

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

HS 2015

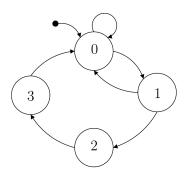
Prof. L. Thiele / R. Jacob

Discrete Event Systems

Exercise Sheet 12

1 Comparison of Finite Automata

Here are two simple finite automata:



For each, we have a one bit encoding for the states $(x_A \text{ and } x_B)$, one binary output $(y_A \text{ and } y_B)$, and one common binary input (u). We want to verify whether or not these two automata are equivalent. This can be done through the following steps:

- a) Express the characteristic function of the transition relation for both automaton, $\psi_r(x, x', u)$.
- b) Express the joint transition function, ψ_f . Reminder: $\psi_f(x_A, x_A', x_B, x_B') = (\exists u : \psi_A(x_A, x_A', u) \cdot \psi_B(x_B, x_B', u))$.
- c) Express the characteristic function of the reachable states, $\psi_X(x_A, x_B)$.
- d) Express the characteristic function of the reachable output, $\psi_Y(y_A, y_B)$.
- e) Are the automata equivalent? Justify with a simple calculus.

2 Temporal Logic

a) We consider the following automaton. The property a is true on states 0 and 3.

For each of the following CTL formula, list all the states for which it holds true.

- (i) EF *a*
- (ii) EX AX a
- (iii) EF (a AND EX NOT(a))
- **b)** Given the transition function $\psi_f(x, x')$ and the characteristic function $\psi_Z(x)$ for a set Z, write a small pseudo-code which returns the characteristic function of $\psi_{AFZ}(x)$. It can be expressed as symbolic boolean functions, like $\overline{x_A} x'_A \overline{x_B} x'_B + \overline{x_A} x'_A x_B x'_B$.

expressed as symbolic boolean functions, like $\overline{x_A}x'_A\overline{x_B}x'_B + \overline{x_A}x'_Ax_Bx'_B$. **Hint:** To do this, simply use the classic boolean operators AND, OR, NOT and ! =. You can also use an existence selector EXISTS(a). For a given argument a, it returns the set $\{x: \exists x', a(x,x') \text{ is true}\}$.

Hint: It can be useful to reformulate AFZ as another CTL formula.