
Distributed Systems – Roger Wattenhofer – 8/1

Small Systems
Chapter 8

Distributed Systems – Roger Wattenhofer – 8/2

Overview

• Introduction

• Spin Locks
– Test-and-Set & Test-and-Test-and-Set

– Backoff lock

– Queue locks

• Concurrent Linked List
– Fine-grained synchronization

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• Hashing
– Fine-grained locking

– Recursive split ordering

Distributed Systems – Roger Wattenhofer – 8/3

memory

object object

Concurrent Computation

• We started with…

• Multiple threads
– Sometimes called processes

• Single shared memory

• Objects live in memory

• Unpredictable asynchronous delays

• In the previous chapters, we focused on fault-tolerance
– We discussed theoretical results

– We discussed practical solutions with a focus on efficiency

• In this chapter, we focus on efficient concurrent computation!
– Focus on asynchrony and not on explicit failures

Distributed Systems – Roger Wattenhofer – 8/4

Example: Parallel Primality Testing

• Challenge
– Print all primes from 1 to 1010

• Given
– Ten-core multiprocessor

– One thread per processor

• Goal
– Get ten-fold speedup (or close)

• Naïve Approach
– Split the work evenly

– Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9

Problems with
this approach?

Distributed Systems – Roger Wattenhofer – 8/5

Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads
– Uneven

– Hard to predict

• Need dynamic load balancing

• Better approach
– Shared counter!

– Each thread takes a number

17

18

19

Distributed Systems – Roger Wattenhofer – 8/6

Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) {

j = counter.getAndIncrement();
if(isPrime(j))

print(j);
}

}

Procedure Executed at each Thread

Shared counter object

Increment counter & test
if return value is prime

Distributed Systems – Roger Wattenhofer – 8/7

Counter Implementation

public Class counter {

private long value;

public long getAndIncrement() {
return value++;

}
}

What’s the problem with
this implementation?

Distributed Systems – Roger Wattenhofer – 8/8

time

value… 1

read
1

read
1

write
2

read
2

write
3

write
2

2 3 2

Problem

Distributed Systems – Roger Wattenhofer – 8/9

Counter Implementation

public Class counter {

private long value;

public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;

}
}

These steps must
be atomic!

Recall: We can use Read-Modify-
Write (RMW) instructions!

We have to guarantee
mutual exclusion

Distributed Systems – Roger Wattenhofer – 8/10

Model

• The model in this part is slightly more complicated
– However, we still focus on principles

• What remains the same?
– Multiple instruction multiple data (MIMD) architecture

– Each thread/process has its own code and local variables

– There is a shared memory that all threads can access

• What is new?
– Typically, communication runs over a shared bus

(alternatively, there may be several channels)

– Communication contention

– Communication latency

– Each thread has a local cache

memory

I.e., multiprocessors

Distributed Systems – Roger Wattenhofer – 8/11

cache

BusBus

cachecache

1
shared

memory

Local
variables

Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) {
j = counter.getAndIncrement();
if(isPrime(j))
print(j);

}
}

Model: Where Things Reside

E.g., the shared
counter is here

Code

Distributed Systems – Roger Wattenhofer – 8/12

Revisiting Mutual Exclusion

• We need mutual exclusion for our counter

• We are now going to study mutual exclusion from a different angle
– Focus on performance, not just correctness and progress

• We will begin to understand how performance depends on our software
properly utilizing the multiprocessor machine’s hardware,
and get to know a collection of locking algorithms!

• What should you do if you can’t get a lock?

• Keep trying
– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor
– Good if delays are long

– Always good on uniprocessor

Our focus

Distributed Systems – Roger Wattenhofer – 8/13

CS

Resets lock
upon exit

spin
lock

critical
section

...

Basic Spin-Lock

Lock introduces
sequential bottleneck
� No parallelism!

Lock suffers
from contention

Huh?

Distributed Systems – Roger Wattenhofer – 8/14

Reminder: Test&Set

• Boolean value

• Test-and-set (TAS)
– Swap true with current value

– Return value tells if prior value was true or false

• Can reset just by writing false

• Also known as “getAndSet”

Distributed Systems – Roger Wattenhofer – 8/15

Reminder: Test&Set

public class AtomicBoolean {
private boolean value;

public synchronized boolean getAndSet() {
boolean prior = this.value;
this.value = true;
return prior;

}

}

Get current value and set
value to true

java.util.concurrent.atomic

Distributed Systems – Roger Wattenhofer – 8/16

Test&Set Locks

• Locking
– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win

– If result is true, you lose

• Release lock by writing false

Distributed Systems – Roger Wattenhofer – 8/17

Test&Set Lock

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (state.getAndSet()) {}

}

public void unlock() {
state.set(false);

}
}

Keep trying until
lock acquired

Lock state is AtomicBoolean

Release lock by resetting state to false

Distributed Systems – Roger Wattenhofer – 8/18

Performance

• Experiment
– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?

tim
e

threads

Distributed Systems – Roger Wattenhofer – 8/19

Test&Test&Set Locks

• How can we improve TAS?

• A crazy idea: Test before you test and set!

• Lurking stage
– Wait until lock “looks” free

– Spin while read returns true (i.e., the lock is taken)

• Pouncing state
– As soon as lock “looks” available

– Read returns false (i.e., the lock is free)

– Call TAS to acquire the lock

– If TAS loses, go back to lurking

Distributed Systems – Roger Wattenhofer – 8/20

Test&Test&Set Lock

public class TTASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (true) {
while(state.get()) {}
if(!state.getAndSet())
return;

}
}

public void unlock() {
state.set(false);

}
}

Wait until lock looks free

Then try to acquire it

Distributed Systems – Roger Wattenhofer – 8/21

Performance

• Both TAS and TTAS do the same thing (in our old model)

• So, we would expect basically the same results

• Why is TTAS so much better than TAS? Why are both far from ideal?

threads

ideal

tim
e

TAS lock TTAS lock

Distributed Systems – Roger Wattenhofer – 8/22

Opinion

• TAS & TTAS locks

– are provably the same (in our old model)

– except they aren’t (in field tests)

• Obviously, it must have something to do with the model…

• Let’s take a closer look at our new model and try to find a reasonable
explanation!

