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Small Systems
Chapter 8
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Overview

• Introduction

• Spin Locks
– Test-and-Set & Test-and-Test-and-Set

– Backoff lock

– Queue locks

• Concurrent Linked List
– Fine-grained synchronization

– Optimistic synchronization

– Lazy synchronization

– Lock-free synchronization

• Hashing
– Fine-grained locking

– Recursive split ordering

Distributed Systems   – Roger Wattenhofer   – 8/3

memory

object object

Concurrent Computation

• We started with…

• Multiple threads
– Sometimes called processes

• Single shared memory

• Objects live in memory

• Unpredictable asynchronous delays

• In the previous chapters, we focused on fault-tolerance
– We discussed theoretical results

– We discussed practical solutions with a focus on efficiency

• In this chapter, we focus on efficient concurrent computation!
– Focus on asynchrony and not  on explicit failures
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Example: Parallel Primality Testing

• Challenge
– Print all primes from 1 to 1010

• Given
– Ten-core multiprocessor

– One thread per processor

• Goal
– Get ten-fold speedup (or close)

• Naïve Approach
– Split the work evenly

– Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9

Problems with
this approach?
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Issues

• Higher ranges have fewer primes

• Yet larger numbers harder to test

• Thread workloads
– Uneven

– Hard to predict

• Need dynamic load balancing

• Better approach
– Shared counter!

– Each thread takes a number

17

18

19
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Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) { 

j = counter.getAndIncrement();
if(isPrime(j))

print(j);
}

}

Procedure Executed at each Thread

Shared counter object

Increment counter & test 
if return value is prime
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Counter Implementation

public Class counter {

private long value;

public long getAndIncrement() {
return value++;

}
}

What’s the problem with 
this implementation?
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time

value… 1

read 
1

read 
1

write 
2

read 
2

write 
3

write 
2

2 3 2

Problem
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Counter Implementation

public Class counter {

private long value;

public long getAndIncrement() {
temp = value;
value = temp + 1;
return temp;

}
}

These steps must 
be atomic!

Recall: We can use Read-Modify-
Write (RMW) instructions!

We have to guarantee 
mutual exclusion
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Model

• The model in this part is slightly more complicated
– However, we still focus on principles

• What remains the same?
– Multiple instruction multiple data (MIMD) architecture

– Each thread/process has its own code and local variables 

– There is a shared memory that all threads can access

• What is new?
– Typically, communication runs over a shared bus

(alternatively, there may be several channels) 

– Communication contention

– Communication latency

– Each thread has a local cache

memory

I.e., multiprocessors
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cache

BusBus

cachecache

1
shared 

memory

Local 
variables

Counter counter = new Counter(1);

void primePrint() {
long j = 0;
while(j < 1010) {
j = counter.getAndIncrement();
if(isPrime(j))
print(j);

}
}

Model: Where Things Reside

E.g., the shared
counter is here

Code
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Revisiting Mutual Exclusion

• We need mutual exclusion for our counter

• We are now going to study mutual exclusion from a different angle
– Focus on performance, not just correctness and progress

• We will begin to understand how performance depends on our software
properly utilizing the multiprocessor machine’s hardware,
and get to know a collection of locking algorithms!

• What should you do if you can’t get a lock?

• Keep trying
– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor
– Good if delays are long

– Always good on uniprocessor

Our focus
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CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

Basic Spin-Lock

Lock introduces 
sequential bottleneck
� No parallelism!

Lock suffers 
from contention

Huh?
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Reminder: Test&Set

• Boolean value

• Test-and-set (TAS)
– Swap true with current value

– Return value tells if prior value was true or false

• Can reset just by writing false

• Also known as “getAndSet”
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Reminder: Test&Set

public class AtomicBoolean {
private boolean value;

public synchronized boolean getAndSet() {
boolean prior = this.value;
this.value = true; 
return prior;

}

}

Get current value and set 
value to true

java.util.concurrent.atomic
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Test&Set Locks

• Locking
– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win

– If result is true, you lose 

• Release lock by writing false
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Test&Set Lock

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (state.getAndSet()) {}

}

public void unlock() {
state.set(false);

}
}

Keep trying until 
lock acquired

Lock state is AtomicBoolean

Release lock by resetting state to false
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Performance

• Experiment
– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?

tim
e

threads
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Test&Test&Set Locks

• How can we improve TAS?

• A crazy idea: Test before you test and set!

• Lurking stage
– Wait until lock “looks” free

– Spin while read returns true (i.e., the lock is taken)

• Pouncing state
– As soon as lock “looks” available

– Read returns false (i.e., the lock is free)

– Call TAS to acquire the lock

– If TAS loses, go back to lurking
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Test&Test&Set Lock

public class TTASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while (true) {
while(state.get()) {}
if(!state.getAndSet())
return;

}
}

public void unlock() {
state.set(false);

}
}

Wait until lock looks free

Then try to acquire it
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Performance

• Both TAS and TTAS do the same thing (in our old model)

• So, we would expect basically the same results

• Why is TTAS so much better than TAS? Why are both far from ideal?

threads

ideal

tim
e

TAS lock TTAS lock
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Opinion

• TAS & TTAS locks

– are provably the same (in our old model)

– except they aren’t (in field tests)

• Obviously, it must have something to do with the model…

• Let’s take a closer look at our new model and try to find a reasonable 
explanation!
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Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory 
(10s of cycles)

Shared bus
• Broadcast medium
• One broadcaster at a time
• Processors (and memory) “snoop”

Per-processor caches
• Small
• Fast: 1 or 2 cycles
• Address and state information
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Jargon Watch

• Load request
– When a thread wants to access data, it issues a load request

• Cache hit
– The thread found the data in its own cache

• Cache miss
– The data is not found in the cache

– The thread has to get the data from memory
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Load Request

• Thread issues load request and memory responds

cache

memory

cachecache

data
Got your data 

right here! data

data…?

