Non-Differentiable
Optimization




RL for the Travelling Salesman
Problem (TSP)



Definition (TSP):

In TSP, we want to find a Hamiltonian 1 |
cycle in a complete graph with the b C

shortest length. 30

|.e. We want to visit all notes in the | 30 .

(1. @
99




TSP as a RL problem: Attention, Learn To Solve Routing Problems! [Kool et al., 2019]

e State s is a graph with n nodes. (n is a fixed 1 |
constant.) b C

e Actiona=(a, a, ..a)isapermutation of the 0

nodes (i.e. a Hamiltonian cycle). 1 30 1
e Policy with weights 6 is given by:

Do (a|3) — H?:l Do (at |37 al:t—l) C/ \D
a d
where p (als, a, ) is implemented by a =

modified transformer network.




TSP as a RL-Problem: Attention, Learn To Solve Routing Problems! [Kool et al., 2019]

e Loss is defined by the weight of the loop:

i 1
L(a) = Zizl W(a;,a:41) G\ /D

JU
e Update the parameters 0 using REINFORCE: 30

VL(0|s) = Ey,(a5) L(a)V log py(als)




n =20 =3l n = 100
Method Obj. Gap Time | Ob;. Gap Time | Obj. Gap Time
Concorde 3.84 0.00% (Im)| 5.70 0.00% @m)| 7.76  0.00% (Bm)
LKH3 3.84 0.00% (18s)| 5.70 0.00% (Sm)| 7.76  0.00% (21m)
Gurobi 3.84 0.00% (7s)| 5.70 0.00% (@2m)| 7.76  0.00% (17m)
Gurobi (1s) 3.84 0.00% (8s)| 5.70  0.00% (2m) -

Nearest Insertion | 4.33 12.91% (1s)| 6.78 19.03% (2s)| 9.46 21.82%  (6s)
Random Insertion | 4.00 4.36%  (0s)| 6.13  7.65% (1s)| 8.52  9.69%  (3s)
Farthest Insertion | 3.93 2.36% (1s)| 6.01  5.53% (2s)| 835  7.59% (7s)
Nearest Neighbor | 4.50 17.23%  (0s)| 7.00 22.94%  (0s)| 9.68 24.73%  (0s)

& [Vinyalsetal|(gr.) | 3.88 1.15% 7.66 34.48% -
- gar.) 3.89 1.42% 9.95 4.46% 8.30 6.90%
3.890 1.42% 9.99 5.16% 8.31 7.03%
Nowak et al. 3.93 2.46%

EAN (greedy) 3.86 0.66% (2m)| 5.92 3.98% (5m)| 8.42 8.41%  (8m)
AM (greedy) 3.85 0.34% (0s)| 5.80 1.76% (2s)| 812 4.53%  (6s)




Evolutionary Strategies for
Optimizing RL Problems



Black-Box Optimization

0 F(0)

optimization
algorithm

A




Evolutionary Strategies (ES)

initialize v
repeat:
e Generate a set of samples D ={(0,, F(9,)), ... (6., F(6,))}, where 6. is drawn
from the distribution p (9)
Evaluate the fitness of samples inD

Use the fitness to update the parameter y



Example: Simple Gaussian ES

Define y = (y, o) and 0, ~ N(u, o°1),

Initialize the parameters 3@ = (u©, ©), size of the elite set m €¢{1, ..., n}
repeat for t €{1, ..., T}:
e Generate a set of samples D = {(0., F(9,)), ..., (6_, F(0.))}, where 0. ~ Np©, ¢
(O)2|)
Let L be the set of 0, with the largest values of F(9,) with |L| =m
Update ™" = (u®), &) = (mean(L), std(L))



Example: Simple Gaussian ES

Want to find the minimum of
F(0) = distance of 0 to +

X = current mean

0 = generated points with
mean x and std o

o = best performing points

generate points
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Recap REINFORCE

In policy gradient RL, we are optimizing vs(s) = Er, [G|s] = Ex, [S 1 77t 5]

We use the log-likelihood trick in REINFORCE to get:
Vg’vg(s) X E'/rg [GtVQ 10g(7r9 (a, S))]



Evolutionary Strategies as a Scalable Alternative for RL [Salimans et al., 2017]

In contrast to REINFORCE, which optimizes vy (s) = E,,[G|s], we will optimize
the following expectation with respect to the parameter v:

Epp, [F(0)]

where F(0) = G,. Here G, is the cumulative reward of one episode following policy
1, and an unbiased estimate of the value function vg(s0) = Er, [G|s0]



Evolutionary Strategies as a Scalable Alternative for RL [Salimans et al., 2017]

Say, we want to model 0 by a Gaussian with mean y and fixed covariance ol. l.e.
0 ~p,=N(y, o)

Then we can write the gradient as follows:

V$Eoop, [F(6)] = Egop, [F(6)Vy logpy(6)]

o« By, [FO)Vy(~ 20—

(¢ ;;J’) )

(€o)

= Eop, [F(O)(

= Econo,n [F (% + €0)( o2 )]

= Eeunon [F(¢ + 0)(=)

1
= ;EGNN(O,I) [EF(’(,D + 60')]