Distributed Systems – Roger Wattenhofer – 8/23

Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory
(10s of cycles)

Shared bus
• Broadcast medium
• One broadcaster at a time
• Processors (and memory) “snoop”

Per-processor caches
• Small
• Fast: 1 or 2 cycles
• Address and state information

Distributed Systems – Roger Wattenhofer – 8/24

Jargon Watch

• Load request
– When a thread wants to access data, it issues a load request

• Cache hit
– The thread found the data in its own cache

• Cache miss
– The data is not found in the cache

– The thread has to get the data from memory

Distributed Systems – Roger Wattenhofer – 8/25

Load Request

• Thread issues load request and memory responds

cache

memory

cachecache

data
Got your data

right here! data

data…?

Bus

Distributed Systems – Roger Wattenhofer – 8/26

Another Load Request

BusBus

memory

cachecachedata

data

data…?I got data!

• Another thread wants to access the same data. Get a copy from the cache!

Distributed Systems – Roger Wattenhofer – 8/27

Modify Cached Data

• Both threads now have the data in their cache

• What happens if the red thread now modifies the data…?

memory

cachedata

What’s up with the other copies?

data

data

Bus

Distributed Systems – Roger Wattenhofer – 8/28

Cache Coherence

• We have lots of copies of data
– Original copy in memory

– Cached copies at processors

• Some processor modifies its own copy
– What do we do with the others?

– How to avoid confusion?

Distributed Systems – Roger Wattenhofer – 8/29

Write-Back Caches

• Accumulate changes in cache

• Write back when needed
– Need the cache for something else

– Another processor wants it

• On first modification
– Invalidate other entries

– Requires non-trivial protocol …

• Cache entry has three states:

• Invalid: contains raw bits

• Valid: I can read but I can’t write

• Dirty: Data has been modified
– Intercept other load requests

– Write back to memory before reusing cache

Distributed Systems – Roger Wattenhofer – 8/30

Invalidate

• Let’s rewind back to the moment when the red processor updates its
cached data

• It broadcasts an invalidation message � Other processor invalidates its
cache!

BusBus

memory

cachedata

data

cache

Cache loses
read

permission

Distributed Systems – Roger Wattenhofer – 8/31

Invalidate

Bus

memory

cachedata

data

• Memory provides data only if not present in any cache, so there is no need
to change it now (this is an expensive operation!)

• Reading is not a problem � The threads get the data from the red process

cache

Distributed Systems – Roger Wattenhofer – 8/32

Mutual Exclusion

• What do we want to optimize?
1. Minimize the bus bandwidth that the spinning threads use

2. Minimize the lock acquire/release latency

3. Minimize the latency to acquire the lock if the lock is idle

Distributed Systems – Roger Wattenhofer – 8/33

TAS vs. TTAS

• TAS invalidates cache lines

• Spinners
– Miss in cache

– Go to bus

• Thread wants to release lock
– delayed behind spinners!!!

• TTAS waits until lock “looks” free
– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released
– Invalidation storm …

This is why TAS
performs so poorly…

Huh?

Distributed Systems – Roger Wattenhofer – 8/34

Local Spinning while Lock is Busy

Bus

memory

busybusybusy

busy

• While the lock is held, all contenders spin in their caches, rereading
cached data without causing any bus traffic

Distributed Systems – Roger Wattenhofer – 8/35

Bus

On Release

memory

free

free

invalidinvalid

TAS! TAS!

• The lock is released. All spinners take a cache hit and call Test&Set!

Distributed Systems – Roger Wattenhofer – 8/36

Time to Quiescence

• Every process experiences a cache miss
– All state.get() satisfied sequentially

• Every process does TAS
– Caches of other processes are invalidated

• Eventual quiescence (“silence”) after
acquiring the lock

• The time to quiescence increases
linearly with the number of processors for a bus architecture!

P1

P2

Pn

tim
e

threads

Distributed Systems – Roger Wattenhofer – 8/37

Mystery Explained

threads

ideal

tim
e

TAS lock TTAS lock

• Now we understand why the TTAS lock performs much better than the
TAS lock, but still much worse than an ideal lock!

• How can we do better?

Distributed Systems – Roger Wattenhofer – 8/38

Introduce Delay

• If the lock looks free, but I fail to get it, there must be lots of contention

• It’s better to back off than to collide again!

• Example: Exponential Backoff

• Each subsequent failure doubles expected waiting time

2d4d
waiting time

d spin lock

Distributed Systems – Roger Wattenhofer – 8/39

Exponential Backoff Lock

public class Backoff implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
int delay = MIN_DELAY;
while (true) {
while(state.get()) {}
if (!lock.getAndSet())
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}
}

// unlock() remains the same

}

Fix minimum delay

Back off for
random duration

Double maximum
delay until an upper

bound is reached

Distributed Systems – Roger Wattenhofer – 8/40

Backoff Lock: Performance

• The backoff log outperforms the TTAS lock!

• But it is still not ideal…

threads

ideal

tim
e

TAS lock TTAS lock

Backoff lock

Distributed Systems – Roger Wattenhofer – 8/41

Backoff Lock: Evaluation

• Good
– Easy to implement

– Beats TTAS lock

• Bad
– Must choose parameters carefully

– Not portable across platforms

• How can we do better?

• Avoid useless invalidations
– By keeping a queue of threads

• Each thread
– Notifies next in line

– Without bothering the others

Distributed Systems – Roger Wattenhofer – 8/42

ALock: Initially

flags

next

T F F F F F F F

idle

• The Anderson queue lock (ALock) is an array-based queue lock

• Threads share an atomic tail field (called next)

Distributed Systems – Roger Wattenhofer – 8/43

ALock: Acquiring the Lock

flags

next

T F F F F F F F

acquired

• To acquire the lock, each thread atomically increments the tail field

• If the flag is true, the lock is acquired

• Otherwise, spin until the flag is true

The lock
is mine!

Distributed Systems – Roger Wattenhofer – 8/44

ALock: Contention

flags

next

T F F F F F F F

acquired

• If another thread wants to acquire the lock, it applies get&increment

• The thread spins because the flag is false

acquiring

Distributed Systems – Roger Wattenhofer – 8/45

ALock: Releasing the Lock

flags

next

T T F F F F F F

released

• The first thread releases the lock by setting the next slot to true

• The second thread notices the change and gets the lock

acquired The lock
is mine!

