
4.3 Strong Consistency

• Interface that describes the system behavior (abstract away 

implementation details)

• If clients read/write data, they expect the behavior to be the same as for 

a single storage cell.



Let‘s Formalize these Ideas

• We have memory that supports 3 types of operations:

– write(u := v): write value v to the memory location at address u

– read(u): Read value stored at address u and return it

– snapshot(): return a map that contains all address-value pairs

• Each operation has a start-time tS and return-time tR (time it returns to 

the invoking client). The duration is given by tR – tS.

start-time

A X Y B

read(u)

write(u := 3)

return-time

replica



Motivation

read(u)

?

write(u:=1)

write(u:=2)

write(u:=3)

write(u:=4)

write(u:=5)

write(u:=6)

write(u:=7)

time



Executions

• We look at executions E that define 

the (partial) order in which 

processes invoke operations.

• Real-time partial order of an 

execution <r:

– p <r q means that duration of 

operation p occurs entirely before 

duration of q (i.e., p returns before 

the invocation of q in real time).

• Client partial order <c :

– p <c q means p and q occur at the 

same client, and that p returns 

before q is invoked.

A B

Real time partial 

order <r

A B

Client partial 

order <c



Strong Consistency: Linearizability

• A replicated system is called linearizable if it behaves exactly as a single-

site (unreplicated) system.

Definition

Execution E is linearizable if there exists a sequence H such that:

1) H contains exactly the same operations as E, each paired 

with the return value received in E

2) The total order of operations in H is compatible with the 

real-time partial order <r

3) H is a legal history of the data type that is replicated



Example: Linearizable Execution

A X Y B

read(u1)

write(u2 := 7)

snapshot()

5

(u0:0, u1:5, 

u2:7, u3:0)

write(u1 := 5)

read(u2)

0

write(u3 := 2)

Valid sequence H:

1.) write(u1 := 5)

2.) read(u1) → 5

3.) read(u2) → 0

4.) write(u2 := 7)

5.) snapshot() → 

(u0: 0, u1: 5, u2:7, u3:0)

6.) write(u3 := 2)

For this example, this is the 

only valid H. In general there 

might be several sequences 

H that fullfil all required 

properties.

Real time partial order <r



Strong Consistency: Sequential Consistency

• Orders at different locations are disregarded if it cannot be determined by 

any observer within the system.

• I.e., a system provides sequential consistency if every node of the system 

sees the (write) operations on the same memory address in the same 

order, although the order may be different from the order as defined by 

real time (as seen by a hypothetical external observer or global clock).

Definition

Execution E is sequentially consistent if there exists a sequence H such that:

1) H contains exactly the same operations as E, each paired with the 

return value received in E

2) The total order of operations in H is compatible with the client partial 

order <c

3) H is a legal history of the data type that is replicated



Example: Sequentially Consistent

A X Y B

read(u1)

snapshot()

5

(u0:0, u1:5, 

u2:7, u3:0)

write(u1 := 5)

read(u2)

0

write(u3 := 2)

Real-time partial order requires write(3,2) 

to be before snapshot(), which contradicts 

the view in snapshot()!

write(u2 := 7)

Client partial order <c

Valid sequence H:

1.) write(u1 := 5)

2.) read(u1) → 5

3.) read(u2) → 0

4.) write(u2 := 7)

5.) snapshot() → 

(u0:0, u1:5, u2:7, u3:0)

6.) write(u3 := 2)



Is Every Execution Sequentially Consistent?

A X Y B

write(u2 := 7)

snapshotu0,u1()

(u0:8, u1:0)

write(u1 := 5)

snapshotu2,u3()

(u2:0, u3:2)

write(u3 := 2)

write(u0 := 8)

write(u2 := 7) write(u1 := 5)

write(u0 := 8) write(u3 := 2)

Circular dependencies! 

I.e., there is no valid total order and thus above 

execution is not sequentially consistent



Sequential Consistency does not Compose

A X Y B

write(u2 := 7)

snapshotu0,u1()

(u0:8, u1:0)

write(u1 := 5)

snapshotu2,u3()

(u2:0, u3:2)

write(u3 := 2)

write(u0 := 8)

• If we only look at data items 0 

and 1, operations are 

sequentially consistent

• If we only look at data items 2 

and 3, operation are also 

sequentially consistent

• But, as we have seen before, 

the combination is not 

sequentially consistent

Sequential consistency does not compose!

(this is in contrast to linearizability)



ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

That’s all, folks!
Questions & Comments?


