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1 PhD-Scheduling

a) (i) SmallLoad distributes the tasks as follows:

PhD student 1: 2 4 7

PhD student 2: 5 3

Opt uses the following distribution (or another one with the same cost):

PhD student 1: 2 5 3

PhD student 2: 4 7

SmallLoad thus distributes the tasks with cost Alg(σ) = 13 while Opt incurs a
cost of Opt(σ) = 11. Hence,

ρ(σ) =
Alg(σ)

Opt(σ)
=

13

11
.

(ii) The following sequence results in a larger competitive ratio: σ = 1, 1, 2. We have
Alg(σ) = 3 and Opt(σ) = 2 and thus

ρ(σ) =
Alg(σ)

Opt(σ)
=

3

2
.

(iii) See b).

(iv) No, finding the optimal solution offline corresponds to solving the Partition-problem,
which is NP-complete, thus presumably no efficient algorithm exists for the problem.

b) We first show a lower bound of (2 − 1
m ) on the competitive ratio of SmallLoad. To this

end, we choose an input sequence that consists of m(m− 1) tasks of size 1 concluded with
a task of size m, i.e. σ = 1, . . . , 1︸ ︷︷ ︸

m(m−1)

,m. After assigning the first m(m−1) tasks, SmallLoad

has assigned m− 1 units to each of the m PhD students. The last task of size m incurs a
load of 2m− 1 for the student to whom it is assigned.

The optimal algorithm assigns the first m(m− 1) taks to only m− 1 students and the last
(heavy) task to the remaining student. This results in a maximal load of m and we get the
following lower bound for the competitive ratio:

c ≥ Alg(σ)

Opt(σ)
=

2m− 1

m
= 2 − 1

m

Now we shall show a matching upper bound for the competitive ratio. Let σ = (e1, e2, . . .)
be an arbitrary input sequence. Without loss of generality, we assume s1 to be the student



with the maximal load for σ. Furthermore, let w be the effort of the last task T assigned
s1 and E the load of s1 before assigning its last task. The load of all other students must
be at least E since s1 was the student with minimal load when he was assigned task T
(otherwise another student would have received T ). Hence, the sum of the loads of all
students is at least m · E + w and hence

Opt(σ) ≥ m · E + w

m
= E +

w

m
.

Using Opt(σ) ≥ w, we get

Alg(σ) = w + E

≤ w + Opt(σ) − w

m

= Opt(σ) +

(
1 − 1

m

)
w

≤ Opt(σ) +

(
1 − 1

m

)
Opt(σ)

=

(
2 − 1

m

)
Opt(σ)

2 Queuing Networks

a)

µdλ

pd

µt ptµbpb

1 − pd

1 − pt

1 − pb

b) We have an open queuing network and hence we can apply Jackson’s theorem (slides 97ff):

λd = λ+ λb(1 − pb)

λt = λd(1 − pd)

λb = λt(1 − pt)

Solving this equation system gives:

λd =
λ

1 − (1 − pd)(1 − pt)(1 − pb)

λt =
(1 − pd)λ

1 − (1 − pd)(1 − pt)(1 − pb)

λb =
(1 − pd)(1 − pt)λ

1 − (1 − pd)(1 − pt)(1 − pb)

c) The waiting time is given by Wt = ρt/(µt − λt), where ρt = λt/µt.
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d) We apply the given values to the equations for λd, λt and λb and obtain:

λd = 10, λt = 25/3, λb = 20/3.

Therefore, by the formula of slide 73 and linearity of expectation, the expected number of
customers in the system is given by

N =
λd

µd − λd
+

λt
µt − λt

+
λb

µb − λb
= 8.

Applying Little’s formula to the entire system gives T = N/λ = 8/5 hours.

3 A Night at the DISCO

a) As a queuing network, the DISCO can be modeled as follows.

µd

Dance Floor

µb Bar

µr Restrooms

pb

pd

pr
1pv

λ

b) We obtain the following system of linear equations:

λd = λ+ λb · pd + λr

λb = λd · pb
λr = λb · pr .

Solving for λd yields

λd =
λ

1 − pb · pd − pb · pr
.

c) We need to ensure that λr/(m · µr) < 1. Counting in hours, we have that λr = 90 and
µr = 12, which yields that m must be at least 8 (since there is no such thing as half a
toilet).

d) This is incorrect since with probability pv, the visitor does not go to the bar, and even if
he does, he does not go to the toilet with probability pd.
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