Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
HS 2015
Prof. R. Wattenhofer / G. Bachmeier, S. Brandt, K.-T. Foerster, J. Seidel

Discrete Event Systems

Solution to Exercise Sheet 10

1 PhD-Scheduling

a) (i) SmallLoad distributes the tasks as follows:

PhD student 1:
PhD student 2:

Opt uses the following distribution (or another one with the same cost):
PhD student 1:
PhD student 2:

2	5	3
4		

SmallLoad thus distributes the tasks with cost $\operatorname{AlG}(\sigma)=13$ while Opt incurs a cost of $\operatorname{Opt}(\sigma)=11$. Hence,

$$
\rho(\sigma)=\frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)}=\frac{13}{11}
$$

(ii) The following sequence results in a larger competitive ratio: $\sigma=1,1,2$. We have $\operatorname{AlG}(\sigma)=3$ and $\operatorname{Opt}(\sigma)=2$ and thus

$$
\rho(\sigma)=\frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)}=\frac{3}{2}
$$

(iii) See b).
(iv) No, finding the optimal solution offline corresponds to solving the PARTITION-problem, which is NP-complete, thus presumably no efficient algorithm exists for the problem.
b) We first show a lower bound of $\left(2-\frac{1}{m}\right)$ on the competitive ratio of SmallLoad. To this end, we choose an input sequence that consists of $m(m-1)$ tasks of size 1 concluded with a task of size m, i.e. $\sigma=\underbrace{1, \ldots, 1}_{m(m-1)}, m$. After assigning the first $m(m-1)$ tasks, SmallLoad has assigned $m-1$ units to each of the $m \mathrm{PhD}$ students. The last task of size m incurs a load of $2 m-1$ for the student to whom it is assigned.
The optimal algorithm assigns the first $m(m-1)$ taks to only $m-1$ students and the last (heavy) task to the remaining student. This results in a maximal load of m and we get the following lower bound for the competitive ratio:

$$
c \geq \frac{\operatorname{ALG}(\sigma)}{\operatorname{OPT}(\sigma)}=\frac{2 m-1}{m}=2-\frac{1}{m}
$$

Now we shall show a matching upper bound for the competitive ratio. Let $\sigma=\left(e_{1}, e_{2}, \ldots\right)$ be an arbitrary input sequence. Without loss of generality, we assume s_{1} to be the student
with the maximal load for σ. Furthermore, let w be the effort of the last task T assigned s_{1} and E the load of s_{1} before assigning its last task. The load of all other students must be at least E since s_{1} was the student with minimal load when he was assigned task T (otherwise another student would have received T). Hence, the sum of the loads of all students is at least $m \cdot E+w$ and hence

$$
\operatorname{Opt}(\sigma) \geq \frac{m \cdot E+w}{m}=E+\frac{w}{m} .
$$

Using $\operatorname{Opt}(\sigma) \geq w$, we get

$$
\begin{aligned}
\operatorname{ALG}(\sigma) & =w+E \\
& \leq w+\operatorname{OpT}(\sigma)-\frac{w}{m} \\
& =\operatorname{Opt}(\sigma)+\left(1-\frac{1}{m}\right) w \\
& \leq \operatorname{Opt}(\sigma)+\left(1-\frac{1}{m}\right) \operatorname{Opt}(\sigma) \\
& =\left(2-\frac{1}{m}\right) \operatorname{Opt}(\sigma)
\end{aligned}
$$

2 Queuing Networks

a)

b) We have an open queuing network and hence we can apply Jackson's theorem (slides 97 ff):

$$
\begin{array}{r}
\lambda_{d}=\lambda+\lambda_{b}\left(1-p_{b}\right) \\
\lambda_{t}=\lambda_{d}\left(1-p_{d}\right) \\
\lambda_{b}=\lambda_{t}\left(1-p_{t}\right)
\end{array}
$$

Solving this equation system gives:

$$
\begin{aligned}
& \lambda_{d}=\frac{\lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
& \lambda_{t}=\frac{\left(1-p_{d}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
& \lambda_{b}=\frac{\left(1-p_{d}\right)\left(1-p_{t}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)}
\end{aligned}
$$

c) The waiting time is given by $W_{t}=\rho_{t} /\left(\mu_{t}-\lambda_{t}\right)$, where $\rho_{t}=\lambda_{t} / \mu_{t}$.
d) We apply the given values to the equations for λ_{d}, λ_{t} and λ_{b} and obtain:

$$
\lambda_{d}=10, \quad \lambda_{t}=25 / 3, \quad \lambda_{b}=20 / 3
$$

Therefore, by the formula of slide 73 and linearity of expectation, the expected number of customers in the system is given by

$$
N=\frac{\lambda_{d}}{\mu_{d}-\lambda_{d}}+\frac{\lambda_{t}}{\mu_{t}-\lambda_{t}}+\frac{\lambda_{b}}{\mu_{b}-\lambda_{b}}=8 .
$$

Applying Little's formula to the entire system gives $T=N / \lambda=8 / 5$ hours.

3 A Night at the DISCO

a) As a queuing network, the DISCO can be modeled as follows.

b) We obtain the following system of linear equations:

$$
\begin{aligned}
\lambda_{d} & =\lambda+\lambda_{b} \cdot p_{d}+\lambda_{r} \\
\lambda_{b} & =\lambda_{d} \cdot p_{b} \\
\lambda_{r} & =\lambda_{b} \cdot p_{r} .
\end{aligned}
$$

Solving for λ_{d} yields

$$
\lambda_{d}=\frac{\lambda}{1-p_{b} \cdot p_{d}-p_{b} \cdot p_{r}} .
$$

c) We need to ensure that $\lambda_{r} /\left(m \cdot \mu_{r}\right)<1$. Counting in hours, we have that $\lambda_{r}=90$ and $\mu_{r}=12$, which yields that m must be at least 8 (since there is no such thing as half a toilet).
d) This is incorrect since with probability p_{v}, the visitor does not go to the bar, and even if he does, he does not go to the toilet with probability p_{d}.

