Discrete Event Systems

Solution to Exercise Sheet 12

1 Comparison of Finite Automata

Here are two simple finite automata:

For each, we have a one bit encoding for the states $\left(x_{A}\right.$ and $\left.x_{B}\right)$, one binary output (y_{A} and y_{B}), and one common binary input (u). We want to verify whether or not these two automata are equivalent. This can be done through the following steps:
a) Express the characteristic function of the transition relation for both automaton, $\psi_{r}\left(x, x^{\prime}, u\right)$.
b) Express the joint transition function, ψ_{f}.

Reminder: $\psi_{f}\left(x_{A}, x_{A}^{\prime}, x_{B}, x_{B}^{\prime}\right)=\left(\exists u: \psi_{A}\left(x_{A}, x_{A}^{\prime}, u\right) \cdot \psi_{B}\left(x_{B}, x_{B}^{\prime}, u\right)\right)$.
c) Express the characteristic function of the reachable states, $\psi_{X}\left(x_{A}, x_{B}\right)$.
d) Express the characteristic function of the reachable output, $\psi_{Y}\left(y_{A}, y_{B}\right)$.
e) Are the automata equivalent? Justify with a simple calculus.
a) $\psi_{A}\left(x_{A}, x_{A}^{\prime}, u\right)=\overline{x_{A}} \overline{x_{A}^{\prime}} \bar{u}+\overline{x_{A}} x_{A}^{\prime} u+x_{A} x_{A}^{\prime} u+x_{A} \overline{x_{A}^{\prime}} \bar{u}$ $\psi_{B}\left(x_{B}, x_{B}^{\prime}, u\right)=\overline{x_{B}} \overline{x_{B}^{\prime}} \bar{u}+\overline{x_{B}} x_{B}^{\prime} u+x_{B} x_{B}^{\prime} u+x_{B} \overline{x_{B}^{\prime}} \bar{u}$
b) $\psi_{f}\left(x_{A}, x_{A}^{\prime}, x_{B}, x_{B}^{\prime}\right)=\left(\overline{x_{A}} x_{A}^{\prime}+x_{A} x_{A}^{\prime}\right) \cdot\left(\overline{x_{B}} x_{B}^{\prime}+x_{B} x_{B}^{\prime}\right)+$

$$
\begin{aligned}
& \left(\overline{x_{A}} \overline{x_{A}^{\prime}}+x_{A} \overline{x_{A}^{\prime}}\right) \cdot\left(\overline{x_{B}} \overline{x_{B}^{\prime}}+x_{B} \overline{x_{B}^{\prime}}\right) \\
= & \overline{x_{A}} x_{A}^{\prime} \overline{x_{B}} x_{B}^{\prime}+\overline{x_{A}} x_{A}^{\prime} x_{B} x_{B}^{\prime}+x_{A} x_{A}^{\prime} \overline{x_{B}} x_{B}^{\prime}+x_{A} x_{A}^{\prime} x_{B} x_{B}^{\prime}+ \\
& \overline{x_{A}} \overline{\overline{x_{A}^{\prime}}} \overline{x_{B}} \overline{x_{B}^{\prime}}+\overline{x_{A}} \overline{x_{A}^{\prime}} x_{B} \overline{x_{B}^{\prime}}+x_{A} \overline{x_{A}^{\prime}} \overline{x_{B}} \overline{x_{B}^{\prime}}+x_{A} \overline{x_{A}^{\prime}} x_{B} \overline{x_{B}^{\prime}}
\end{aligned}
$$

c) Computation of the reachable states is performed incrementally. Starts with the initial state of the system $\psi_{X_{0}}\left(x_{A}, x_{B}\right)=\overline{x_{A}} x_{B}$ and then add the successors until reaching a fix-point,
$\psi_{X_{1}}=\psi_{X_{0}}+\left(\exists\left(x_{A}^{\prime}, x_{B}^{\prime}\right): \psi_{X_{0}}\left(x_{A}, x_{B}\right) \cdot \psi_{f}\left(x_{A}, x_{A}^{\prime}, x_{B}, x_{B}^{\prime}\right)\right)$
$=\overline{x_{A}} x_{B}+\overline{x_{A} x_{B}}+x_{A} x_{B}$
$\psi_{X_{2}}=\overline{x_{A}} x_{B}+\overline{x_{A} x_{B}}+x_{A} x_{B}=\psi_{X_{1}} \quad \rightarrow$ the fix-point is reached!
$\Rightarrow \quad \psi_{X}=\overline{x_{A}} x_{B}+\overline{x_{A} x_{B}}+x_{A} x_{B}$
d) Here you first need to express the output function of each automaton, that is the feasible combinations of states and outputs,
$\psi_{g_{A}}=\overline{x_{A} y_{A}}+x_{A} y_{A} \quad$ and $\quad \psi_{g_{B}}=\overline{x_{B} y_{B}}+x_{B} y_{B}$
Then the reachable outputs are the combination of the reachable states and the outputs functions, that is,