Distributed Systems – Roger Wattenhofer – 8/46

ALock

public class Alock implements Lock {
boolean[] flags = {true,false...,false};
AtomicInteger next = new AtomicInteger(0);
ThreadLocal<Integer> mySlot;

public void lock() {
mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {}
flags[mySlot % n] = false;

}

public void unlock() {
flags[(mySlot+1) % n] = true;

}
}

One flag per thread

Thread-local variable

Take the next slot

Tell next thread to go

Distributed Systems – Roger Wattenhofer – 8/47

ALock: Performance

• Shorter handover than backoff

• Curve is practically flat

• Scalable performance

• FIFO fairness

threads

ideal

tim
e

TAS lock TTAS lock

ALock

Distributed Systems – Roger Wattenhofer – 8/48

ALock: Evaluation

• Good
– First truly scalable lock

– Simple, easy to implement

• Bad
– One bit per thread

– Unknown number of threads?

Distributed Systems – Roger Wattenhofer – 8/49

ALock: Alternative Technique

• The threads could update own flag and spin on their predecessor’s flag

• This is basically what the CLH lock does, but using a linked list instead of
an array

• Is this a good idea?

flags

… F F F F F F F

acquiring acquiring

i

i-1

i+1

i

Not discussed
in this lecture

Distributed Systems – Roger Wattenhofer – 8/50

NUMA Architectures

• Non-Uniform Memory Architecture

• Illusion
– Flat shared memory

• Truth
– No caches (sometimes)

– Some memory regions faster than others

Spinning on local memory is fast: Spinning on remote memory is slow:

Distributed Systems – Roger Wattenhofer – 8/51

MCS Lock

• Idea
– Use a linked list instead of an array

� Small, constant-sized space
– Spin on own flag, just like the Anderson queue lock

• The space usage
– L = number of locks

– N = number of threads

• of the Anderson lock is O(LN)

• of the MCS lock is O(L+N)

Distributed Systems – Roger Wattenhofer – 8/52

MCS Lock: Initially

tail

idle
Queue tail

• The lock is represented as a linked list of QNodes, one per thread

• The tail of the queue is shared among all threads

Distributed Systems – Roger Wattenhofer – 8/53

MCS Lock: Acquiring the Lock

• To acquire the lock, the thread places its QNode at the tail of the list
by swapping the tail to its QNode

• If there is no predecessor, the thread acquires the lock

false

(allocate QNode)

Swap

The lock
is mine!

false = lock
is free

acquired

tail

Distributed Systems – Roger Wattenhofer – 8/54

acquiring

• If another thread wants to acquire the lock, it again applies swap

• The thread spins on its own QNode because there is a predecessor

true

Swap

MCS Lock: Contention

tail

false

acquired

Distributed Systems – Roger Wattenhofer – 8/55

• The first thread releases the lock by setting its successor’s QNode to false

MCS Lock: Releasing the Lock

The lock
is mine!

acquired

false

tail

false

released

Distributed Systems – Roger Wattenhofer – 8/56

MCS Queue Lock

public class QNode {
boolean locked = false;
QNode next = null;

}

Distributed Systems – Roger Wattenhofer – 8/57

MCS Queue Lock

public class MCSLock implements Lock {
AtomicReference tail;

public void lock() {
QNode qnode = new QNode();
QNode pred = tail.getAndSet(qnode);
if (pred != null) {
qnode.locked = true;
pred.next = qnode;
while (qnode.locked) {}

}
}

...

Add my node to the tail

Fix if queue was
non-empty

Distributed Systems – Roger Wattenhofer – 8/58

• If there is a successor, unlock it. But, be cautious!

• Even though a QNode does not have a successor, the purple thread knows
that another thread is active because tail does not point to its QNode!

MCS Lock: Unlocking

Waiting…

acquiring

true

Swap tail

false

releasing

Distributed Systems – Roger Wattenhofer – 8/59

• As soon as the pointer to the successor is set, the purple thread can
release the lock

MCS Lock: Unlocking Explained

The lock
is mine!

Set my successor’s
QNode to false!

acquired

false

tail

false

released

Distributed Systems – Roger Wattenhofer – 8/60

MCS Queue Lock

...

public void unlock() {
if (qnode.next == null) {
if (tail.CAS(qnode, null)
return;

while (qnode.next == null) {}
}
qnode.next.locked = false;

}
}

Missing successor?

If really no successor,
return

Otherwise, wait for
successor to catch up

Pass lock to successor

Distributed Systems – Roger Wattenhofer – 8/61

Abortable Locks

• What if you want to give up waiting for a lock?

• For example
– Time-out

– Database transaction aborted by user

• Back-off Lock
– Aborting is trivial: Just return from lock() call!

– Extra benefit: No cleaning up, wait-free, immediate return

• Queue Locks
– Can’t just quit: Thread in line behind will starve

– Need a graceful way out…

Distributed Systems – Roger Wattenhofer – 8/62

Problem with Queue Locks

spinning

truefalsefalse

released

spinning

truetruefalse

acquired

…?

aborted

Distributed Systems – Roger Wattenhofer – 8/63

Abortable MCS Lock

• A mechanism is required to recognize and remove aborted threads
– A thread can set a flag indicating that it aborted

– The predecessor can test if the flag is set

– If the flag is set, its new successor is the successor’s successor

– How can we handle concurrent aborts? This is not discussed in this lecture

spinning

truetruefalse

acquired aborted

Spinning on
remote object…?!

Distributed Systems – Roger Wattenhofer – 8/64

Composite Locks

• Queue locks have many advantages
– FIFO fairness, fast lock release, low contention

but require non-trivial protocols to handle aborts (and recycling of nodes)

• Backoff locks support trivial time-out protocols

but are not scalable and may have slow lock release times

• A composite lock combines the best of both approaches!

• Short fixed-sized array of lock nodes

• Threads randomly pick a node and try
to acquire it

• Use backoff mechanism to acquire a node

• Nodes build a queue

• Use a queue lock mechanism to acquire the lock

Distributed Systems – Roger Wattenhofer – 8/65

One Lock To Rule Them All?

