
Chapter 5

Markov Chains & PageRank

Let us try to predict the weather! How long until it is rainy the next time?
What about the weather in ten days? What is the local “climate”, i.e., the
“average” weather?
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Figure 5.1: According to a self-proclaimed weather expert, the above graph
models the weather in Zürich. On any given day, the weather is either sunny,
cloudy, or rainy. The probability to have a cloudy day after a sunny day is 1

3 . In
the context of Markov chains the nodes, in this case sunny, rainy, and cloudy,
are called the states of the Markov chain.

Remarks:

• Figure 5.1 above is an example of a Markov chain—see the next section
for a formal definition.

• If the weather is currently sunny, the predictions for the next few days
according to the model from Figure 5.1 are:

Day sunny cloudy rainy

0 1 0 0

1 2
3

1
3 0

2 0.611 0.222 0.167

3 0.574 0.259 0.167

4 0.568 0.247 0.185
...

...
...

...

13

14 CHAPTER 5. MARKOV CHAINS & PAGERANK

5.1 Markov Chains

Markov chains are a tool for studying stochastic processes that evolve over time.

Definition 5.1 (Markov Chain). Let S be a finite or countably infinite set of
states. A (discrete time) Markov chain is a sequence of random variables
X0, X1, X2, . . . ∈ S that satisfies the Markov property (see below).

Definition 5.2 (Markov Property). A sequence (Xt) of random variables has
the Markov property if for all t, the probability distribution for Xt+1 depends
only on Xt, but not on Xt−1, . . . , X0. More formally, for all t ∈ N>0 and
s0, . . . , st+1 ∈ S it holds that Pr[Xt+1 = st+1 | X0 = s0, X1 = s1, . . . , Xt = st] =
Pr[Xt+1 = st+1 | Xt = st].

Remarks:

• A sequence of random variables is also called a discrete time stochastic
process. Processes that satisfy the Markov property are also called
memoryless.

• The probability distribution of X0 does not depend on a previous
state (since there is none). It is called the initial distribution, and we
denote it by the vector q0 = (q0,s)s∈S with the entries Pr[X0 = s] for
every state s ∈ S. If the first day is sunny, the initial distribution is
q0 = (1, 0, 0).

Definition 5.3 (Time Homogeneous Markov Chains). A Markov chain is time
homogeneous if Pr[Xt+1 = st+1 |Xt = st] is independent of t, and in that case
pi,j = Pr[Xt+1 = i | Xt = j] is well defined.

Remarks:

• We will only consider time homogeneous Markov chains.

• Markov chains are often modeled using directed graphs, as in Fig-
ure 5.1. The states are represented as nodes, and an edge from state
i to state j is weighted with probability pi,j .

• Just like directed graphs, Markov chains can be written in matrix
form (using the adjacency matrix). In this context, the matrix is
called the transition matrix, and we denote it by P . For the example
from Figure 5.1, the transition matrix is:

to
sunny cloudy rainy

fr
om

sunny 2/3 1/3 0
cloudy 1/2 0 1/2
rainy 1/3 1/3 1/3

• Let qt = (qt,i)i∈S be the probability distribution on S for time t, i.e.,
qt,i = Pr[Xt = i]. The probability to be in state j at time t + 1 is
qt+1,j =

�
i∈S Pr[Xt = i] ·Pr[Xt+1 = j |Xt = i] =

�
i∈S qt,i ·pi,j . This

can be written as the vector-matrix-multiplication qt+1 = qt · P .



5.1. MARKOV CHAINS 15

• The state distribution at time t is qt = q0 · P t. We denote by p
(t)
i,j the

entry at position i, j in P t, i.e., the probability of reaching j from i in
t steps.

• Another interpretation of Markov chains is that of a random walk.

Definition 5.4 (Random Walk). Let G = (V,E) be a directed graph, and let
ω : E → [0, 1] be a weight function so that

�
v:(u,v)∈E ω(u, v) = 1 for all nodes u.

Let u ∈ V be the starting node. A weighted random walk on G starting
at u is the following discrete Markov chain in discrete time. Beginning with
X0 = u, in every step t, the node Xt+1 is chosen according to the weights
ω(Xt, v), where v are the neighbors of Xt. If G is undirected and unweighted,
then Xt+1 is chosen uniformly at random among Xt’s neighbors and the random
walk is called simple.

Remarks:

• Random walks are a special case of Markov chains where the initial
distribution is a single state. In Section 5.4 we will study simple
random walks.

• If it is sunny today, how long will it stay sunny?

