming
language and includes many specialized “toolboxes”, such
as for signal processing. Labview [1] is a similar appli-
cation. Labview allows data acquisition and processing
through a data�ow language. Applications are built using
a graphical interface, enabling non-programmers to write
acquisition and processing software, and visualize the re-
sults. However, neither Matlab nor Labview are well suited
to implementation in a distributed system of sensors, be-
cause they are too inef�cient to be implemented on embed-
ded hardware and they do not have good support for im-
plementing distributed applications. The VoxNet platform
represents our initial steps towards creating a distributed,
bioacoustic system that is easy to use and productive for the
scientist as Matlab.

2.3. Applications

Acoustic-based census is a viable option because many
mammals and birds produce loud alarm calls, territo-
rial calls, and songs that are species-speci�c, population-
speci�c, and often individually identi�able [26]. As such,

Figure 1. The packaged VoxNet node, shown
in deployment at the Rocky Mountain Biolog-
ical Laboratory, August 2007.

these vocalizations can be used to identify the species
present in an area, as well as in some cases to count indi-
viduals. Acoustic monitoring for census has been shown to
be important for cane-toad monitoring [6], elephants [27],
birds [16] and whales [9]. Although the variety of species
and habitats makes these problems dif�cult to solve in a
general way, we believe that our platform and programming
environment can be used as a substrate upon which all of
these applications could be built.

3. Motivating Application

To make the motivation for VoxNet more concrete, we
consider a speci�c use case with which we are familiar. In
previous work, we developed the Acoustic ENSBox plat-
form [13] and developed an application for localizing mar-
mots, a medium-sized rodent native to the western United
States [3]. In this deployment effort we worked closely with
�eld biologists who are interested in studying rodent alarm
call patterns to better understand their behavior. Working
with real users and a concrete application enabled us to re-
�ne our objectives, both in terms of the capabilities of the
system and the desired user experience.

In our usage scenario, a team of biologists want to detect
marmot alarm calls and determine their location at the time
of the call, relative to known burrow locations. Because
alarm calls are a response to predator activity, they are typ-
ically quite rare and unattended operation is desirable. Al-
though for some applications simple recording and off-line



processing would be suf�cient, in this case it is important
that the system process the data on-line to produce timely
results. When biologistsare present in the �eld, timely re-
sults from the system enable them to record additional data
about the current conditions, e.g. what caused the alarm,
and which animal raised it. Future versions of the system
might automate this enhanced data collection in the event
of a detection.

Since biologists are the “users” in our scenario, it is cru-
cial that the system be easy for them to deploy, start up,
and con�gure. The VoxNet node hardware is a compact,
self-contained and weather-resistant package, as shown in
Figure 1. To support non-expert users the VoxNet software
is designed to be be easy to con�gure: a self-localization
system [13] supplies �ne-grained estimates of location and
array orientation, a self-organizing ad-hoc network provides
IP routing back to the gateway, and an easy-to-use web-
based interface assists in troubleshooting. The goal of a
VoxNet deployment is to work “out of the box” (with only
minimal trouble shooting), after node placement and power
up. The user can then install an alarm call localization ap-
plication from the control console and visualize the results.

The algorithm for localization, described in [3], �rst pro-
cesses a stream of audio data through a “fast path” detec-
tor to identify possible alarm calls, estimates bearing to the
caller from multiple points (using the Approximated Max-
imum Likelihood or AML algorithm [3]), and �nally fuses
those estimates together to estimate the caller's location.
To implement this on the VoxNet platform, this algorithm
is expressed as a WaveScript program, a logical data�ow
graph of stream operators connected by streams. The distri-
bution of operators to nodes is made explicit by program an-
notations. Once constructed, the program is compiled and
pushed out to the network to run; results are streamed back
to data storage components and operational statistics stream
back to the console. The data �owing on a stream can be
visualized by connecting a visualizer to a viewable stream
endpoint.