Bus
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Another Load Request

BusBus

memory

cachecachedata

data

data…?I got data!

• Another thread wants to access the same data. Get a copy from the cache!
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Modify Cached Data

• Both threads now have the data in their cache

• What happens if the red thread now modifies the data…?

memory

cachedata

What’s up with the other copies?

data

data

Bus
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Cache Coherence

• We have lots of copies of data
– Original copy in memory 

– Cached copies at processors

• Some processor modifies its own copy
– What do we do with the others?

– How to avoid confusion?
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Write-Back Caches

• Accumulate changes in cache

• Write back when needed
– Need the cache for something else

– Another processor wants it

• On first modification
– Invalidate other entries

– Requires non-trivial protocol … 

• Cache entry has three states:

• Invalid: contains raw bits

• Valid: I can read but I can’t write

• Dirty: Data has been modified
– Intercept other load requests

– Write back to memory before reusing cache
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Invalidate

• Let’s rewind back to the moment when the red processor updates its 
cached data

• It broadcasts an invalidation message � Other processor invalidates its 
cache!

BusBus

memory

cachedata

data

cache

Cache loses
read 

permission
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Invalidate

Bus

memory

cachedata

data

• Memory provides data only if not present in any cache, so there is no need 
to change it now (this is an expensive operation!)

• Reading is not a problem � The threads get the data from the red process

cache
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Mutual Exclusion

• What do we want to optimize?
1. Minimize the bus bandwidth that the spinning threads use

2. Minimize the lock acquire/release latency

3. Minimize the latency to acquire the lock if the lock is idle
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TAS vs. TTAS 

• TAS invalidates cache lines

• Spinners
– Miss in cache

– Go to bus

• Thread wants to release lock
– delayed behind spinners!!!

• TTAS waits until lock “looks” free
– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released
– Invalidation storm …

This is why TAS 
performs so poorly…

Huh?
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Local Spinning while Lock is Busy

Bus

memory

busybusybusy

busy

• While the lock is held, all contenders spin in their caches, rereading 
cached data without causing any bus traffic
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Bus

On Release

memory

free

free

invalidinvalid

TAS! TAS!

• The lock is released. All spinners take a cache hit and call Test&Set!  
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Time to Quiescence

• Every process experiences a cache miss
– All state.get() satisfied sequentially

• Every process does TAS
– Caches of other processes are invalidated

• Eventual quiescence (“silence”) after
acquiring the lock

• The time to quiescence increases
linearly with the number of processors for a bus architecture!

P1

P2

Pn

tim
e

threads



Distributed Systems   – Roger Wattenhofer   – 8/37

Mystery Explained

threads

ideal

tim
e

TAS lock TTAS lock

• Now we understand why the TTAS lock performs much better than the 
TAS lock, but still much worse than an ideal lock!

• How can we do better?
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Introduce Delay

• If the lock looks free, but I fail to get it, there must be lots of contention

• It’s better to back off than to collide again!

• Example: Exponential Backoff

• Each subsequent failure doubles expected waiting time

2d4d
waiting time

d spin lock
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Exponential Backoff Lock

public class Backoff implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
int delay = MIN_DELAY;
while (true) {
while(state.get()) {}
if (!lock.getAndSet())
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}
}

// unlock() remains the same

}

Fix minimum delay

Back off for 
random duration

Double maximum 
delay until an upper 

bound is reached
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Backoff Lock: Performance

• The backoff log outperforms the TTAS lock!

• But it is still not ideal…

threads

ideal

tim
e

TAS lock TTAS lock

Backoff lock



Distributed Systems   – Roger Wattenhofer   – 8/41

Backoff Lock: Evaluation

• Good
– Easy to implement

– Beats TTAS lock

• Bad
– Must choose parameters carefully

– Not portable across platforms

• How can we do better?

• Avoid useless invalidations
– By keeping a queue of threads

• Each thread
– Notifies next in line

– Without bothering the others
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ALock: Initially

flags

next

T F F F F F F F

idle

• The Anderson queue lock (ALock) is an array-based queue lock

• Threads share an atomic tail field (called next)
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ALock: Acquiring the Lock

flags

next

T F F F F F F F

acquired

• To acquire the lock, each thread atomically increments the tail field

• If the flag is true, the lock is acquired

• Otherwise, spin until the flag is true

The lock 
is mine!
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ALock: Contention

flags

next

T F F F F F F F

acquired

• If another thread wants to acquire the lock, it applies get&increment

• The thread spins because the flag is false

acquiring
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ALock: Releasing the Lock

flags

next

T T F F F F F F

released

• The first thread releases the lock by setting the next slot to true

• The second thread notices the change and gets the lock

acquired The lock 
is mine!
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ALock

public class Alock implements Lock {
boolean[] flags = {true,false...,false};
AtomicInteger next = new AtomicInteger(0);
ThreadLocal<Integer> mySlot;

public void lock() {
mySlot = next.getAndIncrement();
while (!flags[mySlot % n]) {}
flags[mySlot % n] = false;

