Discrete Event Systems

Exercise Sheet 2

1 Filter for an Input Stream [exam problem]

We would like to construct an automaton that recognizes substrings from an input stream. The input stream consists of symbols $\{a, b\}$ and the substrings that the automaton should detect are of the form $b a b^{*}$. In other words, the input of the automaton is a series of a 's and b 's. The automaton should go into an accepting state whenever the most recently received symbols form a string of the form $b a b^{*}$. For example, in the input stream $b \underline{a} \underline{b} \underline{b} \underline{b} \underline{a} a a a b \underline{a} \underline{b} \underline{a} a$, the automaton should be in an accepting state exactly after the reception of an underlined symbol. Construct a deterministic finite automaton that precisely fulfils the above specification.

2 Nondeterministic Finite Automata

a) Consider the alphabet $\{a, b\}$. Construct an NFA that accepts all strings containing the substring $a b b a$ at least twice. (This means that words containing $a b b a b b a$ as a substring should also be accepted!)
b) Construct an NFA which accepts the following regular expression: $\left(00 \cup\left(0(0 \cup 1)^{*}\right)\right)^{*}$.
c) Construct an NFA accepting $1^{*} 0^{*} 1^{+}$with as few states as possible. (cf. Exercise 1.1.a)
d) Consider a machine $M:=\left(Q, \Sigma, \delta, q_{0}, Q\right)$. Is it possible to make a statement about the strings being accepted by M ? Does it make a difference whether M is deterministic or not?

3 De-randomization

a) Give a regular expression for the following NFA and construct an equivalent NFA without ε-transitions.

b) Finally, transform the machine into a deterministic automaton.

4 States Minimization

Simplify the following automaton. Explain why your changes are allowed. Finally, give the corresponding regular expression.

5 "Regular" Operations in UNIX

In this exercise you are asked to provide a UNIX command to output all lines in a file ending with "password" or "passwort", followed by an unknown number (potentially zero) of vowels.