Definition 5.5 (Sojourn Time). The sojourn time Ti of state i is the time
the process stays in state i.

Remarks:

• It holds that Pr[Ti = k] = pk−1
i,i · (1 − pi,i), i.e., Ti is geometrically

distributed. For example E[Tsunny] = 2.

• The sojourn time Ti does not depend on the time the process has spent
in state i already (memoryless property). The geometric distribution
is the only discrete distribution that is memoryless.

• If it is currently sunny, how long does it take until we see the first
rainy day?

Definition 5.6 (Hitting Time & Arrival Probability). Let i and j be two states.
The hitting time Ti,j is the random variable counting the number of steps until
visiting j the first time when starting from state i, i.e., the value of Ti,j is the
smallest integer t ≥ 1 for which Xt = j under the condition that X0 = i. The
expected hitting time from i to j is the expected value hi,j = E[Ti,j ]. The
arrival probability from i to j is the probability fi,j = Pr[Ti,j < ∞].

Remarks:

• The time ci,j = hi,j + hj,i is referred to as the commute time between
i and j.

• By definition, hi,j is the sum
�∞

i=1 i ·p(t)
i,j . The following lemma states

that the expected hitting time can also be computed by solving a
system of linear equations.
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Lemma 5.7. If if hi,j exists for all i, j ∈ S, then the expected hitting times are

hi,j = 1 +
�

k �=j

pi,khk,j .

Proof. Plugging in the definition of hi,j and applying the law of total probability
we get that

hi,j = E[Ti,j ] =
�

k∈S

E[Ti,j | X1 = k] · pi,k .

Taking the jth term out, we obtain

hi,j = E[Ti,j | X1 = j] · pi,j +
�

k �=j

E[Ti,j | X1 = k] · pi,k

= 1 · pi,j +
�

k �=j

(1 + E[Tk,j ]) · pi,k .

Since pi,j together with all the values pi,k sum up to 1, we can simplify to

hi,j = 1 +
�

k �=j

E[Tk,j ] · pi,k = 1 +
�

k �=j

pi,khk,j .

Remarks:

• On a sunny day it takes in expectation 8 days until it starts raining.

• Lemma 5.8 for the arrival probabilities can be established similarly to
Lemma 5.7.

Lemma 5.8. For all i, j ∈ S, the arrival probability is

fi,j = pi,j +
�

k �=j

pi,kfk,j .

5.2 Stationary Distribution & Ergodicity

What is the “climate” in Zürich? Often one is particularly interested in the long
term behavior of Markov chains and random walks. The mathematical notion
that captures a Markov chain’s long term behavior is the stationary distribution,
which we will introduce and study in the following.

Remarks:

• The entries in P t contain the probability of entering a certain weather
condition (state). What happens for large values of t? The matrix
seems to converge!

P 3 ≈




0.574 0.259 0.167
0.556 0.222 0.222
0.537 0.259 0.204


 P 10 ≈




0.563 0.250 0.187
0.562 0.250 0.187
0.562 0.250 0.188
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• No matter what the initial weather q0 is, the product q0 · P t seems to
approach q̃ ≈ (0.563, 0.250, 0.188) as t grows. Moreover, if we multiply
the vector q̃ with P we almost get q̃ again. In other words, q̃ is almost
an eigenvector of P with eigenvalue 1.

Definition 5.9 (Stationary Distribution). A distribution π over the states is
called stationary distribution of the Markov chain with transition matrix P
if π = π · P .

Remarks:

• Our weather Markov chain converges towards π = (9/16, 4/16, 3/16),
which is an eigenvector of P with eigenvalue 1. We conclude that
in the long run, 9 out of 16 days are sunny in Zürich. The weather
model appears to be not as accurate as the weather expert led us to
believe . . .

• Consider the sequence qi = qi−1 ·P , where q0 is the initial distribution.
In general, this sequence does not necessarily converge as t grows.
However, if it does converge to some distribution π, then it must hold
that π = π · P .

Lemma 5.10. Every Markov chain has a left eigenvector with eigenvalue 1.

Proof. Let P be the transition matrix of a Markov chain, and denote by e =
(1, . . . , 1)� the all-ones vector. Because in P the entries in each row sum up
to 1 (P is row stochastic), it holds that Pe = e. Denoting by I the identity
matrix, it follows that (P − I)e = 0. In other words, e is an eigenvector with
eigenvalue 0 for (P−I), which implies that (P−I) is singular, i.e., not invertible.
Thus, also (P − I)� is singular, and it follows that there is a vector π �= 0 so
that 0 = (P − I)�π = P�π − Iπ. Transposing and rearranging we obtain that
π�P = π�, as desired.