}

public void unlock() {
flags[(mySlot+1) % n] = true;

}
}

One flag per thread

Thread-local variable

Take the next slot

Tell next thread to go
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ALock: Performance

• Shorter handover than backoff

• Curve is practically flat

• Scalable performance

• FIFO fairness

threads

ideal

tim
e

TAS lock TTAS lock

ALock
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ALock: Evaluation

• Good
– First truly scalable lock

– Simple, easy to implement

• Bad
– One bit per thread

– Unknown number of threads?
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ALock: Alternative Technique

• The threads could update own flag and spin on their predecessor’s flag

• This is basically what the CLH lock does, but using a linked list instead of 
an array

• Is this a good idea?

flags

… F F F F F F F

acquiring acquiring

i

i-1

i+1

i

Not discussed 
in this lecture
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NUMA Architectures

• Non-Uniform Memory Architecture

• Illusion
– Flat shared memory

• Truth
– No caches (sometimes)

– Some memory regions faster than others

Spinning on local memory is fast:        Spinning on remote memory is slow:
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MCS Lock

• Idea
– Use a linked list instead of an array

� Small, constant-sized space
– Spin on own flag, just like the Anderson queue lock

• The space usage
– L = number of locks

– N = number of threads

• of the Anderson lock is O(LN)

• of the MCS lock is O(L+N)
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MCS Lock: Initially

tail

idle
Queue tail

• The lock is represented as a linked list of QNodes, one per thread

• The tail of the queue is shared among all threads
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MCS Lock: Acquiring the Lock

• To acquire the lock, the thread places its QNode at the tail of the list
by swapping the tail to its QNode

• If there is no predecessor, the thread acquires the lock

false

(allocate QNode)

Swap

The lock 
is mine!

false = lock 
is free

acquired

tail
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acquiring

• If another thread wants to acquire the lock, it again applies swap

• The thread spins on its own QNode because there is a predecessor

true

Swap

MCS Lock: Contention

tail

false

acquired
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• The first thread releases the lock by setting its successor’s QNode to false

MCS Lock: Releasing the Lock

The lock 
is mine!

acquired

false

tail

false

released
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MCS Queue Lock

public class QNode {
boolean locked = false;
QNode next = null;

}
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MCS Queue Lock

public class MCSLock implements Lock {
AtomicReference tail;

public void lock() {
QNode qnode = new QNode();
QNode pred = tail.getAndSet(qnode);
if (pred != null) {
qnode.locked = true;
pred.next = qnode;
while (qnode.locked) {}

}
}

...

Add my node to the tail

Fix if queue was 
non-empty
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• If there is a successor, unlock it.  But, be cautious!

• Even though a QNode does not have a successor, the purple thread knows 
that another thread is active because tail does not point to its QNode!

MCS Lock: Unlocking

Waiting…

acquiring

true

Swap tail

false

releasing
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• As soon as the pointer to the successor is set, the purple thread can 
release the lock

MCS Lock: Unlocking Explained

The lock 
is mine!

Set my successor’s 
QNode to false!

acquired

false

tail

false

released
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MCS Queue Lock

... 

public void unlock() {
if (qnode.next == null) {
if (tail.CAS(qnode, null)
return;

while (qnode.next == null) {}
}
qnode.next.locked = false;

}
}

Missing successor?

If really no successor, 
return

Otherwise, wait for 
successor to catch up

Pass lock to successor
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Abortable Locks

• What if you want to give up waiting for a lock?

• For example
– Time-out

– Database transaction aborted by user

• Back-off Lock
– Aborting is trivial: Just return from lock() call!

– Extra benefit: No cleaning up, wait-free, immediate return

• Queue Locks
– Can’t just quit: Thread in line behind will starve

– Need a graceful way out…
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Problem with Queue Locks

spinning

truefalsefalse

released

spinning

truetruefalse

acquired

…?

aborted

Distributed Systems   – Roger Wattenhofer   – 8/63

Abortable MCS Lock

• A mechanism is required to recognize and remove aborted threads
– A thread can set a flag indicating that it aborted

– The predecessor can test if the flag is set

– If the flag is set, its new successor is the successor’s successor

– How can we handle concurrent aborts? This is not discussed in this lecture

spinning

truetruefalse

acquired aborted

Spinning on 
remote object…?!
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Composite Locks

• Queue locks have many advantages
– FIFO fairness, fast lock release, low contention

but require non-trivial protocols to handle aborts (and recycling of nodes)

• Backoff locks support trivial time-out protocols

but are not scalable and may have slow lock release times

• A composite lock combines the best of both approaches!

• Short fixed-sized array of lock nodes

• Threads randomly pick a node and try
to acquire it

• Use backoff mechanism to acquire a node

• Nodes build a queue

• Use a queue lock mechanism to acquire the lock
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One Lock To Rule Them All?

• TTAS+Backoff, MCS, Abortable MCS…

• Each better than others in some way

• There is not a single best solution

• Lock we pick really depends on
– the application

– the hardware

– which properties are important
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Handling Multiple Threads

• Adding threads should not lower the throughput
– Contention effects can mostly be fixed by Queue locks

• Adding threads should increase throughput
– Not possible if the code is inherently sequential

– Surprising things are parallelizable!

