Automata \& languages
A primer on the Theory of Computation

Laurent Vanbever

www.vanbever.eu

ETH Zürich (D-ITET)

October, 12015

Last week, we learned about
closure and equivalence of regular languages

Last week, we learned about

closure and equivalence of regular languages

The class of regular languages
is closed under the

- union
- concatenation
- star

The class of regular languages
is closed under the

- union
- concatenation
- star
if L_{1} and L_{2} are regular, then so are
$\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
$L_{1} . L_{2}$
$\mathrm{L}_{1}{ }^{*}$
regular operations

We started to look at REX, the third way of representing regular languages

DFA $=$ NFA

REX

Are REX, NFA and DFA all equivalent?

DFA \simeq NFA

REX

We stopped asking ourselves
whether all languages are regular
$\mathrm{L}_{1} \quad\left\{0^{n} 1^{n} \mid n \geq 0\right.$
$L_{2} \quad\{w \mid w$ has an equal number of $0 s$ and $1 s\}$
$L_{3} \quad\{w \mid w$ has an equal number of occurrences of 01 and 10$\}$

Advanced Automata

Thu Oct 1

- DFA
- NFA
- Regular Expression

Non-regular languages

Context-free languages

Three tough languages

1) $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
2) $L_{2}=\{w \mid w$ has an equal number of $0 s$ and $1 s\}$
3) $L_{3}=\{w \mid w$ has an equal number of occurrences of 01 and 10 as substrings\}

Three tough languages

1) $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
2) $L_{2}=\{w \mid w$ has an equal number of $0 s$ and $1 s\}$
3) $L_{3}=\{w \mid w$ has an equal number of occurrences of

01 and 10 as substrings

- In order to fully understand regular languages, we also must understand their limitations!

Pigeonhole principle

- Consider language L , which contains word $\mathrm{w} \in \mathrm{L}$.

Consider an FA which accepts L, with n <|w| states.

- Then, when accepting w, the FA must visit at least one state twice
- Consider language L , which contains word $\mathrm{w} \in \mathrm{L}$
- Consider an FA which accepts L, with $\mathrm{n}<|\mathrm{w}|$ states
- Then, when accepting w, the FA must visit at least one state twice.

This is according to the pigeonhole (a.k.a. Dirichlet) principle:

- If $m>n$ pigeons are put into n pigeonholes, there's a hole with more than one pigeon.
- That's a pretty fancy name for a boring observation.

Languages with unbounded strings

- Consequently, regular languages with unbounded strings can only be recognized by FA (finite! bounded!) automata if these long strings loop

- The FA can enter the loop once, twice, ..., and not at all
- That is, language L contains all $\left\{x z, x y z, x y^{2} z, x y^{3} z, \ldots\right\}$

Pumping Lemma

- Theorem:

Given a regular language L, there is a number p (the pumping number) such trat
any string u in L of length $\geq p$ is pumpable within its first p letters.

Theorem:
Given a regular language L, there is a number p (the pumping number) any string u in L of length $\geq p$ is pumpable within its first p letters.

- A string $u \in L$ with $|u| \geq p$ is pumpable if it can be split in 3 parts $x y z$ s.t.
- $|y| \geq 1$ (mid-portion y is non-empty)
- $|x y| \leq p$
- $x y^{i} z \in L$ for all $i \geq 0$ (pumping occurs in first p letters) (can pump y-portion)

Pumping Lemma Example

- Let L be the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- Assume (for the sake of contradiction) that L is regular
- Let p be the pumping length. Let u be the string $0^{\mathrm{P}} 1^{\mathrm{p}}$.
- Let's check string u against the pumping lemma:
- "In other words, for all $u \in L$ with $|u| \geq p$ we can write:
- $u=x y z \quad$ (x is a prefix, z is a suffix)
- $|y| \geq 1 \quad$ (mid-portion y is non-empty)
- $|x y| \leq p$
$-x y^{\prime} z \in L$ for all $i \geq 0$ (pumping occurs in first p letters) (can pump y-portion)"
- Theorem:

Given a regular language L, there is a number p (the pumping number
any string u in L of length $\geq p$ is pumpable within its first p letters.