Remarks:

• Using Brouwer’s fixed point theorem one can show that there is also
a left eigenvector π that corresponds to a probability distribution.

• The stationary distribution is not necessarily unique, see Figure 5.2.
The issue is that some states are not reachable from all other states.
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Figure 5.2: This Markov chain has infinitely many stationary distributions, for
example π0 = (1, 0, 0), π1 = (0, 0, 1), and π0.8 = (0.2, 0, 0.8). The states u and
w are called absorbing states, since they are never left once they are entered.

Definition 5.11 (Irreducible Markov Chains). A Markov chain is irreducible
if all states are reachable from all other states. That is, if for all i, j ∈ S there

is some t ∈ N, such that p
(t)
i,j > 0.
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Lemma 5.12. In an irreducible Markov chain it holds that hi,j < ∞ for all
states i, j.

Proof. Fix some state j, and observe that due to Definition 5.11 for every s ∈ S,

there is some ts so that p
(ts)
s,j > 0. Denote by t = max{ts | s ∈ S} the largest

such value. State j can be reached from every state in at most t steps. We
partition the random walk into trials of t successive steps. Within each trial,
state j is reached with probability at least p = min{pts

s,j | s ∈ S}. The number
of trials until the random walk reaches j is thus upper bounded by a geometric
distribution with parameter p. It follows that at most 1/p trials are necessary
to reach j, and we conclude that hi,j ≤ t/p for any i.

Remarks:

• Similarly, it follows that fi,j = 1 for all states i, j if the Markov chain
is irreducible.

Lemma 5.13. Every finite irreducible Markov chain has a unique stationary
distribution π. The distribution is πj = 1

hj,j
for all j ∈ S.

Proof. Denote by P the transition matrix of an irreducible Markov chain. Let
π �= 0 be a left eigenvector of P with eigenvalue 1 as promised by Lemma 5.10.
Denote further by hi,j the expected hitting times guaranteed by Lemma 5.12.

We first consider the case that
�

i πi �= 0 and w.l.o.g. assume that
�

i πi = 1.
Due to Lemma 5.7 it holds that for any j ∈ S,

πihi,j = πi


1 +

�

k �=j

pi,khk,j


 for all i ∈ S .

Since
�

i xi = 1, summing up those equations over all i yields

πjhi,j +
�

i�=j

πihi,j = 1 +
�

i

πi

�

k �=j

pi,khk,j

= 1 +
�

k �=j

hk,j

�

i

πipi,k ,

by switching the summation on the right hand side. Since π is an eigenvector
with eigenvalue 1, it holds that

�
i πipi,k = πk, and thus the equation becomes

πjhi,j +
�

i�=j

πihi,j = 1 +
�

k �=j

hk,jπk .

Noting that all hj,j > 1 we conclude that πj = 1/hj,j , as desired. In the
remaining case where

�
i πi = 0, the equation turns into

πjhi,j +
�

i�=j

πihi,j =
�

k �=j

hk,jπk ,

yielding that πj = 0 for all j. This contradicts that π is an eigenvector.
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Remarks:

• Irreducible Markov chains with an infinite number of states do not
necessarily have a stationary distribution.

• Depending on the choice of the initial distribution, even an irreducible
Markov chain does not necessarily converge towards its stationary
distribution, see Figure 5.3.

u v

1

1

Figure 5.3: This Markov chain is irreducible, and has the unique stationary dis-
tribution π = (0.5, 0.5). In this particular chain, each state can only be reached
every other step, or in other words, both states have period 2. Therefore, the
initial distribution is attained in every second step, and only q0 = π “converges”
towards the stationary distribution.

Definition 5.14 (Aperiodic Markov Chains). The period of a state j ∈ S is
the largest ξ ∈ N such that

{n ∈ N | p
(n)
j,j > 0} ⊆ {i · ξ | i ∈ N}

A state with period ξ = 1 is called aperiodic, and the Markov chain is aperi-
odic if all its states are.

Remarks:

• One can show that if the Markov chain is irreducible, then all states
have the same period.

• A state j with pj,j > 0 is trivially aperiodic.

• If pj,j = 0, then one can check whether state j is aperiodic by testing,
as illustrated in Figure 5.4, if the following holds: Does j lie on two
directed cycles of lengths k and l (counting the edges in the chain) so
that k and l are relatively prime, i.e., have a greatest common divisor
of 1? Or, using the kth and lth powers of P , are there relatively prime

k and l such that both p
(k)
j,j and p

(l)
j,j > 0?