From our experiences with �eld scientists, we have
found that even in instances where detection and localiza-
tion can be done on-line, the scientists also want to record
the raw data for future processing. While this desire may
diminish as they gain con�dence in data reduction algo-
rithms, it will always be important in the testing phases of
any new algorithm, as well as for interactive use to replay
and re-analyze recent data. To address these concerns we
have implemented “spill to disk” functions by adding new
WaveScript operators that can save a stream to persistent
storage for future retrieval. In a VoxNet deployment, net-
work limitations mean that raw data can only be saved in
a node's local storage (and as such can still be accessed by
a distributed WaveScript program). After the deployment,
stored raw data can be dumped to a large server for archival

purposes; the same programs that run in a deployment can
be run against the archived raw data.

4. The VoxNet Platform

The VoxNet platform consists of an embedded node plat-
form and a software platform that supports distributed appli-
cations, as described in Section 3. Figure 2(b) is a diagram
of the VoxNet system architecture, a framework in which
programs can be written, compiled, and disseminated, and
the results can be archived and visualized. In this architec-
ture, a user runs a program by submitting it through a user
interface at the control console. The control console discov-
ers the capabilities of the nodes in the network, and assigns
portions of the Wavescript program to different nodes based
on program annotations. It then compiles and optimizes
each distributed component of the program for the appro-
priate platforms, and disseminates the compiled program
components to the network of embedded VoxNet nodes and
backend service machines. Results and diagnostic data are
returned to the control console for display and visualiza-
tion; a PDA may also be used to visualize data while in the
�eld. Streams of results and of�oaded raw sensor data can
be archived to a storage server and later processed off-line,
using the same user interface.

The next two subsections describe the hardware and soft-
ware components of VoxNet in greater detail.

4.1. Hardware

The basic node hardware, shown in Figure 1 and rep-
resented by the block diagram in Figure 2(a), is a revision
of the Acoustic ENSBox prototype [13]. The VoxNet node
shares the same main processor board as the original Acous-
tic ENSBox, based on the Sensoria Slauson board, a 400
MHz PXA 255 processor with 64MB memory, 32MB on-
board �ash and two PCMCIA slots containing a 4 chan-
nel sound card and an 802.11 wireless card. VoxNet nodes
currently use an ad-hoc mesh network using 200 mW out-
put 802.11b cards and 5.5 dBi antennas. These cards have
a maximum range of approximately 200m in line-of-sight
conditions. VoxNet nodes currently consume 7.5 W con-
tinuous when running, and have an 8-hour lifetime from an
internal 5400mAh Li-ion battery.

Storage Co-processor.Hardware limitations of the main
processor board precludes the use of large storage devices.
To address this, VoxNet contains an auxiliary processor, the
Gumstix Connex 400 with the NetCF I/O board, that is con-
nected to the Slauson by wired Ethernet. The Gumstix hosts
a large Compact Flash card that can archive data streams
from the Slauson. Since the Gumstix board runs the same
VoxNet software as the Slauson, a WaveScript program can
easily be con�gured to of�oad portions of the computation
to the Gumstix.
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(ch1,ch2,ch3,ch4) = ENSBoxAudio(44100)

// Perform event detection in frequency domain
freq = fft( hanning( rewindow(ch1, 32)))
scores = marmotScore(freq);
events = temporalDetector(scores);

// Use events to select audio segments
detections = sync(events, [ch1,ch2,ch3,ch4])

// Now we create a stream of booleans indicating
// whether the queue is too full for local AML.
queuefull =

stream map(fun (percent) f percent > 80 g,
AudioQueueStatus())

// Then we use that boolean stream to route
// detections into one of two output streams.
(iffull,ifempty) = switch(queuefull, detections)

// If full, AML on server, otherwise node
aml1 = AML( netSendToRoot(iffull))
aml2 = netSendToRoot( AML(detections))

// Once on the server, regardless of how we
// received AML results we process them.
amls = merge(aml1,aml2)
clusters = temporalCluster(amls)

// All AML results in a cluster are merged
// to form a likelihood map.
map = fuseAMLs(clusters)

// We route these likelihood maps back to the
// user (”BASE”) for real-time visualization.
BASE  map
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wireless networks. A Wavescope network stream closely
mirrors the semantics of local Wavescope streams, in that
they are reliable and allow fan-out to multiple readers.
To support reliability we built this mechanism atop TCP
streams, and added an automatic reconnect and application-
layer acknowledgment to guarantee reliability in the face of
disconnection. We also implemented timers that kill and
restart the TCP connection in the event that it stalls due to
repeated packet losses stemming from poor signal quality or
temporary routing problems. The network stream abstrac-
tions are used for all types of communication in the VoxNet
system, including visualization, log messages, control mes-
sages and pushing new compiled programs.

