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Discrete Event Systems

Solution to Exercise Sheet 10

1 PhD-Scheduling

a)

b)

(i) SMALLLOAD distributes the tasks as follows:
PhD student 1: [ 2| 4 [ 7 \
PhD student 2: \ 5 | 3 \
OPT uses the following distribution (or another one with the same cost):
PhD student 1: \ 2 | 5 | 3 ‘
PhD student 2: ‘ 4 | 7 ‘

SMALLLOAD thus distributes the tasks with cost ALG(0) = 13 while OPT incurs a
cost of OpPT(0) = 11. Hence,

_Awa(o) 13

- Ort(o) 11 °

p(o)
The following sequence results in a larger competitive ratio: ¢ = 1,1,2. We have
ALG(o) = 3 and OpT(0) = 2 and thus
_ Awg(o) 3

o) = Grr(o) "2

See b).

No, finding the optimal solution offline corresponds to solving the PARTITION-problem,
which is NP-complete, thus presumably no efficient algorithm exists for the problem.

We first show a lower bound of (2 — -1) on the competitive ratio of SMALLLOAD. To this

end, we choose an input sequence that consists of m(m — 1) tasks of size 1 concluded with

a task of size m, i.e. 0 = 1,...,1,m. After assigning the first m(m — 1) tasks, SMALLLOAD
m(m—1)

has assigned m — 1 units to each of the m PhD students. The last task of size m incurs a

load of 2m — 1 for the student to whom it is assigned.

The optimal algorithm assigns the first m(m — 1) taks to only m — 1 students and the last

(heavy) task to the remaining student. This results in a maximal load of m and we get the
following lower bound for the competitive ratio:
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Now we shall show a matching upper bound for the competitive ratio. Let o = (e, ea,...)
be an arbitrary input sequence. Without loss of generality, we assume s; to be the student



with the maximal load for o. Furthermore, let w be the effort of the last task T" assigned
s1 and E the load of s; before assigning its last task. The load of all other students must
be at least E since s; was the student with minimal load when he was assigned task T’
(otherwise another student would have received T'). Hence, the sum of the loads of all
students is at least m - E 4+ w and hence
-E
OPT(O') 2 u :E_’_B .
m m
Using OPT(0) > w, we get

ALc(o)=w+E

< w+ OpPT(0) — %
= OpT(0) + (1 - ;) w
< Opt(0) + (1 — ;) OpT(0)
= (2 - % OPT(0)
2 Queuing Networks
2) Pd
v ()
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b) We have an open queuing network and hence we can apply Jackson’s theorem (slides 971f):

Ag = )\—i-)\b(l —pb)

At = Aa(1 = pa)
Ao = Ae(1 —py)
Solving this equation system gives:
A
)\ =
I p) - p) ()
A\ = (1 —pa)A
1—(1—=pa)(L —pe)(1 —pp)
N — (1 —pa)(1 —py)A
b=

1—(1=pa)(1—p)(1—pp)

¢) The waiting time is given by W; = pi/(11t — A¢), where pr = A¢/ iy



d) We apply the given values to the equations for Ag, A\; and A\, and obtain:

A =10, A\ =25/3, X\ =20/3.

Therefore, by the formula of slide 73 and linearity of expectation, the expected number of
customers in the system is given by

Ad At Ab

N = + + =
Hd — Xd e — A Ho — Ab

8.

Applying Little’s formula to the entire system gives T = N/X = 8/5 hours.
A Night at the DISCO
a) As a queuing network, the DISCO can be modeled as follows.

Dance Floor  Pb

A

Restrooms

b) We obtain the following system of linear equations:

A=A+ A pa+ A

Ab = Ad " Py
)\r - )\b *Pr-
Solving for Ay yields
A
Ad

1 —popa—Dpbpr

¢) We need to ensure that A./(m - p,.) < 1. Counting in hours, we have that A, = 90 and
wr = 12, which yields that m must be at least 8 (since there is no such thing as half a
toilet).

d) This is incorrect since with probability p,, the visitor does not go to the bar, and even if
he does, he does not go to the toilet with probability pg.