- A string $u \in L$ with $|u| \geq p$ is pumpable if it can be split in 3 parts $x y z$ s.t. - $|y| \geq 1 \quad$ (mid-portion y is non-empty)
- (pumping occurs in first p letters)
- $x y^{i} z \in L$ for all $i \geq 0$ (can pump y-portion)
- If there is no such p, then the language is not regular

Let's make the example a bit harder...

- Let L be the language $\{w \mid w$ has an equal number of $0 s$ and $1 s\}$

Assume (for the sake of contradiction) that L is regular

- Let p be the pumping length. Let u be the string $0^{\mathrm{p}} 1^{p}$.

Let's check string u against the pumping lemma:

- "In other words, for all $u \in L$ with $|u| \geq p$ we can write:
- $u=x y z \quad$ (x is a prefix, z is a suffix)
- $|y| \geq 1$
- $|x y| \leq p$ (mid-portion y is non-empty) (pumping occurs in first p letters)
- $x y^{\prime} z \in L$ for all $i \geq 0$ (can pump y-portion)"

Now you try...

- Is $L_{1}=\left\{w w \mid w \in(0 \cup 1)^{*}\right\}$ regular?
- Is $L_{2}=\left\{1^{n} \mid n\right.$ being a prime number $\}$ regular?

Automata \& languages

A primer on the Theory of Computation

regular
language
context-free
language

Automata \& languages

A primer on the Theory of Computation

Part 1	regular language
Part 2	context-free language
Part 3	turing machine

Motivation

- Why is a language such as $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ not regular?!?
- It's really simple! All you need to keep track is the number of 0's...
- In this chapter we first study context-free grammars
- More powerful than regular languages
- Recursive structure
- Developed for human languages
- Important for engineers (parsers, protocols, etc.)

Example

- Palindromes, for example, are not regular.
- But there is a pattern.

Example

Palindromes, for example, are not regular

- But there is a pattern
- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
- Base case: $\varepsilon, 0$ and 1 are palindromes.

Recursion: If x is a palindrome, then so are 0×0 and 1×1

- Notation: $x \rightarrow \varepsilon|0| 1|0 x 0| 1 x 1$.
- Each pipe ("|") is an or, just as in UNIX regexp's.
- In fact, all palindromes can be generated from ε using these rules.
- Palindromes, for example, are not regular
- But there is a pattern.
- Q: If you have one palindrome, how can you generate another?
- A: Generate palindromes recursively as follows:
- Base case: $\varepsilon, 0$ and 1 are palindromes.
- Recursion: If x is a palindrome, then so are 0×0 and 1×1.

Notation: $x \rightarrow \varepsilon|0| 1|0 \times 0| 1 \times 1$.

- Each pipe ("|") is an or, just as in UNIX regexp's.

In fact, all palindromes can be generated from ε using these rules.

- Q: How would you generate 11011011 ?
- Definition: A context free grammar consists of (V, Σ, R, S) with
- V : a finite set of variables (or symbols, or non-terminals)
- Σ : a finite set set of terminals (or the alphabet)
- R : a finite set of rules (or productions)
of the form $v \rightarrow w$ with $v \in V$, and $w \in\left(\Sigma_{\varepsilon} \cup V\right)^{*}$
(read: " v yields w " or " v produces w ")
$-S \in V$: the start symbol.