$$
\begin{aligned}
\psi_{Y}\left(y_{A}, y_{B}\right) & =\left(\exists\left(x_{A}, x_{B}\right): \psi_{X} \cdot \psi_{g_{A}} \cdot \psi_{g_{B}}\right) \\
& =y_{A} y_{B}+\overline{y_{A} y_{B}}+\overline{y_{A}} y_{B}
\end{aligned}
$$

e) From the reachable output function, we see that these automata are not equivalent. Indeed, there exists a reachable output admissible $\left(\psi_{Y}\left(\left(y_{A}, y_{B}\right)=(0,1)\right)=1\right)$ for which $y_{A} \neq y_{B}$. One other way of saying this: $\psi_{Y} \cdot\left(y_{A} \neq y_{B}\right) \neq 0$, where $\left(y_{A} \neq y_{B}\right)=\overline{y_{A}} y_{B}+y_{A} \overline{y_{B}}$.

2 Temporal Logic

a) We consider the following automaton. The property a is true on states 0 and 3 .

For each of the following CTL formula, list all the states for which it holds true.
(i) $\mathrm{EF} a$
(ii) $\operatorname{EX~AX} a$
(iii) $\mathrm{EF}(a \operatorname{AND} \operatorname{EX} \operatorname{NOT}(a))$
(i) $Q=\{0,1,2,3\}$
(ii) $(\mathrm{AX} a)$ holds for $\{2,3\}$, thus $Q=\{1,2\}$
(iii) ($a \operatorname{AND} \operatorname{EX} \operatorname{NOT}(a))$ is true for states where a is true and there exists a direct successor for which it is not. Only state 0 satisfy this (from it you can transition to 1 , where a does not hold). Moreover, state 0 is reachable for all states in this automaton ("from all states there exists a path going through 0 at some point") Hence $Q=\{0,1,2,3\}$
b) Given the transition function $\psi_{f}\left(x, x^{\prime}\right)$ and the characteristic function $\psi_{Z}(x)$ for a set Z, write a small pseudo-code which returns the characteristic function of $\psi_{\mathrm{AF} Z}(x)$. It can be expressed as symbolic boolean functions, like $\overline{x_{A}} x_{A}^{\prime} \overline{x_{B}} x_{B}^{\prime}+\overline{x_{A}} x_{A}^{\prime} x_{B} x_{B}^{\prime}$.
Hint: To do this, simply use the classic boolean operators AND, OR, NOT and ! =. You can also use an existence selector $\operatorname{EXISTS}(a)$. For a given argument a, it returns the set $\left\{x: \exists x^{\prime}, a\left(x, x^{\prime}\right)\right.$ is true $\}$.
Hint: It can be useful to reformulate $\mathrm{AF} Z$ as another CTL formula.

Here the trick is to remember that AF $Z \equiv \operatorname{NOT}(E G \operatorname{NOT}(Z))$. Hence, one can compute the function for $\mathrm{EG} \operatorname{NOT}(Z)$ quite easily (following the procedure given in the lecture) and take the negation in the end. A possible pseudo-code doing this is the following,

Require: ψ_{Z}, ψ_{f}
current $=\operatorname{NOT}\left(\psi_{Z}\right)$;
next $=$ current $\operatorname{AND}\left(\operatorname{EXISTS}\left(\psi_{f} \operatorname{AND}\right.\right.$ current $\left.)\right) ;$
while next ! = current do
current $=$ next;
next $=$ current AND $\left(\operatorname{EXISTS}\left(\psi_{f}\right.\right.$ AND current $\left.)\right)$;
end while
return $\psi_{\mathrm{AF} Z}=\mathrm{NOT}$ (current);
\triangleright Equivalence in term of sets:

$$
\begin{array}{r}
\triangleright X_{0} \\
\triangleright X_{1}=X_{0} \cap \operatorname{Pre}\left(X_{0}, f\right) \\
\triangleright X_{i}!=X_{i-1} \\
\triangleright X_{i}=X_{i-1} \cap \operatorname{Pre}\left(X_{i-1}, f\right) \\
\triangleright X_{f} \mid=\operatorname{EGNOT}(Z) \\
\triangleright \overline{X_{f}} \mid=\operatorname{AF} Z=\operatorname{NOT}(\operatorname{EGNOT}(Z))
\end{array}
$$