Although 100% reliable streams are required to preserve
the semantics of local Wavescope streams, they are not al-
ways a practical solution. Consequently we have imple-
mented extensions to this model that allow for certain types
of “lossy” streams. A Wavescope network stream buffers all
data until acked at the application level by each connected
client. However, the buffer is limited to a �xed upper bound
(defaulting to 512KB) and further data queued will cause
stream elements to be dropped from the head of the queue.

Another important lossy semantics is called “always re-
quest latest”. In this model, all new clients begin receiving
only new data, and no buffered data is kept. In this seman-
tics, the TCP stream will guarantee that all data is received
during a given connection, but some data may be dropped
if the connection is forced to restart. The raw data archiver
uses this type of stream, because in the event of a disruption,
the raw data will quickly overrun any in-memory buffer, and
because the wired connection to the Gumstix is very reli-
able.

While the current implementation uses end-to-end TCP
sessions, in other application contexts and at larger scales
this may no longer be adequate. Further work is required
to experiment with other communication mechanisms in-
cluding “split-TCP” and DTN approaches. We also expect
that other semantic models will arise as we further develop
VoxNet applications.

Discovery Service and Control Console.The control con-
sole is a centralized point of contact for the entire VoxNet
network, that discovers nodes, installs applications and
tracks resource usage, error logs, and pro�ling statistics. It
serves as a mediator between users who want to install a
program and the VoxNet distributed system, and hosts all
appropriate compiler tools and scripts. The discovery ser-
vice hosted on the control console maintains a list of ac-
tive VoxNet nodes and backend server machines, and tracks
their capabilities and resource availability. When VoxNet
nodes or servers start up, they connect to the control con-
sole at a well-known address and register with the network.

When a user submits an application for propagation to
the VoxNet system, the control console compiles it for the

Figure 4. Example screenshot of time-series
data in our visualizer.

appropriate architectures and pushes the compiled compo-
nents out to nodes currently in its discovery list. The cur-
rent implementation pushes each binary separately to each
node using end-to-end TCP connections. This is accept-
able for small networks, but as these systems scale, other
mechanisms such as viral propagation or methods similar
to Deluge [18] will be needed.

Control Tools. To control our VoxNet deployment we de-
veloped the Wavescope shell, a text command-line interface
to the control console, similar to the UNIX shell. This shell
allows a user to submit new programs and see log messages
and results streaming back from the network. Individual
commands can be pushed to the nodes, either individually
or as a broadcast, to start and stop the engine or to control
other aspects of their behavior. To help visualize the net-
work, the shell provides a “scoreboard” showing the current
status of each node registered via the discovery protocol.
In the current implementation the Wavescope shell is inte-
grated with the control console software, but future versions
will separate those functions.

Stream Visualization. Visualization of intermediate data
and results is a critical component of making VoxNet us-
able. Visualization clients are Java applications that canrun
on any network-connected client machine, such as a lap-
top or a PDA. The Java visualizer connects to a Wavescope
published stream and represents the data visually in real
time. We are using the JFreeChart graphing package to
build these visualization tools.

Currently we have developed several visualizers for dif-
ferent types of stream data, including the simple time-series
visualizer shown in Figure 4 and a polar plot visualizer. The
current implementation requires that the visualizer compo-
nent exactly match the stream data type, meaning that in
general an adaptor must be implemented in Wavescript to
convert source data to the appropriate type stream; we are
investigating developing a visualizer that can read an arbi-
trary marshaled wire protocol. Since the control console
maintains a list of all currently available streams from each
node in the network, interested clients can request this list



and thus browse for streams of interest.

