Discrete Event Systems

Exercise Sheet 4

1 Pumping Lemma Revisited

a) Determine whether the language $L=\left\{1^{n^{2}} \mid n \in \mathbb{N}\right\}$ is regular. Prove your claim!
b) Consider a regular language L and a pumping number p such that every word $u \in L$ can be written as $u=x y z$ with $|x y| \leq p$ and $|y| \geq 1$ such that $x y^{i} z \in L$ for all $i \geq 0$.
Can you use the pumping number p to determine the number of states of a minimal DFA accepting L ? What about the number of states of the corresponding NFA?

2 Context Free Grammars

Determine the context free grammar for the following three languages.
a) $L_{1}=\left\{w \# x \# y \# z \mid w, x, y, z \in\{a, b\}^{*}\right.$ and $\left.|w|=|z|,|x|=|y|\right\}$
b) $L_{2}=\{w \mid$ the length of w is odd $\}$
c) $L_{3}=\{w \mid$ contains more 1 s than 0 s$\}$

Remark: Languages L_{2} and L_{3} are the same as in Exercice Sheet 3.

3 Pushdown Automata: Reloaded

Consider the following context-free grammar G with non-terminals S and A, start symbol S, and terminals "(", ")", and "0":

$$
\begin{aligned}
& S \quad \rightarrow \quad S A \mid \varepsilon \\
& A \quad \rightarrow \quad A A|(S)| 0
\end{aligned}
$$

a) What are the eight shortest words produced by G ?
b) Context-free grammars can be ambiguous. Prove or disprove that G is unambiguous.
c) Design a push-down automaton M that accepts the language $L(G)$. If possible, make M deterministic.

Remark: a) and b) are taken from Exercice Sheet 3.

4 Push Down Automata: The Never Ending Story

For each of the following context free languages, draw a PDA that accepts L.
a) $L=\left\{u \mid u \in\{0,1\}^{*}\right.$ and $\left.u^{\text {reverse }}=u\right\}=\{u \mid$ " u is a palindrome" $\}$
b) $L=\left\{u \mid u \in\{0,1\}^{*}\right.$ and $\left.u^{\text {reverse }} \neq u\right\}=\{u \mid$ " u is no palindrome" $\}$