• How can we guarantee consistency if there are many threads?
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Coarse-Grained Synchronization

• Each method locks the object
– Avoid contention using queue locks 

– Mostly easy to reason about

– This is the standard Java model (synchronized blocks and methods)

• Problem: Sequential bottleneck
– Threads “stand in line”

– Adding more threads does not improve throughput

– We even struggle to keep it from getting worse…

• So why do we even use a multiprocessor?
– Well, some applications are inherently parallel…

– We focus on exploiting non-trivial parallelism
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Exploiting Parallelism

• We will now talk about four “patterns”
– Bag of tricks …

– Methods that work more than once …

• The goal of these patterns are
– Allow concurrent access

– If there are more threads, the throughput increases!
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Pattern #1: Fine-Grained Synchronization

• Instead of using a single lock split the concurrent object into 
independently-synchronized components

• Methods conflict when they access
– The same component

– At the same time
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Pattern #2: Optimistic Synchronization

• Assume that nobody else wants to access your part of the concurrent 
object

• Search for the specific part that you want to lock without locking any 
other part on the way

• If you find it, try to lock it and perform your operations
– If you don’t get the lock, start over!

• Advantage
– Usually cheaper than always assuming that there may be a conflict due to a 

concurrent access
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Pattern #3: Lazy Synchronization

• Postpone hard work!

• Removing components is tricky
– Either remove the object physically

– Or logically: Only mark component to be deleted
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Pattern #4: Lock-Free Synchronization

• Don’t use locks at all!
– Use compareAndSet() & other RMW operations!

• Advantages
– No scheduler assumptions/support

• Disadvantages
– Complex

– Sometimes high overhead
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Illustration of Patterns

• In the following, we will illustrate these patterns using a list-based set
– Common application

– Building block for other apps

• A set is an collection of items
– No duplicates

• The operations that we want to allow on the set are
– aadd(x) puts x into the set

– rremove(x) takes x out of the set

– ccontains(x) tests if x is in the set
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The List-Based Set

• We assume that there are sentinel nodes at the beginning and end of the 
linked list

• Add node b:

• Remove node b:

a c d

b

a b c

a b c
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Coarse-Grained Locking

• A simple solution is to lock the entire list for each operation
– E.g., by locking the first sentinel

• Simple and clearly correct!

• Works poorly with contention…

a c d

b
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Fine-Grained Locking

• Split object (list) into pieces (nodes)
– Each piece (each node in the list) has its own lock

– Methods that work on disjoint pieces need not exclude each other

• Hand-over-hand locking: Use two locks when traversing the list
– Why two locks? 

a c d

b
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Problem with One Lock

• Assume that we want to delete node c

• We lock node b and set its next pointer to the node after c

• Another thread may concurrently delete node b by setting the next 
pointer from node a to node c

ba c

ba c

Hooray, I’m 
not deleted!
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Insight

• If a node is locked, no one can delete the node’s successor

• If a thread locks
– the node to be deleted

– and also its predecessor

• then it works!

• That’s why we (have to) use two locks!
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Hand-Over-Hand Locking: Removing Nodes

• Assume that two threads want to remove the nodes b and c

• One thread acquires the lock to the sentinel, the other has to wait

Remove 
node b!

a b c

Remove 
node c!
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Hand-Over-Hand Locking: Removing Nodes

• The same thread that acquired the sentinel lock can then lock the next 
node

a b c

Remove 
node b!

Remove 
node c!
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Hand-Over-Hand Locking: Removing Nodes

• Before locking node b, the sentinel lock is released

• The other thread can now acquire the sentinel lock

a b c

Remove 
node b!

Remove 
node c!
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Hand-Over-Hand Locking: Removing Nodes

• Before locking node c, the lock of node a is released

• The  other thread can now lock node a

a b c

Remove 
node b!

Remove 
node c!
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Hand-Over-Hand Locking: Removing Nodes

• Node c can now be removed

• Afterwards, the two locks are released

Remove 
node b!

Remove 
node c!

a b c
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Hand-Over-Hand Locking: Removing Nodes

• The other thread can now lock node b and remove it

Remove 
node b!

a b
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List Node

public class Node {
public T item;
public int key;
public Node next;

}

Item of interest

Usually a hash code

Reference to next node
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Remove Method

public boolean remove(Item item) {
int key = item.hashCode();
Node pred, curr;
try {

pred = this.head;
pred.lock();
curr = pred.next;
curr.lock();

...

} finally {
curr.unlock();
pred.unlock();

}
}

Start at the head and lock it

Lock the current node

Make sure that the 
locks are released

Traverse the list and 
remove the item

On the 
next slide!
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Remove Method

while (curr.key <= key) {
if (item == curr.item) {
pred.next = curr.next;

return true;
}
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();

}
return false;

Search key range

If item found, 
remove the node

Unlock pred and 
lock the next node

Return false if the element is not present
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Why does this work?

• To remove node e
– Node e must be locked

– Node e’s predecessor must be locked

• Therefore, if you lock a node
– It can’t be removed

– And neither can its successor

• To add node e
– Must lock predecessor

– Must lock successor

• Neither can be deleted
– Is the successor lock actually required?
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Drawbacks

• Hand-over-hand locking is sometimes better than coarse-grained lock
– Threads can traverse in parallel

– Sometimes, it’s worse!

