Automata \& languages

A primer on the Theory of Computation

Laurent Vanbever
www.vanbever.eu

ETH Zürich (D-ITET)
October, 152015

Part 5 out of 5

Last week was all about

Context-Free Languages

Context-Free Languages

a superset of Regular Languages

Example $\quad\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is a CFL but not a RL

As for Regular Languages,
 Context-Free Languages are recognized by "machines"

Language
Regular
Context-Free
Machine
DFA/NFA
PDA

Push-Down Automatas are pretty similar to DFAs

Push-Down Automatas are pretty similar to DFAs

 except for... the stack

$$
Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow P\left(Q \times \Gamma_{\epsilon}\right)
$$

$$
L=\left\{a^{\prime} b^{j} c^{k} \quad \mid i, j, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

Machine
(PDA)

This week, we'll see that computers are not limitless

Alan Turing (1912-1954)

Some problems
cannot be solved
by a computer
(no matter its power)

But before that, we'll prove some extra properties about Context-Free Languages

Today's plan

Thu Oct 14
$1 \quad \mathrm{PDA}=\mathrm{CFG}$

2 Pumping lemma for CFL

3 Turing Machines

Even smarter automata...

- Even though the PDA is more powerful than the FA, it is still really stupid, since it doesn't understand a lot of important languages.
- Let's try to make it more powerful by adding a second stack
- You can push or pop from either stack, also there's still an input string
- Clearly there are quite a few "implementation details"
- It seems at first that it doesn't help a lot to add a second stack, but...

Even smarter automata...

- Even though the PDA is more powerful than the FA, it is still really stupid, since it doesn't understand a lot of important languages.
- Let's try to make it more powerful by adding a second stack
- You can push or pop from either stack, also there's still an input string
- Clearly there are quite a few "implementation details"
- It seems at first that it doesn't help a lot to add a second stack, but...
- Lemma: A PDA with two stacks is as powerful as a machine which operates on an infinite tape (restricted to read/write only "current" tape cell at the time - known as "Turing Machine").
- Still that doesn't sound very exciting, does it...?!?

Automata \& languages

A primer on the Theory of Computation

regular
language
context-free
language

Part 3
turing
machine

Turing Machine

- A Turing Machine (TM) is a device with a finite amount of read-only "hard" memory (states), and an unbounded amount of read/write tape-memory. There is no separate input. Rather, the input is assumed to reside on the tape at the time when the TM starts running.
- Just as with Automata, TM's can either be input/output machines (compare with Finite State Transducers), or yes/no decision machines.

Turing Machine: Example Program

- Sample Rules:
- If read 1 , write 0 , go right, repeat.
- If read 0 , write 1, HALT !
- If read \square, write 1, HALT! (the symbol \square stands for the blank cell)
- Let's see how these rules are carried out on an input with the reverse binary representation of 47:

Turing Machine: Formal Definition

- Definition: A Turing machine (TM) consists of a 7-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$.
- Q, Σ, and q_{0}, are the same as for an FA.
- $q_{\text {acc }}$ and $q_{\text {rej }}$ are accept and reject states, respectively.
- $\quad \Gamma$ is the tape alphabet which necessarily contains the blank symbol \bullet, as well as the input alphabet Σ.
- δ is as follows:

$$
\delta:\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}
$$

- Therefore given a non-halt state p, and a tape symbol $x, \delta(p, x)=(q, y, \mathrm{D})$ means that TM goes into state q, replaces x by y, and the tape head moves in direction D (left or right).

Turing Machine: Formal Definition

- Definition: A Turing machine (TM) consists of a 7-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {acc, }} q_{\text {rej }}\right)$.
- Q, Σ, and q_{0}, are the same as for an FA.
- $q_{\text {acc }}$ and $q_{\text {rej }}$ are accept and reject states, respectively.
- $\quad \Gamma$ is the tape alphabet which necessarily contains the blank symbol \bullet, as well as the input alphabet Σ.
- δ is as follows:

$$
\delta:\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}
$$

- Therefore given a non-halt state p, and a tape symbol $x, \delta(p, x)=(q, y, D)$ means that TM goes into state q, replaces x by y, and the tape head moves in direction D (left or right).
- A string x is accepted by M if after being put on the tape with the Turing machine head set to the left-most position, and letting M run, M eventually enters the accept state. In this case w is an element of $L(M)$ - the language accepted by M.

