
Distributed
Computing Group

HS 2009 Prof. Dr. Roger Wattenhofer, Thomas Locher, Remo Meier, Benjamin Sigg

Distributed Systems
Solution 5

Assigned: December 4, 2009
Discussion: December 11, 2009

1 Spin Locks

A read-write lock is a lock that allows either multiple processes to read some resource, or one
process to write some resource.

a) Write a simple read-write lock using only spinning, one shared integer and the CAS
operation. Do not use local variables (it is ok to have variable within a method, but
not outside).

b) What is the problem with your lock?

Hint: what happens if a lot of processes access the lock repeatedly?

We now build a queue lock using only spinning, one shared integer, one local integer per
process and the CAS operation.

c) To prepare for this task, answer the following questions:

i) Head and tail of the queue have to be stored in the shared integer. What is the
“head” and the “tail”, and how can they be stored in one integer?
Hint: could the head be a process id? Or is there a much easier solution?

ii) How could a process add itself to the queue?
Hint: you need the local integer of the process for this operation.

iii) When has a process acquired the lock?

iv) How does a process release the lock?

d) Write down the lock using pseudo-code. Do not forget to initialize all variables.

1

Solution

a) We use the shared integer state to indicate the state of the lock. The lock is free if
state is 0. The lock is in write mode if state is -1. And it is in read-mode if state is
n, with n > 0.

// the shared i n t e g e r
i n t s t a t e = 0 ;

// acqu i r e the lock f o r a read opera t i on
r e a d l o c k (){

whi le (t rue){
i n t va lue = s t a t e . read () ;
i f (va lue >= 0){

i f (s t a t e .CAS(value , va lue+1) == value){
// lock acqu i red
return ;

}
}

}
}

// r e l e a s e the lock
read un lock (){

whi le (s t a t e .CAS(s tate , s ta te−1) != s t a t e) ;
}

// acqu i r e the lock f o r a wr i t e operat i on
w r i t e l o c k (){

whi le (t rue){
i n t va lue = s t a t e ;
i f (s t a t e == 0){

i f (s t a t e .CAS(0 , −1) == 0){
// lock acqu i red
return ;

}
}

}
}

// r e l e a s e the lock
wr i t e un l o ck (){

// no need to te s t , no other p roce s s can c a l l t h i s at
// the same time .
s t a t e .CAS(−1, 0) ;

}

b) Starvation is a problem. Example: if many processes constantly acquire and release the

2

read-lock, then the state variable always remains bigger than 0. If one process wants
to acquire the write-lock, it will never get the chance.

c) The basic idea behind this lock is a ticketing service as can be found in swiss post offices.

i) The tail is the ticket which can be drawn by the next process. The head denotes
the ticket which can acquire the lock. If we assume an integer consists of 32 bits,
then we can use the first 16 bits for the head, and the last 16 bits for the tail.

ii) The process reads the value of the tail, and then increments the tail. This should
of course happen in a secure way, i.e. no two processes have the same ticket.

iii) When its ticket equals the head.

iv) The process increments the head by one.

d) // the shared i n t e g e r conta in ing head | t a i l
shared i n t queue = 0 ;

// the t i c k e t o f t h i s p roce s s
i n t l o c a l = 0 ;

// acqu i r e the lock
lock (){

// 1 . add t h i s p roc e s s to the queue
l o c a l = add () ;
// 2 . wait u n t i l the l ock i s acqu i red
whi l e (head () != l o c a l ()) ;

}

// add t h i s p roce s s to the queue
i n t add (){

whi le (t rue){
i n t va lue = queue . read () ;
i f (queue .CAS(value , va lue+1) == value){

re turn value & 0xFF ;
}

}
}

// r e tu rn s the cur rent head o f the queue
i n t head (){

i n t va lue = s t a t e . read () ;
r e turn (va lue >>> 16) & 0xFF ;

}

// r e l e a s e s the lock
unlock (){

whi le (t rue){
i n t va lue = queue . read () ;
i n t head = (value >>> 16) & 0xFF

3

i n t t a i l = value & 0xFF
i n t next = (head+1) << 16 | t a i l ;
i f (queue .CAS(value , next) == value){

re turn ;
}

}
}

2 Bus and Caches

See slides 8/17, 8/20 and 8/29. We simulate some processes trying to acquire a lock. For this
task use a dice or a coin to generate a sequence of random numbers s1...sm in the range of 1
to 4. In the i’th round the process psi can execute its next step. One step is long enough to
access the state-variable exactly once.

a) Four processes perform Test&Set-locking. For a sequence of 10 to 20 rounds, write down
what states the caches are in, and what data has to be moved around on the bus. In
each round one randomly chosen process can execute one step. If a process acquires the
lock, it releases the lock in its next step.

b) Repeat a) for Test&Test&Set-locking.

c) Explain why TTAS is faster than TAS using the results from a) and b).

Solution

A little Java application creating these tables can be downloaded from our web-page. Please
read the comments within the source file to work with the application. Of course there are
about 410 different solutions, and only one of them can be presented here.

4

a) Example table for Test&Set. The random sequence was 0, 2, 2, 1, 1, 1, 0, 2, 1, 2.