Definition 5.15 (Ergodic Markov Chains). If a finite Markov chain is irre-
ducible and aperiodic, then it is called ergodic.

Theorem 5.16. If a Markov chain is ergodic it holds that

lim
t→∞

qt = π,

where π is the unique stationary distribution of the chain.
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Figure 5.4: Starting at state v there is a cycle v → u → v using 2 edges, and a
cycle v → w → x → v using 3 edges. Because 2 and 3 are relatively prime, the
state v is aperiodic.

Remarks:

• The theorem holds regardless of the initial distribution.

• The stationary distribution of ergodic Markov chains can thus be ap-
proximated efficiently, namely by successively multiplying a vector
with a matrix instead of computing the powers of a matrix.

5.3 PageRank Algorithm

Google’s PageRank algorithm is based on a Markov chain obtained from a vari-
ant of a random walk.

Remarks:

• Google provides search results that match the user’s search terms.
Under the hood Google maintains a ranking among websites to make
sure “better” or “more important” websites appear early in the search
results. Instead of solving the whole problem at once, this ranking is
first established globally (independent of the search terms), and only
later websites matching the search query are sorted according to some
rank. In this section we focus on the ranking part.

• The first step to ranking websites is to crawl the web graph, i.e., a
directed graph in which the nodes are websites, and an edge (u, v)
indicates that website u contains a hyperlink to website v.

u

v

w x

y

Figure 5.5: An example of a web graph with 5 websites. Website x does not
link to any other website, i.e., x is a sink.

• A näıve approach is to rank the sites by the number of incoming
hyperlinks. In the example from Figure 5.5 this yields the same rank
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for websites w and x. One could, however, argue that the link from
w to x means that x is more important than w.

• Google’s idea is to model a random surfer who follows hyperlinks
in the web graph, i.e., performs a random walk. After sufficiently
many steps, the websites can be ranked by how many times they were
visited. The intuition is that websites are visited more often if they
are linked by many other sites, which should be a good measure of
how important a website is.

• Since the walk is directed, the random surfer can get stuck in sinks
(nodes with no outgoing edges). To fix this issue, a random website is
chosen for the next step whenever the random surfer reaches a sink.

• Let us denote the random surfer matrix describing this random walk
by W .

• Simulating the random walk described by W to find a stationary dis-
tribution is not feasible: There are over 1 billion websites—meaning
that a lot of steps have to be simulated to get a good estimation of the
stationary distribution. Using our knowledge about Markov chains we
can simulate many random walks at once by repeatedly multiplying
some initial distribution q0 with W .

• There is no guarantee that this process converges to a stationary dis-
tribution. We know that this can be fixed by making the Markov
chain ergodic.

• One way to make a Markov chain ergodic is to insert an edge between
every two nodes.

Definition 5.17 (Google Matrix). Let W be a random surfer matrix, and let
α ∈ (0, 1) be a constant. Denote further by R the matrix in which all entries
are 1/n. The following matrix M is called the Google Matrix:

M = α · W + (1 − α) · R .

Remarks:

• The intuition behind R is that in every step, with probability 1 − α,
the random surfer “gets bored” by the current website and surfs to a
new random site.

• While the R-component in M ensures that the Markov chain con-
verges, it also changes the stationary distribution. To ensure the im-
pact is not too large, α should be chosen close to 1. A typical value
for α is 0.85.

• The rate at which the process converges depends on the magnitude of
M ’s second largest eigenvalue. One can show that for M the second
largest eigenvalue is at most α, and that the error decreases by a factor
of α in each step.
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• In the example from Figure 5.5, the page ranks are

Website Rank

x 0.384615

w 0.230769

u 0.153846

v 0.153846

y 0.0769231

• This initial version of the PageRank algorithm worked well at the time
it was invented. However, it can be (and has been) fooled. Consider
the following example.

u v

wx

u v

wx

uu�

u��

v

wx

Figure 5.6: Website u wants to improve its PageRank, which is ≈ 0.23 in the
initial setting on the left. First, all outgoing links to websites that do not link
back are removed. The PageRank improves to ≈ 0.27. In a Sybil attack (right)
the owner of u creates fake websites u� and u�� whose purpose is to exchange
links with u. Moreover, the new websites increase the probability to visit u after
a sink. Now, website u is the highest ranked site in the network with a rank of
≈ 0.41.