Derivations and Language

- Definition: The derivation symbol " \Rightarrow " (read "1-step derives" or " 1 -step produces") is a relation between strings in ($\Sigma \cup V)^{*}$
We write $x \Rightarrow y$ if x and y can be broken up as $x=$ svt and $y=s w t$ with $v \rightarrow w$ being a production in R.
- Definition: A context free grammar consists of (V, Σ, R, S) with
- V : a finite set of variables (or symbols, or non-terminals)
- \quad : a finite set set of terminals (or the alphabet)
- R : a finite set of rules (or productions)
of the form $v \rightarrow w$ with $v \in V$, and $w \in\left(\Sigma_{\Omega} \cup V\right)^{*}$
(read: "v yields w" or "v produces w")
- $S \in V$: the start symbol
- Q: What are (V, Σ, R, S) for our palindrome example?
- Definition: The derivation symbol " \Rightarrow " (read " 1 -step derives" or " 1 -step produces") is a relation between strings in ($\Sigma \cup V)^{*}$
We write $x \Rightarrow y$ if x and y can be broken up as $x=$ svt and $y=s w t$
with $v \rightarrow w$ being a production in R.
- Definition: The derivation symbol " \Rightarrow *", (read "derives" or "produces" or "yields") is a relation between strings in ($2 \cup \mathrm{~V})^{*}$. We write $x \Rightarrow{ }^{*} y$ there is a sequence of 1-step productions from x to y. I.e., there are trings x_{i} with i ranging from 0 to n such that $x=x_{0}, y=x_{n}$ and $x_{0} \Rightarrow x_{1}, x_{1} \Rightarrow$
$x_{2}, x_{2} \Rightarrow x_{3}, \ldots, x_{n-1} \Rightarrow x_{n}$.
- Definition: The derivation symbol " \Rightarrow " (read " 1 -step derives" or " 1 -step produces") is a relation between strings in $(\Sigma \cup V)^{*}$
Ve write $x \Rightarrow y$ if x and y can be broken up as $x=$ svt and $y=s w t$ ith $v \rightarrow w$ being a production in R
- Definition: The derivation symbol " $\Rightarrow^{* ",}$, read "derives" or "produces" "yields") is a relation between strings in ($\Sigma \cup V)^{*}$ We write $x \rightarrow^{*} v$ there is a sequence of 1 -step productions from x to y. I.e., there are strings x_{i} with i ranging from 0 to n such that $x=x_{0}, y=x_{n}$ and $x_{0} \Rightarrow x_{1}, x_{1}=$ $x_{2}, x_{2} \Rightarrow x_{3}, \ldots, x_{n-1} \Rightarrow x$
- Definition: Let G be a context-free grammar. The context-free language (CFL) generated by G is the set of all terminal strings which are derivable from the start symbol. Symbolically: $L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}$

Example: Infix Expressions

- Consider the string u given by $a \times b+(c+(a+c))$
- This is a valid infix expression. Can be generated from E.

A sum of two expressions, so first production must be $E \Rightarrow E+T$
2. Sub-expression $a \times b$ is a product, so a term so generated by sequence E $+T \Rightarrow T+T \Rightarrow T \times F+T \Rightarrow * a \times b+T$
3. Second sub-expression is a factor only because a parenthesized sum. $a \times b+T \Rightarrow a \times b+F \Rightarrow a \times b+(E) \Rightarrow a \times b+(E+T) .$.
4. $E \Rightarrow E+T \Rightarrow T+T \Rightarrow T \times F+T \Rightarrow F \times F+T \Rightarrow V \times F+T \Rightarrow a \times F+T \Rightarrow a \times V+T \Rightarrow$ $a \times b+T \Rightarrow a \times b+F \Rightarrow a \times b+(E) \Rightarrow a \times b+(E+T) \Rightarrow a \times b+(T+T) \Rightarrow a \times b+(F$ $+T) \Rightarrow a \times b+(V+T) \Rightarrow a \times b+(c+T) \Rightarrow a \times b+(c+F) \Rightarrow a \times b+(c+(E)) \Rightarrow a \times b$ $+(c+(E+T)) \Rightarrow a \times b+(c+(T+T)) \Rightarrow a \times b+(c+(F+T)) \Rightarrow a \times b+(c+(a+T)) \Rightarrow$ $a \times b+(c+(a+F)) \Rightarrow a \times b+(c+(a+V)) \Rightarrow a \times b+(c+(a+c))$

Infix expressions involving $\{+, x, a, b, c$, ()

- E stands for an expression (most general)
- F stands for factor (a multiplicative part)
- T stands for term (a product of factors)
- V stands for a variable: a, b, or c
- Grammar is given by
- $E \rightarrow T \mid E+T$
- $T \rightarrow F \mid T \times F$
$-F \rightarrow V \mid(E)$
- $V \rightarrow a|b| c$
- Convention: Start variable is the first one in grammar (E)
- There can be a lot of ambiguity involved in how a string is derived.
- Another way to describe a derivation in a unique way is using derivation trees.
- In a derivation tree (or parse tree) each node is a symbol. Each parent is a variable whose children spell out the production from left to right. For, example $v \rightarrow a b c d e f g$:

- The root is the start variable.
- The leaves spell out the derived string from left to right.

Derivation Trees

- On the right, we see a derivation tree for our string $a \times b+(c+(a+c))$
- Derivation trees help understanding semantics! You can tell how expression should be evaluated from the tree.