Round p0 p1 p2 p3

-1 invalid (0) invalid (0) invalid (0) invalid (0)

0 p0
Bus: load-request, memory-to-cache, invalidate

dirty (1) invalid (0) invalid (0) invalid (0)

1 p2
Bus: load-request, cache-to-memory, memory-to-cache, invalidate

invalid (1) invalid (0) dirty (1) invalid (0)

2 p2
Bus: -

invalid (1) invalid (0) dirty (1) invalid (0)

3 p1
Bus: load-request, cache-to-memory, memory-to-cache, invalidate

invalid (1) dirty (1) invalid (1) invalid (0)

4 p1
Bus: -

invalid (1) dirty (1) invalid (1) invalid (0)

5 p1
Bus: -

invalid (1) dirty (1) invalid (1) invalid (0)

6 p0
Bus: invalidate

dirty (0) invalid (1) invalid (1) invalid (0)

7 p2
Bus: load-request, cache-to-memory, memory-to-cache, invalidate

invalid (0) invalid (1) dirty (1) invalid (0)

8 p1
Bus: load-request, cache-to-memory, memory-to-cache, invalidate

invalid (0) dirty (1) invalid (1) invalid (0)

9 p2
Bus: invalidate

invalid (0) invalid (1) dirty (0) invalid (0)

b) Example table for Test&Test&Set.

Round p0 p1 p2 p3

-1 invalid (0) invalid (0) invalid (0) invalid (0)

0 p0
Bus: load-request

valid (0) invalid (0) invalid (0) invalid (0)

1 p2
Bus: load-request

valid (0) invalid (0) valid (0) invalid (0)

2 p2
Bus: invalidate

invalid (0) invalid (0) dirty (1) invalid (0)

3 p1
Bus: load-request, cache-to-memory, memory-to-cache

invalid (0) valid (1) valid (1) invalid (0)

4 p1
Bus: -

invalid (0) valid (1) valid (1) invalid (0)

5 p1
Bus: -

invalid (0) valid (1) valid (1) invalid (0)

6 p0
Bus: load-request, memory-to-cache, invalidate

dirty (1) invalid (1) invalid (1) invalid (0)

7 p2
Bus: invalidate

invalid (1) invalid (1) dirty (0) invalid (0)

8 p1
Bus: load-request, cache-to-memory, memory-to-cache

invalid (1) valid (0) valid (0) invalid (0)

9 p2
Bus:

invalid (1) valid (0) valid (0) invalid (0)

5

c) If we just count how often the bus was used in a) and b), we see that TAS yields more
load than TTAS. In TAS every process writes to the shared variable in each round,
leading to many invalidate-messages. On the other hand in TTAS processes often read
and only write if there is a real chance of acquiring the lock. A read does not affect the
other caches.

Like every resource, the bus has its limits. The bus can broadcast only one message at
a time. If, like in TAS, the bus is heavily used, then the one message telling everyone
that the lock was released gets a delay.

3 DHT (Optional)

As we have discussed in the lecture, most DHTs are built on the same idea: a binary search
tree. Each leaf of the tree is represented by a peer, nodes (including the root) do not really
exist. A peer knows only a small subset of all the other existing peers. But if a peer knows
the address of another peer it can always contact the other peer. The network is unreliable,
messages can be lost, altered or arrive out of order.

Introduce new messages, protocols, restrictions or other ideas to protected a DHT from various
Byzantine attacks. If you need to make assumptions, write them down. Each answer should
be about 5-10 sentences.

a) Wrong lookup: A search for a key roughly requires O(log n) steps. In each step one
new peer is included in the search. One way to search is to send a message through the
DHT. The message contains the searched key and the address of the peer that started
the search. The message is forwarded from one peer to the next such that it always gets
a bit nearer to its (yet unknown) destination. Once the destination is reached, the final
peer answers.

A Byzantine peer sends the message either in the wrong direction, or to a non-existing
peer.

b) Incorrect routing updates: Each peer maintains a routing table containing the addresses
of about log n other peers. The peers send update messages to each other in order to
keep their routing tables up to date.

A Byzantine peer sends false updates, e.g, it tries to place dead links in a routing table.

c) Partitioning: If a peer wants to join a DHT it has to make contact with a peer that is
already part of the DHT. The new peer can then ask the old peer about other nodes of
the DHT and insert itself at an appropriate place.

A Byzantine peer builds up his own private DHT by sending wrong messages to joining
peers. It gives joining peers only the addresses of peers in his own isolated net.

Solution

There are no “correct” and “wrong” answers for this task. Just answers that are better than
others. The answers given here are just examples of potential solutions.

6

a) • The peer starting the search sends many messages in different directions, hoping
they take a different path.

• Each peer receiving the message sends an acknowledgement and the address of the
next peer back to the one peer that started the search. The starting peer notices
if the message gets lost or takes the wrong path. It then reacts, for example by
restarting the search. The drawback of this solution are the additional connections
that have to be made.

• Assuming we have authentication. Every process receiving the message sends back
an acknowledgement to the previous peer. The previous peer then forwards the
message to its predecessor. If a peer does not receive two times an acknowledgement
(from the correct peers), then its message might have been lost. In this case the
peer sends the message again, but in another direction.

b) • When receiving an update for the routing table, the peer first contacts the new
entries to ensure they really exist.

• A peer only accepts an update if received from enough other peers, for example if
received f + 1 times.

• A peer keeps its old table for some time. Should the new table prove to be bad
(e.g. messages are often delayed), then the peer switches back to the old table.

c) • Some trusted servers are used for joining. But this would mean that the DHT is
no longer fully decentralized.

• The joining peer contacts 3f + 1 servers. These servers run a consensus-protocol.
The result of the consensus is the place and the routing table of the joining peer.

• The joining peer contacts f + 1 servers. If they do not agree, the peer randomly
chooses another set of f + 1 servers. This works only if f is small compared to the
total number of servers.

7