• However, it’s certainly not ideal
– Inefficient because many locks must be acquired and released

• How can we do better?
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Optimistic Synchronization

• Traverse the list without locking!

a b d

Add 
node c!

Found the 
position!
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Optimistic Synchronization: Traverse without Locking

• Once the nodes are found, try to lock them

• Check that everything is ok

a b d

Add 
node c!

Lock them!

Is everything ok?

What could 
go wrong…?
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Optimistic Synchronization: What Could Go Wrong?

• Another thread may lock nodes a and b and remove b before node c is 
added � If the pointer from node b is set to node c, then node c is not 
added to the list!

a b d

Add 
node c!

Remove b!
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Optimistic Synchronization: Validation #1

• How can this be fixed?

• After locking node b and node d, traverse the list again to verify that b is 
still reachable

a b d

Add 
node c!

Node b can still 
be reached!
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Optimistic Synchronization: What Else Could Go Wrong?

• Another thread may lock node a and b and add a node b’ before node c is 
added � By adding node c, the addition of node b’ is undone!

a b d

Add 
node c!

Add b’!

b'
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Optimistic Synchronization: Validation #2

• How can this be fixed?

• After locking node b and node d, also check that node b still points to 
node d!

a b d

Add 
node c!

The pointer is 
still correct…
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Optimistic Synchronization: Validation

private boolean validate(Node pred,Node curr) {
Node node = head;
while (node.key <= pred.key) {

if (node == pred)
return pred.next == curr;

node = node.next;
}
return false;

}

If pred is reached, 
test if the 

successor is curr

Predecessor not reachable
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Optimistic Synchronization: Remove

private boolean remove(Item item) {
int key = item.hashCode();
while (true) {

Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;

pred = curr;
curr = curr.next;

}
...

Retry on synchronization 
conflict

Stop if we find the item
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Optimistic Synchronization: Remove

...
try {
pred.lock(); curr.lock();
if (validate(pred,curr)) {
if (curr.item == item) {

pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Lock both nodes

Check for 
synchronization conflicts

Remove node if 
target found

Always unlock the nodes
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Optimistic Synchronization

• Why is this correct?
– If nodes b and c are both locked, node b still accessible, and node c still the 

successor of node b, then neither b nor c will be deleted by another thread

– This means that it’s ok to delete node c!

• Why is it good to use optimistic synchronization?
– Limited hot-spots: no contention on traversals

– Less lock acquisitions and releases

• When is it good to use optimistic synchronization?
– When the cost of scanning twice without locks is less than the cost of 

scanning once with locks

• Can we do better?
– It would be better to traverse the list only once…
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Lazy Synchronization

• Key insight
– Removing nodes causes trouble

– Do it “lazily”

• How can we remove nodes “lazily”?
– First perform a logical delete: Mark current node as removed (new!)

– Then perform a physical delete: Redirect predecessor’s next (as before)

b b
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Lazy Synchronization

• All Methods
– Scan through locked and marked nodes

– Removing a node doesn’t slow down other method calls…

• Note that we must still lock pred and curr nodes!

• How does validation work?
– Check that neither pred nor curr are marked

– Check that pred points to curr
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Lazy Synchronization

• Traverse the list and then try to lock the two nodes

• Validate!

• Then, mark node c and change the predecessor’s next pointer

Remove
node c!

Check that b and c 
are not marked and 

that b points to c

b ca
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Lazy Synchronization: Validation

private boolean validate(Node pred,Node curr) {
return !pred.marked && !curr.marked &&
pred.next == curr);

}
Nodes are not 

logically removed

Predecessor still 
points to current
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Lazy Synchronization: Remove

public boolean remove(Item item) {
int key = item.hashCode();
while (true) {

Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (item == curr.item)
break;

pred = curr;
curr = curr.next;

}
...

This is the same as before!
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Optimistic Synchronization: Remove

...
try {
pred.lock(); curr.lock();
if (validate(pred,curr)) {
if (curr.item == item) {

curr.marked = true;
pred.next = curr.next;
return true;

} else {
return false;

}
}

} finally {
pred.unlock();
curr.unlock();

}
}

}

Check for 
synchronization conflicts

If the target is found,
mark the node and 

remove it
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Lazy Synchronization: Contains

public boolean contains(Item item) {
int key = item.hashCode();
Node curr = this.head;
while (curr.key < key) {

curr = curr.next
}
return curr.key == key && !curr.marked;

Traverse without locking 
(nodes may have been 

removed)

Is the element present and not marked?
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Evaluation

• Good
– The list is traversed only once without locking
– Note that contains() doesn’t lock at all!
– This is nice because typically contains() is called much more often than add() 

or remove()
– Uncontended calls don’t re-traverse

• Bad
– Contended add() and remove() calls do re-traverse
– Traffic jam if one thread delays

• Traffic jam?
– If one thread gets the lock and experiences a cache miss/page fault, every 

other thread that needs the lock is stuck!

– We need to trust the scheduler….
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Reminder: Lock-Free Data Structures

• If we want to guarantee that some thread will
eventually complete a method call, even if other
threads may halt at malicious times, then the
implementation cannot use locks!