Spill to Disk. Support for persistent storage is crucial to
many uses of the VoxNet system, whether because of lim-
ited RAM buffer space, or to support of�ine or delayed
analysis of raw data. The spill to disk component saves
properly time-stamped raw data streams to the large �ash in
the VoxNet node or to disks in the case of backend storage
servers. In the VoxNet node, the Slauson adds an extra oper-
ator to its running data�ow program that publishes the raw
data as a network stream. A subscription client on the Gum-
stix co-processor reads that data over the network and mar-
shals it to �les on the �ash, properly annotated with global
timestamps. In our experiments we have found that VoxNet
can continuously archive 4 channels of audio at 44.1 KHz
while concurrently running other applications (see Figure5
in Section 5 for details).

4.2.3. VoxNet Platform Drivers and Builtins

In addition to the reusable components described above,
there are many important platform elements that are speci�c
to VoxNet. Many of these are hardware drivers, diagnostic
software, and glue components that are too detailed to be
described here. We mention below two of the more complex
and important features speci�c to the VoxNet platform.

Time Synchronization and Self-localization.VoxNet in-
herits time synchronization and self-localizing system de-
veloped for the Acoustic ENSBox [13], and adds additional
glue to integrate these features into the Wavescope engine.
Reference Broadcast Synchronization [7] is combined with
a protocol to propagate global time from a node synced to
GPS [22]. Timestamps in VoxNet systems are converted
to global time before being transmitted over the network or
saved to persistent storage.

IP Routing. VoxNet implements IP routing from each node
back to a gateway node using a user-space implementation
of DSR [21], that dynamically installs entries into the ker-
nel routing table. DSR can establish routes between any two
nodes on-demand, however in our �eld experiments we only
needed multihop routes along the tree between nodes and
the gateway. VoxNet uses 802.11 radios in ad-hoc mode,
and enables a prism2 chipset speci�cPsuedo-IBSSmode
to eliminate network partitions due to different parts of the
network converging on different ad-hoc cell IDs. To elim-
inate the complications in con�guring client devices to use
Pseudo-IBSS, the gateway forwards between thePseudo-
IBSSnetwork and a normal wired or wireless lan.

5. Performance and Evaluation

In this section, we investigate our platform's perfor-
mance in-situ with respect to our motivating application,
and also perform some microbenchmark evaluation. Our
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Figure 5. Resource usage comparison of
the identical event detectors, implemented in
Emstar and Wavescope.

microbenchmarks are intended to validate of our choice of
using Wavescript and the Wavescript compiler opposed to a
hand-coded C implementation.

VoxNet's approach allows us to blur the processing
boundary between sink and node. Our in-�eld experimenta-
tion highlights the trade-offs that can be made with respect
to in-network processing.

5.1. Microbenchmarks

Memory consumption and CPU usage.We compared the
resource footprint (CPU and memory usage) of the event
detector application described in section 3 with our previous
hand-coded, Emstar implementation [3]. Figure 5 shows a
breakdown of the relative components involved in the event
detection implementation—the detector itself and the data
acquisition, in terms of memory and CPU usage. These �g-
ures are the mean values of one minute's analysis of CPU
and memory usage using the Linux commandtop (20 data
points).

Figure 5 compares the footprint of the Wavescope appli-
cation to that of the Emstar version. The graph shows that
the total overhead of the Wavescope version is over 30%
less in terms of CPU (87.9% vs 56.5%) and over 12% less
memory (20.9% vs 8.7%).

Spill to disk. Because the Wavescope version uses fewer
CPU and memory resources, additional components can run
concurrently with the detection application. To demonstrate
this, we veri�ed that “spill to disk”, a commonly used com-
ponent that archives a copy of all input data to �ash, could
run concurrently with our detection application. We ran the
event detector program and spill to disk simultaneously for
15 minutes, monitoring the CPU and memory usage on the
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Slauson. We also logged the data transfer rates between the
Slauson and Gumstix boards and the buffered queue sizes
for the incoming data stream at one second intervals. The
results in Figure 6 show that the mean data transfer rate
from Slauson to Gumstix over the stream was 346.0 KB/s,
which is in line with the required rate of 344.5 KB/s. This
also accounts for the timestamping overhead of the raw data
segments (8 bytes per segment). The third and sixth bars
in Figure 5 show that the overall resource overhead of run-
ning both spill to disk and an event detector on the node
is 80.7% CPU and 9.5% memory (taken from 20 consecu-
tive top measurements). Given that the spill to disk feature
was impossible to implement in Emstar due to resource con-
straints, we see that VoxNet's improvements in ef�ciency
enable a corresponding improvement in functionality.