• TTAS+Backoff, MCS, Abortable MCS…

• Each better than others in some way

• There is not a single best solution

• Lock we pick really depends on
– the application

– the hardware

– which properties are important

Distributed Systems – Roger Wattenhofer – 8/66

Handling Multiple Threads

• Adding threads should not lower the throughput
– Contention effects can mostly be fixed by Queue locks

• Adding threads should increase throughput
– Not possible if the code is inherently sequential

– Surprising things are parallelizable!

• How can we guarantee consistency if there are many threads?

Distributed Systems – Roger Wattenhofer – 8/67

Coarse-Grained Synchronization

• Each method locks the object
– Avoid contention using queue locks

– Mostly easy to reason about

– This is the standard Java model (synchronized blocks and methods)

• Problem: Sequential bottleneck
– Threads “stand in line”

– Adding more threads does not improve throughput

– We even struggle to keep it from getting worse…

• So why do we even use a multiprocessor?
– Well, some applications are inherently parallel…

– We focus on exploiting non-trivial parallelism

Distributed Systems – Roger Wattenhofer – 8/68

Exploiting Parallelism

• We will now talk about four “patterns”
– Bag of tricks …

– Methods that work more than once …

• The goal of these patterns are
– Allow concurrent access

– If there are more threads, the throughput increases!

Distributed Systems – Roger Wattenhofer – 8/69

Pattern #1: Fine-Grained Synchronization

• Instead of using a single lock split the concurrent object into
independently-synchronized components

• Methods conflict when they access
– The same component

– At the same time

Distributed Systems – Roger Wattenhofer – 8/70

Pattern #2: Optimistic Synchronization

• Assume that nobody else wants to access your part of the concurrent
object

• Search for the specific part that you want to lock without locking any
other part on the way

• If you find it, try to lock it and perform your operations
– If you don’t get the lock, start over!

• Advantage
– Usually cheaper than always assuming that there may be a conflict due to a

concurrent access

Distributed Systems – Roger Wattenhofer – 8/71

Pattern #3: Lazy Synchronization

• Postpone hard work!

• Removing components is tricky
– Either remove the object physically

– Or logically: Only mark component to be deleted

Distributed Systems – Roger Wattenhofer – 8/72

Pattern #4: Lock-Free Synchronization

• Don’t use locks at all!
– Use compareAndSet() & other RMW operations!

• Advantages
– No scheduler assumptions/support

• Disadvantages
– Complex

– Sometimes high overhead

Distributed Systems – Roger Wattenhofer – 8/73

Illustration of Patterns

• In the following, we will illustrate these patterns using a list-based set
– Common application

– Building block for other apps

• A set is an collection of items
– No duplicates

• The operations that we want to allow on the set are
– aadd(x) puts x into the set

– rremove(x) takes x out of the set

– ccontains(x) tests if x is in the set

Distributed Systems – Roger Wattenhofer – 8/74

The List-Based Set

• We assume that there are sentinel nodes at the beginning and end of the
linked list

• Add node b:

• Remove node b:

a c d

b

a b c

a b c

Distributed Systems – Roger Wattenhofer – 8/75

Coarse-Grained Locking

• A simple solution is to lock the entire list for each operation
– E.g., by locking the first sentinel

• Simple and clearly correct!

• Works poorly with contention…

a c d

b

Distributed Systems – Roger Wattenhofer – 8/76

Fine-Grained Locking

• Split object (list) into pieces (nodes)
– Each piece (each node in the list) has its own lock

– Methods that work on disjoint pieces need not exclude each other

• Hand-over-hand locking: Use two locks when traversing the list
– Why two locks?

a c d

b

Distributed Systems – Roger Wattenhofer – 8/77

Problem with One Lock

• Assume that we want to delete node c

• We lock node b and set its next pointer to the node after c

• Another thread may concurrently delete node b by setting the next
pointer from node a to node c

ba c

ba c

Hooray, I’m
not deleted!

Distributed Systems – Roger Wattenhofer – 8/78

Insight

• If a node is locked, no one can delete the node’s successor

• If a thread locks
– the node to be deleted

– and also its predecessor

• then it works!

• That’s why we (have to) use two locks!

Distributed Systems – Roger Wattenhofer – 8/79

Hand-Over-Hand Locking: Removing Nodes

• Assume that two threads want to remove the nodes b and c

• One thread acquires the lock to the sentinel, the other has to wait

Remove
node b!

a b c

Remove
node c!

Distributed Systems – Roger Wattenhofer – 8/80

Hand-Over-Hand Locking: Removing Nodes

• The same thread that acquired the sentinel lock can then lock the next
node

a b c

Remove
node b!

Remove
node c!

Distributed Systems – Roger Wattenhofer – 8/81

Hand-Over-Hand Locking: Removing Nodes

• Before locking node b, the sentinel lock is released

• The other thread can now acquire the sentinel lock

a b c

Remove
node b!

Remove
node c!

Distributed Systems – Roger Wattenhofer – 8/82

Hand-Over-Hand Locking: Removing Nodes

• Before locking node c, the lock of node a is released

• The other thread can now lock node a

a b c

Remove
node b!

Remove
node c!

Distributed Systems – Roger Wattenhofer – 8/83

Hand-Over-Hand Locking: Removing Nodes

• Node c can now be removed

• Afterwards, the two locks are released

Remove
node b!

Remove
node c!

a b c

Distributed Systems – Roger Wattenhofer – 8/84

Hand-Over-Hand Locking: Removing Nodes

• The other thread can now lock node b and remove it

Remove
node b!

a b

Distributed Systems – Roger Wattenhofer – 8/85

List Node

public class Node {
public T item;
public int key;
public Node next;

}

Item of interest

Usually a hash code

Reference to next node

Distributed Systems – Roger Wattenhofer – 8/86

Remove Method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();

...

} finally {
curr.unlock();
pred.unlock();

}
}

Start at the head and lock it

Lock the current node

Make sure that the
locks are released

Traverse the list and
remove the item

On the
next slide!