• Attacks where a single party pretends to be more than one individual
are called Sybil Attacks.

• It is unknown how exactly Google ranks websites today, and specifi-
cally how the engineers at Google mitigate the effects of attacks.

• A different kind of attack on Google is Google bombing. This attack
relies on the fact that the search terms for which a website v is consid-
ered relevant also take the anchor text of hyperlinks to website v into
account. If, for instance, many websites link to http://www.ethz.ch

using the anchor text “Smartest People Alive”, then a search query
for smart people might end up presenting ETH’s website.

5.4 Simple Random Walks

In this section, all random walks are considered to be simple. This means that
the edges are undirected, and the node for the next step is chosen uniformly at
random among the current node’s neighbors.
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Lemma 5.18. Let G be a graph with m edges. The stationary distribution π
of any random walk on G is

πu =
δ(u)

2m
.

Proof. Let π be as above, and consider some arbitrary node u ∈ V . It holds
that

πu =
�

v ∈N(u)

πv · pv,u =
�

v ∈N(u)

δ(v)

2m
· 1

δ(v)
=

δ(u)

2m
,

i.e., the distribution is stationary. Since the Markov chain underlying the ran-
dom walk is irreducible, it is also unique.

Remarks:

• It follows from Lemma 5.13 that for a random walk, hu,u is 2m/δ(u).

• The cover time cov(v) is the expected number of steps until all nodes
in G were visited at least once.

• One could use the following Markov chain to compute the cover time
of a random walk on the graph G = (V,E). The set of states is
{(v, I) | v ∈ V and I ∈ 2V }, where v denotes the “current state” and
I denotes the visited states. The probabilities p(v,I),(w,I∪{w}) is 0 if
either I = V or {u, v} �∈ E, and 1/δ(v) if {u, v} ∈ E. Then, the cover
time is cov(v) =

�
w∈V h(v,{v}),(w,V ).

Lemma 5.19. Let G = (V, E) be a graph with n nodes and m edges. It holds
that cov(s) < 4m(n − 1) for any starting node s ∈ V .

Proof. Let {u, v} ∈ E be an edge. It holds that

2m

du
= hu,u =

1

du

�

w∈N(u)

(hw,u + 1) ,

and thus it must be true that hu,v < 2m. Next, observe that it is possible to
traverse all nodes in G by using no more than 2n−2 edges, e.g., by traversing a
spanning tree rooted at s. Since hu,v < 2m holds for every edge {u, v} used in
the traversal, it follows that cov(s) < (2n− 2) · 2m = 4m(n− 1), as desired.

Remarks:

• Consider the resistor network obtained from G by replacing every
edge with a 1Ω resistor. Let u and v be two nodes in the resistor
network and apply a current of 1V to them. It can be shown that
cu,v = 2m · R(u, v), where R(u, v) denotes the effective resistance
between u and v.

• Foster’s Theorem states that for every connected graph G = (V, E)
with n nodes, �

(u,v)∈E

R(u, v) = n − 1 ,

i.e., that adding/removing an edge in G reduces/increases the effective
resistance, respectively.
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Chapter Notes

Historic background on the development of Markov chains can be found in [1].
The short version is that in a 1902 paper [9], the theologist Pavel Alekseevich
Nekrasov, in his effort to establish free will on a mathematical basis, (falsely)
postulated that independence of events is necessary for the law of large numbers.
Markov, being an atheist and considering Nekrasov’s reasoning an “abuse of
mathematics”, set out to prove him wrong.

In 1906, Markov published his first findings on chains of pairwise dependent
random variables [7]. This work already includes a variant of Theorem 5.16, thus
disproving Nekrasov’s claim. Markov also studied the notion of irreducibility [8],
proving that for irreducible Markov chains 1 is a single eigenvalue and the
largest by magnitude. Today, Markov’s ideas are widely applied in, e.g., physics,
chemistry, and economics.

Markov chains are the basis for queueing theory, see ??. Another application
in computer science is the PageRank algorithm [10]. The bound on the Google
matrix’ second eigenvalue is from [5]. Sybil attacks were originally studied in the
context of peer to peer systems [3], and PageRank’s sensitivity to such attacks
was investigated in [2].

The connection from random walks to resistor networks is investigated in
depth in [4]. By associating a word with each state, random walks can be used
to generate random text [11]. More than 120 “scientific” papers were generated
using such methods [6] and later withdrawn by the publishers.

This chapter was written in collaboration with Jochen Seidel.
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