Ambiguity

<sentence>	\rightarrow	<action> \| <action> with <subject>		
<action>	\rightarrow	<subject><activity>		
<subject>	\rightarrow	<noun> \| <noun> and <subject>		
<activity>	\rightarrow	<verb> \| <verb><object>		
<noun>	\rightarrow	Hannibal \| Clarice	rice	onions
<verb>	\rightarrow	ate \| played		
<prep>	\rightarrow	with \| and	or	
<object>	\rightarrow	<noun> \| <noun><prep><object>		

- Clarice played with Hannibal

Clarice ate rice with onions

- Hannibal ate rice with Clarice
- Q. Are there any suspect sentences?
- A: Consider "Hannibal ate rice with Clarice"
- This could either mean
- Hannibal and Clarice ate rice together
- Hannibal ate rice and ate Clarice
- This ambiguity arises from the fact that the sentence has two different parse-trees, and therefore two different interpretations:

$2 / 18$
2/19

Hannibal the Cannibal

Ambiguity: Definition

- Definition

A string x is said to be ambiguous relative the grammar
if there are two essentially different ways to derive x in G

- x admits two (or more) different parse-trees
- equivalently, x admits different left-most [resp. right-most] derivations.
- A grammar G is said to be ambiguous if there is some string x in $L(G)$ which is ambiguous.
- Definition:

A string x is said to be ambiguous relative the grammar G
f there are two essentially different ways to derive x in G.

- xadmits two (or more) different parse-tree
equivalently, x admits different left-most [resp. right-most] derivations.
- A grammar G is said to be ambiguous if there is some string x in $L(G)$ which is ambiguous.
- Question: Is the grammar $S \rightarrow a b|b a| a S b|b S a| S S$ ambiguous? - What language is generated?

Proving $L \subseteq L(G)$

- $\quad L \subset L(G)$: Show that every string x with the same number of $a^{\prime} s$ as $b^{\prime} s$ is generated by G. Prove by induction on the length $n=|x|$
- Base case: The empty string is derived by $S \rightarrow \varepsilon$.
- Inductive hypothesis: Assume $n>0$. Let u be the smallest non-empty prefix of x which is also in L.

Either there is such a prefix with $|u|<|x|$, then $x=u v$ whereas $v \in L$ as well, and we can use $S \rightarrow S S$ and repeat the argument.

- Or $x=u$. In this case notice that u can't start and end in the same letter. If it started and ended with a then write $x=a v a$. This means that v must have 2 more b^{\prime} s than a 's. So somewhere in v the b 's of x catch up to the have 2 more b 's han a 'so somewher a 's which means that there's a smaller prefix in L, contradicting the have $x=a v b$ OR $x=b v a$. We can use either $S \rightarrow a S b$ OR $S \rightarrow b S a$.
- The recursive nature of CFG's means that they are especially amenable to correctness proofs.
- For example let's consider the gramma

$$
G=(S \rightarrow \varepsilon|a b| b a|a S b| b S a \mid S S)
$$

- We claim that $\mathrm{L}(\mathrm{G})=\mathrm{L}=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}$, where $n_{a}(x)$ is the number of a 's in x, and $n_{b}(x)$ is the number of b^{\prime} s.
- Proof: To prove that $\mathrm{L}=\mathrm{L}(\mathrm{G})$ is to show both inclusions:
i. $L \subseteq L(G)$: Every string in L can be generated by G.
ii. $\quad L \supseteq L(G): G$ only generate strings of L

This part is easy, so we concentrate on part i.

Designing Context-Free Grammars

- As for regular languages this is a creative process
- However, if the grammar is the union of simpler grammars, you can design the simpler grammars (with starting symbols S_{1}, S_{2}, respectively) first, and then add a new starting symbol/production
$\mathrm{S} \rightarrow \mathrm{S}_{1} \mid \mathrm{S}_{2}$
- If the CFG happens to be regular as well, you can first design the FA, introduce a variable/production for each state of the FA, and then add a rule $x \rightarrow$ ay to the CFG if $\delta(x, a)=y$ is in the FA. If a state x is accepting in FA then add $\mathrm{x} \rightarrow \varepsilon$ to CFG. The start symbol of the CFG is of course equivalent to the start state in the FA.
- There are quite a few other tricks. Try yourself...