On node processing comparison.Providing the capability
for on-node data processing is an important part of VoxNet.
To further test our platform's processing capability, we mea-
sured the time taken to compute a direction of arrival esti-
mate using the Approximated Maximum Likelihood (AML)
algorithm [3]. In our motivating application, this is an in-
tensive processing operation.

We compared the performance of a C implementation of
AML (previously used in an Emstar-only system) to a cor-
responding Wavescope implementation. We invoked both
implementations of the AML computation on the output
stream of a Wavescope event detection program and timed
how long they took to complete (measuring the start and
�nish of the AML function call in both cases). For both
implementations, 50 detections were triggered to make 50
AML calls. Table 1 shows the min/mean/median/max com-
parison of processing times. For comparison, �gures are

Min Mean Median Max
C (node) 2.4430 2.5134 2.4931 2.7283
Wavescope (node) 2.1606 2.4112 2.4095 2.5946
C (x86) 0.0644 0.0906 0.0716 0.2648
Wavescope (x86) 0.0798 0.1151 0.0833 0.5349

Table 1. WS vs C AML processing times

Figure 7. A map of the deployment area. The
gateway was 200m away from the nodes.

shown for the same AML computation running on an x86
laptop-based version of the VoxNet node [4], with 256MB
RAM and a P4 2GHz processor.

We see comparable performance between C and Wave-
cript generated C in both ENSBox and x86. We expect the
performance of Wavescript generated code to be at best as
ef�cient as hand coded C, so this result is encouraging. Both
implementations used the same O3 optimization �ag, as to
ensure a fair comparison.

5.2. In­situ Application Tests
In August 2007 we tested the VoxNet platform in a de-

ployment at the Rocky Mountain Biological Laboratory
(RMBL) in Gothic, CO. We deployed the event detection
and localization application previously mentioned in sec-
tion 3. Over the course of several days, eight nodes were
deployed during the day and taken down at night. We main-
tained a consistent geographic topology in each case, span-
ning the 140m by 70m area (2.4 acres) shown in Figure 7.
We positioned a gateway node 200m away from the near-
est node in the system (node 104). From this position, the
control server accessed the nodes via a wired connection
on the gateway. The control server ran a Wavescope shell
to control the nodes, as well as the AML and postion esti-
mation parts of the marmot localization application. It also
logged all messages generated within the network and sent
over control streams.

During our deployment time, we performed tests with
two different sized antennae—standard and extended.



Figure 8. Routing tree for multi-hop testing.

Throughout all of these tests, we found that two of the nodes
were consistently better-connected to the gateway than oth-
ers (nodes 113 and 104). We speculate that this was a func-
tion of favorable geographical position relative to the gate-
way in terms of line of sight and elevation.

Our deployment was very much an exploratory exercise,
allowing us to understand more about the behavior of our
system in-situ, and help inform the kind of latencies we
could expect for data transfer, detection processing and po-
sition estimation—all important aspects to help the scien-
tist's observations at a higher level.

Goodput measurement. On two separate days, we ran
goodput tests, in which a command requesting all nodes to
simultaneously send a user-speci�ed payload of data was
issued at the control server. Each node measured the time
when it began to send, and inserted a timestamp the �rst
8 bytes of the payload. A second timestamp was recorded
at the sink when it completed reception of the payload. We
used these time differences as an indicator of both the good-
put (the transfer rate of application level data) and the la-
tency of each transfer. Our tests took place in both a single
hop network (with seven nodes) and a multi-hop network
(with eight nodes).

We chose data payload sizes which were indicative of the
raw detection and processed AML data traveling over the



104 113 112 115 108 100 103 109
0

2

4

6

8

10

12

Node ID

T
im

e 
ta

ke
n 

to
 tr

an
sf

er
 (

s)
Time taken to transfer 32000 bytes in multi-hop network

min

mean

max

2 hops 3 hops1 hop

Figure 10. Transfer latency for 32 KB over
multiple hops.