Evolutionary Strategies as a Scalable Alternative for RL [Salimans et al., 2017]

Recalling the definition of directional derivatives in higher dimensions,

. x+hv)—f(x
D, f(z) = limy, o 1&+-1

we see that our gradient can be interpreted as randomized finite differences:

1
;EGNN(O,I) [eF (¢ + €o)]

F(¢ + eo) — F(y)

o

]

= EeNN(O,I) [E



Evolutionary Strategies as a Scalable Alternative for RL [Salimans et al., 2017]

Algorithm 2 Parallelized Evolution Strategies

1: Input: Learning rate «, noise standard deviation o, initial policy parameters 1)
2: Initialize: n workers with known random seeds, and initial parameters ),
3: fort=10,1,2.... do

4
5
6:
7.
8

9.
10:
i b
12

for each workerz = 1,...,n do
Sample ¢; ~ N(0, 1)
Compute returns F; = F(); + 0¢;)
end for
Send all scalar returns F; from each worker to every other worker
for each workerz = 1,...,n do
Reconstruct all perturbations €; for j = 1,...,n using known random seeds

Set i1 1p; + o > =1 F€j
end for

13: end for




Advantages of ES

Efficient parallelization
o by synchronizing random seeds of workers before training, each worker knows what
perturbation the others used
o then we only need to communicate the episode return between workers

computation and memory efficient since no backpropagation is needed
robust: little hyperparameter tuning needed, no frameskip needed
easy to implement

3-10 times less data efficient



Evolutionary Strategies as a Scalable Alternative for RL [Saliman et al., 2017]

Experiments on MujoCo:

Ratio of ES timesteps 10 “Enyironment 25% 50% 15% 100%
TRPO timesteps needed HalfCheetah 0.15 049 042 058
to reach various Hopper 0.53 3.64 6.05 694
percentages of TRPO's InvertedDoublePendulum 046 048 049 1.23
learning progress at 5 InvertedPendulum 028 052 0.78 0.88
million timesteps. Swimmer 056 047 053 0.30

Walker2d 041 5.69 8.02 7.8




Possible Explanation

While exploration in RL is done in the action space, exploration in ES is done in
the parameter space.

l.e. In ES, we explore by changing the whole parameter 0 (not just by making
actions more random), potentially leading to a new behaviour.



Genetic Algorithms for Optimizing
RL Problems



Definition (Genetic Algorithms)

initialize parameter vectors 6., .., 6 ©
repeat fortin{1, ..., T}:
e Generate a set of samples D = {(6,", F(0,")), .., (6., F(6_"))}
Evaluate the fitness of samples in D

o
e Select the B top performing parameter vectors; they become the parents
(

Mutate and/or breed the parents in some way to get new parameters 91(“”,
A
n



Example GA

We want to find the minimum of
F(0) = distance of 0 to +

o = child points
o = best performing points / parents
of the next generation

generate points
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Simples Gaussian GA for RL Problems [Petroski Such et al., 2017]

initialize parameter vectors 0,, .., 0 (©), the size of the elite set m, standard deviation ¢

repeat fortin{1, ..., T}k
e Foreach Oi(t) do 30 runs in the environment with the policy n(@i(t)) and store the mean
of the cumulative rewards G .
e LetL be the set of the m parameters with the highest mean of rewards.
e foriin{l,..n}
o choose 0 in L uniformly at random
o Define 6" = 0 + g¢, where € ~ N(0, 1)



Advantages of ES and GA

Same advantages as ES:

Efficient parallelization

computation and memory efficient since no backpropagation is needed
robust: little hyperparameter tuning needed, no frameskip needed

easy to implement



Experiments

GA, ES run significantly faster
than DQN and A3C.

GA outperformed the other
methods on frostbite, skiing
and venture.

We see: Each method
outperforms all other methods
on at least one game.

When RS performs well, so
does GA.

DQN ES A3C RS GA
Frames 200M 1B 1B 1B 1B
Time ~7-10d ~ 1h ~4d ~ lhor4h ~ lhor4h
Forward Passes 450M 250M 250M 250M 250M
Backward Passes 400M 0 250M 0 0
Operations 1.25B U 250M U IBU 250M U 250M U
amidar 978 112 264 143 263
assault 4,280 1,674 5,475 649 714
asterix 4,359 1,440 22,140 1,197 1,850
asteroids 1,365 1,562 4,475 1,307 1,661
atlantis 279,987 1,267,410 911,091 26,371 76,273
enduro 729 95 -82 36 60
frostbite 797 370 191 1,164 4,536
gravitar 473 805 304 431 476
kangaroo 7,259 11,200 94 1,099 3,790
seaquest 5,861 1,390 235 503 798
skiing -13,062 -15,443  -10911 7,679 7.6,502
venture 163 760 23 488 969
zaxxon 5,363 6,380 24,622 2,538 6,180



Possible Explanation

It could be that saddle points or noisy gradients prevent the gradient-based
methods from learning effectively in some environments.

Since GA and RS do not use gradients, they are not affected by this.



Conclusion

e Some optimization problems can be framed as RL-tasks and then solved
with RL methods

e Black Box optimization methods like GA and ES can provide an alternative
approach to solve RL problems
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