Comparison

Device	Separate Input?	Read/Write Data Structure	Deterministic by default?
FA	Yes	None	Yes
PDA	Yes	LIFO Stack	No
TM	No	1-way infinite tape. 1 cell access per step.	Yes (but will also allow crashes)

Turing Machine: Goals

- First Goal of Turing's Machine: A "computer" which is as powerful as any real computer/programming language
- As powerful as C, or "Java++"
- Can execute all the same algorithms / code
- Not as fast though (move the head left and right instead of RAM)
- Historically: A model that can compute anything that a human can compute. Before invention of electronic computers the term "computer" actually referred to a person who's line of work is to calculate numerical quantities!
- This is known as the [Church-[Post-]] Turing thesis, 1936.
- Second Goal of Turing's Machine: And at the same time a model that is simple enough to actually prove interesting epistemological results.

Can a computer compute anything...?!?

- Given collection of dominos, e.g.

- Can you make a list of these dominos (repetitions are allowed) so that the top string equals the bottom string, e.g.

- This problem is known as Post-Correspondance-Problem.
- It is provably unsolvable by computers!

Also the Turing Machine (the Computer) is limited

- Similary it is undecidable whether you can cover a floor with a given set of floor tiles (famous examples are Penrose tiles or Wang tiles)

- Examples are leading back to Kurt Gödel's incompleteness theorem
- "Any powerful enough axiomatic system will allow for propositions that are undecidable."

Decidability

- A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).

Decidability

- A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).
- A subset T of a set M is called decidable (or recursive), if the function $f: M \rightarrow$ true, false $\}$ with $f(m)=$ true if $m \in T$, is computable.

Decidability

- A function is computable if there is an algorithm (according to the Church-Turing-Thesis a Turing machine is sufficient) that computes the function (in finite time).
- A subset T of a set M is called decidable (or recursive), if the function $f: M \rightarrow$ true, false $\}$ with $f(m)=$ true if $m \in T$, is computable.
- A more general class are the semi-decidable problems, for which the algorithm must only terminate in finite time in either the true or the false branch, but not the other.

Halting Problem

- The halting problem is a famous example of an undecidable (semi-decidable) problem. Essentially, you cannot write a computer program that decides whether another computer program ever terminates (or has an infinite loop) on some given input.
- In pseudo code, we would like to have:

```
procedure halting(program, input) {
    if program(input) terminates
    then return true
    else return false
}
```


Halting Problem: Proof

- Now we write a little wrapper around our halting procedure

```
procedure test(program) {
    if halting(program,program) =true
    then loop forever
    else return
}
```

- Now we simply run: test (test)! Does it halt?!?

Excursion: P and NP

- P is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.

Excursion: P and NP

- $\quad P$ is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.
- NP is the class of decision problems solvable by a non-deterministic polynomial time Turing machine such that the machine answers "yes," if at least one computation path accepts, and answers "no," if all computation paths reject.

Excursion: P and NP

- $\quad P$ is the complexity class containing decision problems which can be solved by a Turing machine in time polynomial of the input size.
- NP is the class of decision problems solvable by a non-deterministic polynomial time Turing machine such that the machine answers "yes," if at least one computation path accepts, and answers "no," if all computation paths reject.
- Informally, there is a Turing machine which can check the correctness of an answer in polynomial time.
- E.g. one can check in polynomial time whether a traveling salesperson path connects n cities with less than a total distance d.

NP-complete problems

- An important notion in this context is the large set of NP-complete decision problems, which is a subset of NP and might be informally described as the "hardest" problems in NP.
- If there is a polynomial-time algorithm for even one of them, then there is a polynomial-time algorithm for all the problems in NP.
- E.g. Given a set of n integers, is there a non-empty subset which sums up to 0 ? This problem was shown to be NP-complete.
- Also the traveling salesperson problem is NP-complete, or Tetris, or Minesweeper.

P vs. NP

- One of the big questions in Math and CS: Is P = NP?
- Or are there problems which cannot be solved in polynomial time.
- Big practical impact (e.g. in Cryptography).
- One of the seven $\$ 1 \mathrm{M}$ problems by the Clay Mathematics Institute of Cambridge, Massachusetts.

Summary (Chomsky Hierarchy)

Undecidable

Bedtime Reading

If you're leaning towards "human כ machine"