Distributed Systems – Roger Wattenhofer – 8/87

Remove Method

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;

return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Search key range

If item found,
remove the node

Unlock pred and
lock the next node

Return false if the element is not present

Distributed Systems – Roger Wattenhofer – 8/88

Why does this work?

• To remove node e
– Node e must be locked

– Node e’s predecessor must be locked

• Therefore, if you lock a node
– It can’t be removed

– And neither can its successor

• To add node e
– Must lock predecessor

– Must lock successor

• Neither can be deleted
– Is the successor lock actually required?

Distributed Systems – Roger Wattenhofer – 8/89

Drawbacks

• Hand-over-hand locking is sometimes better than coarse-grained lock
– Threads can traverse in parallel

– Sometimes, it’s worse!

• However, it’s certainly not ideal
– Inefficient because many locks must be acquired and released

• How can we do better?

Distributed Systems – Roger Wattenhofer – 8/90

Optimistic Synchronization

• Traverse the list without locking!

a b d

Add
node c!

Found the
position!

Distributed Systems – Roger Wattenhofer – 8/91

Optimistic Synchronization: Traverse without Locking

• Once the nodes are found, try to lock them

• Check that everything is ok

a b d

Add
node c!

Lock them!

Is everything ok?

What could
go wrong…?

Distributed Systems – Roger Wattenhofer – 8/92

Optimistic Synchronization: What Could Go Wrong?

• Another thread may lock nodes a and b and remove b before node c is
added � If the pointer from node b is set to node c, then node c is not
added to the list!

a b d

Add
node c!

Remove b!

Distributed Systems – Roger Wattenhofer – 8/93

Optimistic Synchronization: Validation #1

• How can this be fixed?

• After locking node b and node d, traverse the list again to verify that b is
still reachable

a b d

Add
node c!

Node b can still
be reached!

Distributed Systems – Roger Wattenhofer – 8/94

Optimistic Synchronization: What Else Could Go Wrong?

• Another thread may lock node a and b and add a node b’ before node c is
added � By adding node c, the addition of node b’ is undone!

a b d

Add
node c!

Add b’!

b'

Distributed Systems – Roger Wattenhofer – 8/95

Optimistic Synchronization: Validation #2

• How can this be fixed?

• After locking node b and node d, also check that node b still points to
node d!

a b d

Add
node c!

The pointer is
still correct…

Distributed Systems – Roger Wattenhofer – 8/96

Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
Node node = head;
while (node.key <= pred.key) {

if (node == pred)
return pred.next == curr;

node = node.next;
}
return false;

}

If pred is reached,
test if the

successor is curr

Predecessor not reachable

Distributed Systems – Roger Wattenhofer – 8/97

Optimistic Synchronization: Remove

private boolean remove(Item item) {
int key = item.hashCode();
while (true) {

Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;

pred = curr;
curr = curr.next;

}
...

Retry on synchronization
conflict

Stop if we find the item

Distributed Systems – Roger Wattenhofer – 8/98

Optimistic Synchronization: Remove

...
try {
pred.lock(); curr.lock();
if (validate(pred,curr)) {
if (curr.item == item) {

pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Lock both nodes

Check for
synchronization conflicts

Remove node if
target found

Always unlock the nodes

Distributed Systems – Roger Wattenhofer – 8/99

Optimistic Synchronization

• Why is this correct?
– If nodes b and c are both locked, node b still accessible, and node c still the

successor of node b, then neither b nor c will be deleted by another thread

– This means that it’s ok to delete node c!

• Why is it good to use optimistic synchronization?
– Limited hot-spots: no contention on traversals

– Less lock acquisitions and releases

• When is it good to use optimistic synchronization?
– When the cost of scanning twice without locks is less than the cost of

scanning once with locks

• Can we do better?
– It would be better to traverse the list only once…

Distributed Systems – Roger Wattenhofer –8/100

Lazy Synchronization

• Key insight
– Removing nodes causes trouble

– Do it “lazily”

• How can we remove nodes “lazily”?
– First perform a logical delete: Mark current node as removed (new!)

– Then perform a physical delete: Redirect predecessor’s next (as before)

b b

Distributed Systems – Roger Wattenhofer –8/101

Lazy Synchronization

• All Methods
– Scan through locked and marked nodes

– Removing a node doesn’t slow down other method calls…

• Note that we must still lock pred and curr nodes!

• How does validation work?
– Check that neither pred nor curr are marked

– Check that pred points to curr

Distributed Systems – Roger Wattenhofer –8/102

Lazy Synchronization

• Traverse the list and then try to lock the two nodes

• Validate!

• Then, mark node c and change the predecessor’s next pointer

Remove
node c!

Check that b and c
are not marked and

that b points to c

b ca

Distributed Systems – Roger Wattenhofer –8/103

Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {
return !pred.marked && !curr.marked &&
pred.next == curr);

}
Nodes are not

logically removed

Predecessor still
points to current

Distributed Systems – Roger Wattenhofer –8/104

Lazy Synchronization: Remove

public boolean remove(Item item) {
int key = item.hashCode();
while (true) {

Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;

pred = curr;
curr = curr.next;

}
...

This is the same as before!

Distributed Systems – Roger Wattenhofer –8/105

Optimistic Synchronization: Remove

...
try {
pred.lock(); curr.lock();
if (validate(pred,curr)) {
if (curr.item == item) {

curr.marked = true;
pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Check for
synchronization conflicts

If the target is found,
mark the node and

remove it

Distributed Systems – Roger Wattenhofer –8/106

Lazy Synchronization: Contains

public boolean contains(Item item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {

curr = curr.next
}
return curr.key == key && !curr.marked;

Traverse without locking
(nodes may have been

removed)

Is the element present and not marked?

Distributed Systems – Roger Wattenhofer –8/107

Evaluation

• Good
– The list is traversed only once without locking
– Note that contains() doesn’t lock at all!
– This is nice because typically contains() is called much more often than add()

or remove()
– Uncontended calls don’t re-traverse

• Bad
– Contended add() and remove() calls do re-traverse
– Traffic jam if one thread delays

• Traffic jam?
– If one thread gets the lock and experiences a cache miss/page fault, every

other thread that needs the lock is stuck!

– We need to trust the scheduler….