• Next logical step: Eliminate locking entirely!

• Obviously, we must use some sort of RMW method

• Let’s use compareAndSet() (CAS)!
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Remove Using CAS

• First, remove the node logically (i.e., mark it)

• Then, use CAS to change the next pointer

• Does this work…?

Remove
node c!

b ca
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Remove Using CAS: Problem

• Unfortunately, this doesn’t work!

• Another node d may be added before node c is physically removed

• As a result, node d is not added to the list…

Remove
node c!

Add 
node d!

b ca

d

Distributed Systems   – Roger Wattenhofer   –8/111

Solution

• Mark bit and next pointer are “CASed together”

• This atomic operation ensures that no node can cause a conflict by adding 
(or removing) a node at the same position in the list

Remove
node c!

Node c 
has been 
removed!

b ca

dd
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Solution

• Such an operation is called an atomic markable reference
– Atomically update the mark bit and redirect the predecessor’s next pointer

• In Java, there’s an AtomicMarkableReference class
– In the package Java.util.concurrent.atomic package

address false mark bitReference

Updated atomically
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Changing State

private Object ref;
private boolean mark;

public synchronized boolean compareAndSet(
Object expectedRef, Object updateRef,
boolean expectedMark, boolean updateMark) {

if (ref == expectedRef && mark == expectedMark){
ref = updateRef;
mark = updateMark;

}
}

The reference to the next 
Object and the mark bit

If the reference and the mark are as 
expected, update them atomically
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Removing a Node

• If two threads want to delete the nodes b and c, both b and c are marked

• The CAS of the red thread fails because node b is marked!

• (If node b is yet not marked, then b is removed first and there is no 
conflict) 

Remove
node b!

remove
node c!

b ca

CASCAS
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Traversing the List

• Question: What do you do when you find a “logically” deleted node in 
your path when you’re traversing the list?
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Lock-Free Traversal

• If a logically deleted node is encountered, CAS the predecessor’s next 
field and proceed (repeat as needed)

CAS!

b ca

CAS
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Performance

• The throughput of the presented techniques has been measured for a 
varying percentage of contains() method calls

– Using a benchmark on a 16 node shared memory machine

Ops/sec (32 threads)
Lock-free 

Lazy list

Coarse Grained
Fine Grained

% contains()

106

8·106

0        10       20      30       40       50       60      70       80       90
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Low Ratio of contains()

Lock-free 

Lazy list

Coarse Grained
Fine Grained

# Threads

Ops/sec (50% read)

0          5            10            15          20           25            30

3.5·106

3·106

2.5·106

1.5·106

5·105

2·106

1·106

• If the ratio of contains() is low, the lock-free linked list and the linked list 
with lazy synchronization perform well even if there are many threads
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High Ratio of contains()

Lock-free 
Lazy list

Coarse Grained
Fine Grained

0           5             10           15            20           25            30
# Threads

1.2·107

1·107

8·106

6·106

4·106

2·106

Ops/sec (90% reads)

• If the ratio of contains() is high, again both the lock-free linked list and the 
linked list with lazy synchronization perform well even if there are many 
threads
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“To Lock or Not to Lock”

• Locking vs. non-blocking: Extremist views on both sides

• It is nobler to compromise by combining locking and non-blocking 
techniques

– Example: Linked list with lazy synchronization combines blocking add() and 
remove() and a non-blocking contains()

– Blocking/non-blocking is a property of a method
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Linear-Time Set Methods

• We looked at a number of ways to make highly-concurrent list-based sets
– Fine-grained locks
– Optimistic synchronization
– Lazy synchronization
– Lock-free synchronization

• What’s not so great?
– add(), remove(), contains() take time linear in the set size

• We want constant-time methods!
– At least on average…

How…?
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Hashing

• A hash function maps the items to integers 
– h: items integers 

• Uniformly distributed
– Different items “most likely” have different hash values

• In Java there is a hashCode() method
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0

1

2

3

16

9

h(k) = k mod 4
buckets

Sequential Hash Map

• The hash table is implemented as an array of buckets, each pointing to a 
list of items

• Problem: If many items are added, the lists get long � Inefficient 
lookups!

• Solution: Resize!

7

4

15

28

Distributed Systems   – Roger Wattenhofer   –8/124

0

1

2

3

16

9

h(k) = k mod 8

Resizing

• The array size is doubled and the hash function adjusted

7

4

15

28

4

5

6

7

Grow the array

New hash function
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0

1

2

3

16

9

h(k) = k mod 8

Resizing

• Some items have to be moved to different buckets!

7

4

15

28

4

5

6

7

4 28

4 28

15

15
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Hash Sets

• A Hash set implements a set object
– Collection of items, no duplicates

– add(), remove(), contains() methods

• More coding ahead!
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Simple Hash Set

public class SimpleHashSet {
protected LockFreeList[] table;

public SimpleHashSet(int capacity) {
table = new LockFreeList[capacity];
for (int i = 0; i < capacity; i++)
table[i] = new LockFreeList();

}

public boolean add(Object key) {
int hash = key.hashCode() % table.length;
return table[hash].add(key);

Array of lock-free lists

Initial size

Initialization

Use hash of object to pick a bucket 
and call bucket’s add() method
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Simple Hash Set: Evaluation

• We just saw a
– Simple

– Lock-free

– Concurrent

hash-based set implementation

• But we don’t know how to resize…

• Is Resizing really necessary?
– Yes, since constant-time method calls require constant-length buckets and a 

table size proportional to the set size

– As the set grows, we must be able to resize
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Set Method Mix

• Typical load
– 90% contains()

– 9% add ()

– 1% remove()

• Growing is important, shrinking not so much

• When do we resize?

