
Distributed
    Computing 

HS 2015 Prof. R. Wattenhofer

Distributed Systems Part II
Exercise Sheet 2

Quiz

1 Consensus with Edge Failures

In the lecture we only discussed node failures, but we always assumed that edges (links) never
fail. Let us now study the opposite case: Assume that all nodes work correctly, but up to f
edges may fail.

Analogously to node failures, edges may fail at any point during the execution. We say that
a failed edge does not forward any message anymore, and remains failed until the algorithm
terminates. Assume that an edge always simultaneously fails completely, i.e., no message can be
exchanged over that edge anymore in either direction.

We assume that the network is initially fully connected, i.e., there is an edge between every
pair of nodes. Our goal is to solve consensus in such a way, that all nodes know the decision.

a) What is the smallest f such that consensus might become impossible? (Which edges fail
in the worst-case)

b) What is the largest f such that consensus might still be possible? (Which edges fail in the
best-case)

c) Assume that you have a setup which guarantees you that the nodes always remain con-
nected, but possibly many edges might fail. A very simple algorithm for consensus is the
following: Every node learns the initial value of all nodes, and then decides locally. How
much time might this algorithm require?

Assume that a message takes at most 1 time unit from one node to a direct neighbor.

Basic

2 Deterministic Random Consensus?!

Algorithm 2.15 from the lecture notes solves consensus in the asynchronous time model. It seems
that this algorithm would be faster, if nodes picked a value deterministically instead of randomly
in Line 22. However, a remark in the lecture notes claims that such a deterministic selection of
a value will not work. We did it anyway! (See algorithm below, the only change is on Line 22).

Show that this algorithm does not solve consensus! Start by choosing initial values for all
nodes and show that the algorithm below does not terminate.



Algorithm 1 Randomized Consensus (Ben-Or)

1: vi ∈ {0, 1} / input bit
2: round = 1
3: decided = false

4: while true do

Propose

5: Broadcast myValue(vi, round)
6: Wait until a majority of myValue messages of current round arrived
7: if all received messages contain the same value v then
8: Broadcast propose(v, round)
9: else

10: Broadcast propose(⊥, round)
11: end if

12: if decided then
13: Decide for vi and terminate
14: end if

Follow

15: Wait until a majority of propose messages of current round arrived
16: if all received messages propose the same value v then
17: vi = v
18: decide = true
19: else if there is at least one proposal for v then
20: vi = v
21: else
22: Choose vi = 1
23: end if
24: round = round + 1
25: end while

Advanced

3 Consensus with Bandwidth Limitations

Consensus with no failures, a fully connected network and unlimited bandwidth is trivial: First,
every node sends its value to all other nodes. Second, every node waits for all values, and then
decides.

So far we only studied failures. However, in practice bandwidth limitations are often of great
importance as well. To simplify the problem, we assume no node crashes and no edge crashes in
this exercise. Additionally, you can assume that all nodes have unique id’s from 1 to n.

We assume that all messages are transmitted reliably, and arrive exactly after one time unit.
The bandwidth limitation is as follows: Assume that every node can only send one one message
(containing one value) to one neighbor per time unit. E.g., at time 0, u1 can send a message to
u2, at time 1 a message to u3, and so on. However, u1 cannot send a message to both u2 and u3

at the same time! Also, a node cannot send multiple values in the same message.

a) Develop an algorithm that solves consensus in this scenario. Optimize your algorithm for
runtime!

b) What is the runtime of your algorithm?

2



c) Assume that you not only need to solve consensus, but the more challenging task that
every node must learn the input values of all nodes. Show that this problem requires at
least n− 1 time units!

3