Distributed Systems – Roger Wattenhofer –8/108

Reminder: Lock-Free Data Structures

• If we want to guarantee that some thread will
eventually complete a method call, even if other
threads may halt at malicious times, then the
implementation cannot use locks!

• Next logical step: Eliminate locking entirely!

• Obviously, we must use some sort of RMW method

• Let’s use compareAndSet() (CAS)!

Distributed Systems – Roger Wattenhofer –8/109

Remove Using CAS

• First, remove the node logically (i.e., mark it)

• Then, use CAS to change the next pointer

• Does this work…?

Remove
node c!

b ca

Distributed Systems – Roger Wattenhofer –8/110

Remove Using CAS: Problem

• Unfortunately, this doesn’t work!

• Another node d may be added before node c is physically removed

• As a result, node d is not added to the list…

Remove
node c!

Add
node d!

b ca

d

Distributed Systems – Roger Wattenhofer –8/111

Solution

• Mark bit and next pointer are “CASed together”

• This atomic operation ensures that no node can cause a conflict by adding
(or removing) a node at the same position in the list

Remove
node c!

Node c
has been
removed!

b ca

dd

Distributed Systems – Roger Wattenhofer –8/112

Solution

• Such an operation is called an atomic markable reference
– Atomically update the mark bit and redirect the predecessor’s next pointer

• In Java, there’s an AtomicMarkableReference class
– In the package Java.util.concurrent.atomic package

address false mark bitReference

Updated atomically

Distributed Systems – Roger Wattenhofer –8/113

Changing State

private Object ref;
private boolean mark;

public synchronized boolean compareAndSet(
Object expectedRef, Object updateRef,
boolean expectedMark, boolean updateMark) {

if (ref == expectedRef && mark == expectedMark){
ref = updateRef;
mark = updateMark;

}
}

The reference to the next
Object and the mark bit

If the reference and the mark are as
expected, update them atomically

Distributed Systems – Roger Wattenhofer –8/114

Removing a Node

• If two threads want to delete the nodes b and c, both b and c are marked

• The CAS of the red thread fails because node b is marked!

• (If node b is yet not marked, then b is removed first and there is no
conflict)

Remove
node b!

remove
node c!

b ca

CASCAS

Distributed Systems – Roger Wattenhofer –8/115

Traversing the List

• Question: What do you do when you find a “logically” deleted node in
your path when you’re traversing the list?

Distributed Systems – Roger Wattenhofer –8/116

Lock-Free Traversal

• If a logically deleted node is encountered, CAS the predecessor’s next
field and proceed (repeat as needed)

CAS!

b ca

CAS

Distributed Systems – Roger Wattenhofer –8/117

Performance

• The throughput of the presented techniques has been measured for a
varying percentage of contains() method calls

– Using a benchmark on a 16 node shared memory machine

Ops/sec (32 threads)
Lock-free

Lazy list

Coarse Grained
Fine Grained

% contains()

106

8·106

0 10 20 30 40 50 60 70 80 90

Distributed Systems – Roger Wattenhofer –8/118

Low Ratio of contains()

Lock-free

Lazy list

Coarse Grained
Fine Grained

Threads

Ops/sec (50% read)

0 5 10 15 20 25 30

3.5·106

3·106

2.5·106

1.5·106

5·105

2·106

1·106

• If the ratio of contains() is low, the lock-free linked list and the linked list
with lazy synchronization perform well even if there are many threads

Distributed Systems – Roger Wattenhofer –8/119

High Ratio of contains()

Lock-free
Lazy list

Coarse Grained
Fine Grained

0 5 10 15 20 25 30
Threads

1.2·107

1·107

8·106

6·106

4·106

2·106

Ops/sec (90% reads)

• If the ratio of contains() is high, again both the lock-free linked list and the
linked list with lazy synchronization perform well even if there are many
threads

Distributed Systems – Roger Wattenhofer –8/120

“To Lock or Not to Lock”

• Locking vs. non-blocking: Extremist views on both sides

• It is nobler to compromise by combining locking and non-blocking
techniques

– Example: Linked list with lazy synchronization combines blocking add() and
remove() and a non-blocking contains()

– Blocking/non-blocking is a property of a method

Distributed Systems – Roger Wattenhofer –8/121

Linear-Time Set Methods

• We looked at a number of ways to make highly-concurrent list-based sets
– Fine-grained locks
– Optimistic synchronization
– Lazy synchronization
– Lock-free synchronization

• What’s not so great?
– add(), remove(), contains() take time linear in the set size

• We want constant-time methods!
– At least on average…

How…?

Distributed Systems – Roger Wattenhofer –8/122

Hashing

• A hash function maps the items to integers
– h: items integers

• Uniformly distributed
– Different items “most likely” have different hash values

• In Java there is a hashCode() method

Distributed Systems – Roger Wattenhofer –8/123

0

1

2

3

16

9

h(k) = k mod 4
buckets

Sequential Hash Map

• The hash table is implemented as an array of buckets, each pointing to a
list of items

• Problem: If many items are added, the lists get long � Inefficient
lookups!

• Solution: Resize!

7

4

15

28

Distributed Systems – Roger Wattenhofer –8/124

0

1

2

3

16

9

h(k) = k mod 8

Resizing

• The array size is doubled and the hash function adjusted

7

4

15

28

4

5

6

7

Grow the array

New hash function

Distributed Systems – Roger Wattenhofer –8/125

0

1

2

3

16

9

h(k) = k mod 8

Resizing

• Some items have to be moved to different buckets!

7

4

15

28

4

5

6

7

4 28

4 28

15

15

Distributed Systems – Roger Wattenhofer –8/126

Hash Sets

• A Hash set implements a set object
– Collection of items, no duplicates

– add(), remove(), contains() methods

• More coding ahead!