• There are many reasonable policies, e.g., pick a threshold on the number 
of items in a bucket

• Global threshold
– When, e.g., ≥ ¼ buckets exceed this value

• Bucket threshold
– When any bucket exceeds this value
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Coarse-Grained Locking

• If there are concurrent accesses, how can we safely resize the array?

• As with the linked list, a straightforward solution is to use coarse-grained 
locking: lock the entire array!

• This is very simple and correct

• However, we again get a sequential bottleneck…

• How about fine-grained locking?
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0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking

• Each lock is associated with one bucket

• After acquiring the lock of the list, insert the item in the list!

7

8

11

17
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0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Acquire all locks in ascending order and make sure that the table 
reference didn’t change between resize decision and lock acquisition!

7

8

11

17

Table reference 
didn’t change?
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0

1

2

3

4

9

h(k) = k mod 4

Fine-Grained Locking: Resizing

• Allocate a new table and copy all elements

7

8

11

17
0

1

2

3

4

5

6

7

8

4

9 17

11

7
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0

1

2

3

h(k) = k mod 8

Fine-Grained Locking: Resizing

• Stripe the locks: Each lock is now associated with two buckets

• Update the hash function and the table reference

0

1

2

3

4

5

6

7

8

4

9 17

11

7
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Observations

• We grow the table, but we don’t increase the number of locks
– Resizing the lock array is tricky …

• We use sequential lists (coarse-grained locking)
– No lock-free list

– If we’re locking anyway, why pay?
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Fine-Grained Hash Set

public class FGHashSet {
protected RangeLock[] lock;
protected List[] table;

public FGHashSet(int capacity) {
table = new List[capacity];
lock = new RangeLock[capacity];
for (int i = 0; i < capacity; i++)
lock[i] = new RangeLock();  

table[i] = new LinkedList();
}

}

Array of locks
Array of buckets

Initially the same 
number of locks 

and buckets
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Fine-Grained Hash Set: Add Method

public boolean add(Object key) {
int keyHash = key.hashCode() % lock.length;
synchronized(lock[keyHash]) {
int tableHash = key.hashCode() % table.length;
return table[tableHash].add(key);

}
}

Acquire the 
right lock

Call the add() method of 
the right bucket
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Fine-Grained Hash Set: Resize Method

public void resize(int depth, List[] oldTable) {
synchronized (lock[depth]) {
if (oldTable == this.table) {
int next = depth + 1;
if (next < lock.length)

resize(next, oldTable);
else

sequentialResize();
}

}
}

}

Resize() calls 
resize(0,this.table)

Acquire the next 
lock and check 

that no one else 
has resized

Recursively acquire 
the next lock

Once the locks are 
acquired, do the work
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Fine-Grained Locks: Evaluation

• We can resize the table, but not the locks

• It is debatable whether method calls are constant-time in presence of 
contention …

• Insight: The contains() method does not modify any fields
– Why should concurrent contains() calls conflict?
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Read/Write Locks

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

Return the associated read lock

Return the associated write lock
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Lock Safety Properties

• No thread may acquire the write lock
– while any thread holds the write lock

– or the read lock

• No thread may acquire the read lock
– while any thread holds the write lock

• Concurrent read locks OK

• This satisfies the following safety properties
– If readers > 0 then writer == false

– If writer = true then readers == 0
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Read/Write Lock: Liveness

• How do we guarantee liveness?
– If there are lots of readers, the writers may be locked out!

• Solution: FIFO Read/Write lock
– As soon as a writer requests a lock, no more readers are accepted

– Current readers “drain” from lock and the writers acquire it eventually
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Optimistic Synchronization

• What if the contains() method scans without locking…?

• If it finds the key
– It is ok to return true!

– Actually requires a proof…

• What if it doesn’t find the key?
– It may be a victim of resizing…

– Get a read lock and try again!

– This makes sense if is expected (?) that the key is there and resizes are rare…

We won’t discuss 
this in this lecture
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Stop The World Resizing

• The resizing we have seen up till now stops all concurrent operations

• Can we design a resize operation that will be incremental?

• We need to avoid locking the table…

• We want a lock-free table with incremental resizing!
How…?
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Lock-Free Resizing Problem

• In order to remove and then add even a single item, “single location CAS’ 
is not enough…

0

1

2

3

16

9

7

4

15

28

4

5

6

7

We need to extend the table!

4 28

4 28
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Idea: Don’t Move the Items

• Move the buckets instead of the items!

• Keep all items in a single lock-free list

• Buckets become “shortcut pointers” into the list

0

1

2

3

16 4 28 9 7 15
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Recursive Split Ordering

• Example: The items 0 to 7 need to be hashed into the table

• Recursively split the list the buckets in half:

• The list entries are sorted in an order that allows recursive splitting

0

1

1/2

2

3

1/4 3/4
0 4 2 6 1 5 3 7

How…?
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Recursive Split Ordering

• Note that the least significant bit (LSB) is 0 in the first half and 1 in the 
other half! The second LSB determines the next pointers etc.