Each node dropped a signi�cant amount of data during
the raining period, only successfully sending around 10%
of data generated to the sink (10.44MB). Despite the drops,
our system continued to run, showing that it can deal with
overloading in a graceful manner.

On node vs sink processing.In Section 5.1 we demon-
strated that VoxNet nodes are indeed capable of processing
the AML part of the call localization algorithm locally, al-
though at a much slower rate relative to a typical laptop: the
VoxNet nodes process an AML in 2.4112 seconds on aver-
age, versus around 0.0833 seconds on an x86 laptop. How-
ever, the result of processing a detection using AML is only
800 bytes in size, compared to a 32 KB raw detection. The
difference in speed is therefore traded off by a reduction in
network cost, as well as by the parallel speedup intrinsic to
running the AML on a distributed set of nodes.

In Section 4.2.1 we showed that a WaveScript program
can be written to adaptively process data locally or centrally,
depending on certain conditions, with the intent of lowering
the overall localization latency by reducing network costs.
While this is an interesting idea, the conditions under which
it is bene�cial to process the data locally depend on whether
the speedup in network transmission balances out the poten-
tial increase in latency due to local processing.

To evaluate this, we would ideally compare the goodput
transfers of 32 KB and 800 byte data transfers in an identical
network. Unfortunately, our 32 KB dataset in the multi-hop
topology was gathered opportunistically, and we failed to
get a corresponding 800 byte data during this period.

However, we did gather measurements of 800 byte trans-
fers in a 1-hop topology. We use this data to get a rough
estimate of the trade off between computing the AML al-
gorithm locally or at the sink, by estimating the expected
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Figure 11. The latency trade-off between
transmitting 32 KB and 800 bytes.

latency. In 154 transfers from seven nodes, the mean trans-
fer time was 0.0212s (min 0.008s, max 0.0607s). Based on
conservative estimates of packet loss and TCP timer behav-
ior, we can use these results to formulate an estimate of the
multihop performance.

We model the expected latencyE(x)of an 800 byte trans-
fer using the equation shown in formula 2. Since the MTU
is 1500 bytes, our payload will easily �t into a single packet,
therefore we need only model the expected latency of a sin-
gle segment being sent in an established TCP stream, rather
than a more complex TCP model.

We assume an exponential backoff starting at 1 second
for our TCP retransmit timer, and a conservative estimate
of packet loss probabilityP of 1/50, independent for each
hop that a packet must travel over. Our expected loss rate
for N hops is

P(N ) = 1 � (1 � P)N (1)

and, using the formula for a geometric series the expected
latencyE(x) (assuming a mean latency per hopH = 0.0212)
is

E(x) = N � H + P(N )=(1 � 2 � P(N )) (2)

The results of this comparison are shown in Figure 11.
We see that the measurements of the delays incurred by
the 32 KB transfers scale approximately linearly with the
number of hops, as we saw in Figure 10. In contrast,
the single packet transfers, even accounting for packet loss
and retransmission, arrive with very low latency, but in-
cur the �xed 2 second latency of the AML computation.
Incidentally, we note our 1/50 packet loss probability is
conservative—the in-situ data collected from our 1-hop net-
work didn't see even one backoff retransmission in 150



sends. A repeated test in a similar outdoor two-hop network
saw just 6 retransmissions in 700 sends.

From this particular graph we conclude that there is a
de�nite trade-off point for adaptation of processing at be-
tween 2 and 3 hops. At this point, a node would substan-
tially bene�t from performing its processing locally. We
intend to investigate this trade-off more fully is subsequent
work, as we feel it is an compelling problem.

6. Conclusion

In this paper we have described VoxNet, a platform for
acoustics research, and applied it to a speci�c bioacoustics
application. We described the architecture of the hardware
and software components of the platform, and validated our
approach by comparing against previous related work. We
showed that in using WaveScript as our language of choice,
our deployed application can consume less CPU and mem-
ory resources and provide more functionality, such as spill
to disk. These factors are important for the users of our
platform, as we want to enable high-level programming and
rich interactions with the network, but without loss of raw
performance. We believe VoxNet has a general appeal to a
variety of high-frequency sensing applications, and in par-
ticular, will lower the barrier of entry for bioacoustics re-
search.
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