Distributed Systems – Roger Wattenhofer –8/127

Simple Hash Set

public class SimpleHashSet {
protected LockFreeList[] table;

public SimpleHashSet(int capacity) {
table = new LockFreeList[capacity];
for (int i = 0; i < capacity; i++)
table[i] = new LockFreeList();

}

public boolean add(Object key) {
int hash = key.hashCode() % table.length;
return table[hash].add(key);

Array of lock-free lists

Initial size

Initialization

Use hash of object to pick a bucket
and call bucket’s add() method

Distributed Systems – Roger Wattenhofer –8/128

Simple Hash Set: Evaluation

• We just saw a
– Simple

– Lock-free

– Concurrent

hash-based set implementation

• But we don’t know how to resize…

• Is Resizing really necessary?
– Yes, since constant-time method calls require constant-length buckets and a

table size proportional to the set size

– As the set grows, we must be able to resize

Distributed Systems – Roger Wattenhofer –8/129

Set Method Mix

• Typical load
– 90% contains()

– 9% add ()

– 1% remove()

• Growing is important, shrinking not so much

• When do we resize?

• There are many reasonable policies, e.g., pick a threshold on the number
of items in a bucket

• Global threshold
– When, e.g., ≥ ¼ buckets exceed this value

• Bucket threshold
– When any bucket exceeds this value

Distributed Systems – Roger Wattenhofer –8/130

Coarse-Grained Locking

• If there are concurrent accesses, how can we safely resize the array?

• As with the linked list, a straightforward solution is to use coarse-grained
locking: lock the entire array!

• This is very simple and correct

• However, we again get a sequential bottleneck…

• How about fine-grained locking?

Distributed Systems – Roger Wattenhofer –8/131

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking

• Each lock is associated with one bucket

• After acquiring the lock of the list, insert the item in the list!

7

8

11

17

Distributed Systems – Roger Wattenhofer –8/132

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Acquire all locks in ascending order and make sure that the table
reference didn’t change between resize decision and lock acquisition!

7

8

11

17

Table reference
didn’t change?

Distributed Systems – Roger Wattenhofer –8/133

0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Allocate a new table and copy all elements

7

8

11

17
0

1

2

3

4

5

6

7

8

4

9 17

11

7
Distributed Systems – Roger Wattenhofer –8/134

0

1

2

3

h(k) = k mod 8

Fine-Grained Locking: Resizing

• Stripe the locks: Each lock is now associated with two buckets

• Update the hash function and the table reference

0

1

2

3

4

5

6

7

8

4

9 17

11

7

Distributed Systems – Roger Wattenhofer –8/135

Observations

• We grow the table, but we don’t increase the number of locks
– Resizing the lock array is tricky …

• We use sequential lists (coarse-grained locking)
– No lock-free list

– If we’re locking anyway, why pay?

Distributed Systems – Roger Wattenhofer –8/136

Fine-Grained Hash Set

public class FGHashSet {
protected RangeLock[] lock;
protected List[] table;

public FGHashSet(int capacity) {
table = new List[capacity];
lock = new RangeLock[capacity];
for (int i = 0; i < capacity; i++)
lock[i] = new RangeLock();

table[i] = new LinkedList();
}

}

Array of locks
Array of buckets

Initially the same
number of locks

and buckets

Distributed Systems – Roger Wattenhofer –8/137

Fine-Grained Hash Set: Add Method

public boolean add(Object key) {
int keyHash = key.hashCode() % lock.length;
synchronized(lock[keyHash]) {
int tableHash = key.hashCode() % table.length;
return table[tableHash].add(key);

}
}

Acquire the
right lock

Call the add() method of
the right bucket

Distributed Systems – Roger Wattenhofer –8/138

Fine-Grained Hash Set: Resize Method

public void resize(int depth, List[] oldTable) {
synchronized (lock[depth]) {
if (oldTable == this.table) {
int next = depth + 1;
if (next < lock.length)

resize(next, oldTable);
else

sequentialResize();
}

}
}

}

Resize() calls
resize(0,this.table)

Acquire the next
lock and check

that no one else
has resized

Recursively acquire
the next lock

Once the locks are
acquired, do the work

Distributed Systems – Roger Wattenhofer –8/139

Fine-Grained Locks: Evaluation

• We can resize the table, but not the locks

• It is debatable whether method calls are constant-time in presence of
contention …

• Insight: The contains() method does not modify any fields
– Why should concurrent contains() calls conflict?

Distributed Systems – Roger Wattenhofer –8/140

Read/Write Locks

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

Return the associated read lock

Return the associated write lock

Distributed Systems – Roger Wattenhofer –8/141

Lock Safety Properties

• No thread may acquire the write lock
– while any thread holds the write lock

– or the read lock

• No thread may acquire the read lock
– while any thread holds the write lock

• Concurrent read locks OK

• This satisfies the following safety properties
– If readers > 0 then writer == false

– If writer = true then readers == 0

Distributed Systems – Roger Wattenhofer –8/142

Read/Write Lock: Liveness

• How do we guarantee liveness?
– If there are lots of readers, the writers may be locked out!

• Solution: FIFO Read/Write lock
– As soon as a writer requests a lock, no more readers are accepted

– Current readers “drain” from lock and the writers acquire it eventually

Distributed Systems – Roger Wattenhofer –8/143

Optimistic Synchronization

• What if the contains() method scans without locking…?

• If it finds the key
– It is ok to return true!

– Actually requires a proof…

• What if it doesn’t find the key?
– It may be a victim of resizing…

– Get a read lock and try again!

– This makes sense if is expected (?) that the key is there and resizes are rare…

We won’t discuss
this in this lecture

Distributed Systems – Roger Wattenhofer –8/144

Stop The World Resizing

• The resizing we have seen up till now stops all concurrent operations

• Can we design a resize operation that will be incremental?

• We need to avoid locking the table…

• We want a lock-free table with incremental resizing!
How…?

Distributed Systems – Roger Wattenhofer –8/145

Lock-Free Resizing Problem

• In order to remove and then add even a single item, “single location CAS’
is not enough…

0

1

2

3

16

9

7

4

15

28

4

5

6

7

We need to extend the table!

4 28

4 28

Distributed Systems – Roger Wattenhofer –8/146

Idea: Don’t Move the Items

• Move the buckets instead of the items!

• Keep all items in a single lock-free list

• Buckets become “shortcut pointers” into the list

0

1

2

3

16 4 28 9 7 15

Distributed Systems – Roger Wattenhofer –8/147

Recursive Split Ordering

• Example: The items 0 to 7 need to be hashed into the table

• Recursively split the list the buckets in half:

• The list entries are sorted in an order that allows recursive splitting

0

1

1/2

2

3

1/4 3/4
0 4 2 6 1 5 3 7

How…?

