
Distributed
 Computing

HS 2015 Prof. R. Wattenhofer

Distributed Systems Part II
Solution to Exercise Sheet 6

1 Is delayed Bitcoin strongly consistent?

a) It is true that naturally occurring forks of length l decrease exponentially with l, however
this covers naturally occuring blockchain forks only. It is possible for an attacker with a
majority of the computational resources to go back to any point in time and compute an al-
ternative blockchain. Eventually the attacker will overtake the currently active blockchain,
thus replacing all changes since the block the attacker based its fork on. Delayed Bitcoin
is therefore not strongly consistent, even if we were to transactions to be reverted/replaced
with a negligible probability. In fact in 2014 one mining pool, Ghash.io, managed for a
short period to maintain a share of computational resources larger than 50%, potentially
subverting the blockchain, but not long enough to do any real damage.

b) The delay in this case prevents coins from completely vanishing in the case of a fork. Newly
mined coins only exist in the fork containing the block that created them. In case of a
blockchain fork the coins would disappear and transactions spending them would become
invalid as well. It would therefore be possible to taint any number of transactions that are
valid in one fork and not valid in another. Waiting for maturation ensures that it is very
improbable that the coins will later disappear.

2 Doublespending

T

T ′

Figure 1: Random Bitcoin network

a) Figure 1 depicts the final situation. 7 nodes have seen T first and 5 nodes have seen T ′ first.
The 5 nodes at the edge cut between the green and the red cut have seen both transactions.

b) Each node has 1/12 of all computational resources, hence the probability of T being con-
firmed is 7/12 ≈ 58%, while T ′ has a 5/12 ≈ 42% chance of being confirmed. The higher
connectivity from the first node seeing T resulted in the transaction spreading faster, in-
creasing the probability of winning the doublespend.

c) The first node that sees T ′ now has 20% of the computational resources. T ′ therefore has
a probability to win of 2/10 + 1/11 · 8/10 · 4 ≈ 49%. The distribution of computational
resources in the network therefore matters. The goal of an attacker is to spread the transac-
tion that she wants to have confirmed to a majority of the computational resources, which
may not be the same as spreading it to a majority of nodes.

3 Partially spending outputs

Fully spending an output simplifies the bookkeeping considerably as an output can only be in
two possible states: spent or unspent. This means that it is easy to detect conflicts, because
two transactions spending the same output are conflicts. If we were to partially spend outputs,
allowing multiple transactions to spend the same output until the coins on that output were
completely spent, then the conflicts become more complicated. Assume an output with value 1
bitcoin. When partially spending outputs we could create 3 transactions claiming 0.5 bitcoins
from that output, two of them are valid and the third will be invalid, but there are 3 possible
combinations that are valid. So the simple answer is: it makes conflicts evident and reduces
combinations for conflicts.

The number of possible combinations increases rapidly with the number of transactions and it
becomes easy to build partition the network into very small partitions. An attacker could observe
in which partition its victim it can construct followup transaction so that the transaction destined
for the victim is valid only in the victims partition and nowhere else. This allows the attacker to
maximize the possibility of its doublespend to be successful by limiting the spread of the victim’s
transacton and maximizing the spread of the attacker’s transaction.

4 Replacement using sequence numbers

a) The original implementation of sequence numbers would broadcast a transaction before
its timelock expires, and nodes would accept them into their mempool, but not mine
them. The transaction could then be replaced by broadcasting a new version with a higher
sequence number. This implementation had the problem that it is trivial for an attacker
to perform a denial of service attack, by creating a rapid succession of transaction updates,
which would then e forwarded, amplifying the attack.

b) Since the sequence number is attached to the input we may end up in a situation in which
two transactions spend the same inputs, but one has a higher sequence number on the first
input and the other has a higher sequence number on the second input. In this case it is
not clear which transaction has precendence.

2