0

1

LSB = 1

2

3

LSB = 0

0 4 2 6 1 5 3 7

LSB = 00 LSB = 10 LSB = 01 LSB = 11
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Split-Order

• If the table size is 2i:
– Bucket b contains keys k = b mod 2i

– The bucket index consists of the key's i least significant bits

• When the table splits:
– Some keys stay (b = k mod 2i+1)
– Some keys move (b+2i = k mod2i+1)

• If a key moves is determined by the (i+1)st bit
– counting backwards
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A Bit of Magic

• We need to map the real keys to the split-order

• Look at the binary representation of the keys and the indices

• The real keys:

• Split-order:

• Just reverse the order of the key bits!

0 1 2 3 4 5 6 7

0 4 2 6 1 5 3 7

000 100 010 110 001 101 011 111

000 001 010 011 100 101 110 111

Real key 1 is at index 4!
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Split Ordered Hashing

• After a resize, the new pointers are found by searching for the right index

• A problem remains: How can we remove a node by means of a CAS if two 
sources point to it?

0

1
2

3

0 4 2 6 1 5 3 7
000 001 010 011 100 101 110 111

Order according to reversed bits 

2 pointers to some nodes!
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Sentinel Nodes

• Solution: Use a sentinel node for each bucket

• We want a sentinel key for i ordered 
– before all keys that hash to bucket i

– after all keys that hash to bucket (i-1)

0

1
2

3

0 16 4 1 9 3 7 15
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Initialization of Buckets

• We can now split a bucket in a lock-free manner using two CAS() calls

• Example: We need to initialize bucket 3 to split bucket 1! 

0

1
2

3

0 16 4 1 9

3

7 15
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Adding Nodes

• Example: Node 10 is added

• First, bucket 2 (= 10 mod 4) must be initialized, then the new node is 
added

0

1
2

3

0 16 4 1 9 3 7 15

2 10
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Recursive Initialization

• It is possible that buckets must be initialized recursively

• Example: When node 7 is added, bucket 3 (= 7 mod 4) is initialized and 
then bucket 1 (= 3 mod 2) is also initialized

• Note that ≈ log n empty buckets may be initialized if one node is added, 
but the expected depth is constant!

0

1
2

3

0 8 12 1 73

n = number of nodes
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Lock-Free List

private int makeRegularKey(int key) {
return reverse(key | 0x80000000);

}

private int makeSentinelKey(int key) {
return reverse(key);

}

Set high-order bit 
to 1 and reverse

Simply reverse 
(high-order bit is 0)
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Split-Ordered Set

public class SOSet{
protected LockFreeList[] table;
protected AtomicInteger tableSize;
protected AtomicInteger setSize;

public SOSet(int capacity) {
table = new LockFreeList[capacity];
table[0] = new LockFreeList();
tableSize = new AtomicInteger(2);
setSize = new AtomicInteger(0);

}

This is the lock-free list 
(slides 108-116) with 
minor modifications

Track how much of 
table is used and the 
set size so we know 

when to resize

Initially use 1 bucket 
and the size is zero
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Split-Ordered Set: Add

public boolean add(Object object) {
int hash = object.hashCode();
int bucket = hash % tableSize.get();
int key = makeRegularKey(hash);
LockFreeList list = getBucketList(bucket);
if (!list.add(object,key))

return false;
resizeCheck();
return true;

}

Pick a bucket
Non-sentinel 

split-ordered key

Get pointer to 
bucket’s sentinel, 

initializing if 
necessary

Try to add with 
reversed key

Resize if 
necessary
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Recall: Resizing & Initializing Buckets 

• Resizing
– Divide the set size by the total number of buckets

– If the quotient exceeds a threshold, double the tableSize field up to a fixed 
limit

• Initializing Buckets
– Buckets are originally null

– If you encounter a null bucket, initialize it

– Go to bucket’s parent (earlier nearby bucket) and recursively initialize if 
necessary

– Constant expected work!
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Split-Ordered Set: Initialize Bucket

public void initializeBucket(int bucket) {
int parent = getParent(bucket);
if (table[parent] == null)

initializeBucket(parent);
int key = makeSentinelKey(bucket);
LockFreeList list = new
LockFreeList(table[parent],key);

}

Find parent, 
recursively 

initialize if needed

Prepare key for 
new sentinel

Insert sentinel if not present and 
return reference to rest of list
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Correctness

• Split-ordered set is a correct, linearizable, concurrent set 
implementation

• Constant-time operations!
– It takes no more than O(1) items between two dummy nodes on average

– Lazy initialization causes at most O(1) expected recursion depth in 
initializeBucket()
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Empirical Evaluation

• Evaluation has been performed on a 30-processor Sun Enterprise 3000
• Lock-Free vs. fine-grained (Lea) optimistic locking
• In a non-multiprogrammed environment
• 106 operations: 88% contains(), 10% add(), 2% remove()

No work: Busy:

op
s/

tim
e

threads

locking

lock-free

op
s/

tim
e

threads

locking

lock-free
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Empirical Evaluation

• Expected bucket length
– The load factor is the capacity

of the individual buckets

• Varying The Mix
– Increasing the number of updates

op
s/

tim
e

Load factor

locking

lock-free

op
s/

tim
e

locking

lock-free

More reads More updates