Distributed Systems – Roger Wattenhofer –8/148

Recursive Split Ordering

• Note that the least significant bit (LSB) is 0 in the first half and 1 in the
other half! The second LSB determines the next pointers etc.

0

1

LSB = 1

2

3

LSB = 0

0 4 2 6 1 5 3 7

LSB = 00 LSB = 10 LSB = 01 LSB = 11

Distributed Systems – Roger Wattenhofer –8/149

Split-Order

• If the table size is 2i:
– Bucket b contains keys k = b mod 2i

– The bucket index consists of the key's i least significant bits

• When the table splits:
– Some keys stay (b = k mod 2i+1)
– Some keys move (b+2i = k mod2i+1)

• If a key moves is determined by the (i+1)st bit
– counting backwards

Distributed Systems – Roger Wattenhofer –8/150

A Bit of Magic

• We need to map the real keys to the split-order

• Look at the binary representation of the keys and the indices

• The real keys:

• Split-order:

• Just reverse the order of the key bits!

0 1 2 3 4 5 6 7

0 4 2 6 1 5 3 7

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111

Real key 1 is at index 4!

Distributed Systems – Roger Wattenhofer –8/151

Split Ordered Hashing

• After a resize, the new pointers are found by searching for the right index

• A problem remains: How can we remove a node by means of a CAS if two
sources point to it?

0

1
2

3

0 4 2 6 1 5 3 7
000 001 010 011 100 101 110 111

Order according to reversed bits

2 pointers to some nodes!

Distributed Systems – Roger Wattenhofer –8/152

Sentinel Nodes

• Solution: Use a sentinel node for each bucket

• We want a sentinel key for i ordered
– before all keys that hash to bucket i

– after all keys that hash to bucket (i-1)

0

1
2

3

0 16 4 1 9 3 7 15

Distributed Systems – Roger Wattenhofer –8/153

Initialization of Buckets

• We can now split a bucket in a lock-free manner using two CAS() calls

• Example: We need to initialize bucket 3 to split bucket 1!

0

1
2

3

0 16 4 1 9

3

7 15

Distributed Systems – Roger Wattenhofer –8/154

Adding Nodes

• Example: Node 10 is added

• First, bucket 2 (= 10 mod 4) must be initialized, then the new node is
added

0

1
2

3

0 16 4 1 9 3 7 15

2 10

Distributed Systems – Roger Wattenhofer –8/155

Recursive Initialization

• It is possible that buckets must be initialized recursively

• Example: When node 7 is added, bucket 3 (= 7 mod 4) is initialized and
then bucket 1 (= 3 mod 2) is also initialized

• Note that ≈ log n empty buckets may be initialized if one node is added,
but the expected depth is constant!

0

1
2

3

0 8 12 1 73

n = number of nodes

Distributed Systems – Roger Wattenhofer –8/156

Lock-Free List

private int makeRegularKey(int key) {
return reverse(key | 0x80000000);

}

private int makeSentinelKey(int key) {
return reverse(key);

}

Set high-order bit
to 1 and reverse

Simply reverse
(high-order bit is 0)

Distributed Systems – Roger Wattenhofer –8/157

Split-Ordered Set

public class SOSet{
protected LockFreeList[] table;
protected AtomicInteger tableSize;
protected AtomicInteger setSize;

public SOSet(int capacity) {
table = new LockFreeList[capacity];
table[0] = new LockFreeList();
tableSize = new AtomicInteger(2);
setSize = new AtomicInteger(0);

}

This is the lock-free list
(slides 108-116) with
minor modifications

Track how much of
table is used and the
set size so we know

when to resize

Initially use 1 bucket
and the size is zero

Distributed Systems – Roger Wattenhofer –8/158

Split-Ordered Set: Add

public boolean add(Object object) {
int hash = object.hashCode();
int bucket = hash % tableSize.get();
int key = makeRegularKey(hash);
LockFreeList list = getBucketList(bucket);
if (!list.add(object,key))

return false;
resizeCheck();
return true;

}

Pick a bucket
Non-sentinel

split-ordered key

Get pointer to
bucket’s sentinel,

initializing if
necessary

Try to add with
reversed key

Resize if
necessary

Distributed Systems – Roger Wattenhofer –8/159

Recall: Resizing & Initializing Buckets

• Resizing
– Divide the set size by the total number of buckets

– If the quotient exceeds a threshold, double the tableSize field up to a fixed
limit

• Initializing Buckets
– Buckets are originally null

– If you encounter a null bucket, initialize it

– Go to bucket’s parent (earlier nearby bucket) and recursively initialize if
necessary

– Constant expected work!

Distributed Systems – Roger Wattenhofer –8/160

Split-Ordered Set: Initialize Bucket

public void initializeBucket(int bucket) {
int parent = getParent(bucket);
if (table[parent] == null)

initializeBucket(parent);
int key = makeSentinelKey(bucket);
LockFreeList list = new
LockFreeList(table[parent],key);

}

Find parent,
recursively

initialize if needed

Prepare key for
new sentinel

Insert sentinel if not present and
return reference to rest of list

Distributed Systems – Roger Wattenhofer –8/161

Correctness

• Split-ordered set is a correct, linearizable, concurrent set
implementation

• Constant-time operations!
– It takes no more than O(1) items between two dummy nodes on average

– Lazy initialization causes at most O(1) expected recursion depth in
initializeBucket()

Distributed Systems – Roger Wattenhofer –8/162

Empirical Evaluation

• Evaluation has been performed on a 30-processor Sun Enterprise 3000
• Lock-Free vs. fine-grained (Lea) optimistic locking
• In a non-multiprogrammed environment
• 106 operations: 88% contains(), 10% add(), 2% remove()

No work: Busy:

op
s/

tim
e

threads

locking

lock-free

op
s/

tim
e

threads

locking

lock-free

Distributed Systems – Roger Wattenhofer –8/163

Empirical Evaluation

• Expected bucket length
– The load factor is the capacity

of the individual buckets

• Varying The Mix
– Increasing the number of updates

op
s/

tim
e

Load factor

locking

lock-free

op
s/

tim
e

locking

lock-free

More reads More updates

