Chapter 2
/PR PLICATIONS

c.m Computer Networks
omput S50
Group Winter 2002 / 2003

Overview

o

 Learn specific application layer protocols
— http, ftp, smtp, pop, dns, etc.

* How to program network applications?

socket API for Java and Active Oberon

+ Goals

— learn about protocols by examining popular
application-level protocols

— Conceptual and implementation aspects of network
application protocols

— client-server paradigm
— service models

15

&Dj Distributed Computing Group Computer Networks R. Wattenhofer 2/2

Applications vs. Application-Layer Protocols

o

* Application: communicating,

distributed process

— running in network hosts in neTwork
“ ” am_lmk
user space physical

— exchange messages to :
implement application
- e.g., email, ftp, web
+ Application-layer protocol -m TN~
— one part of application

— define messages
exchanged by applications

applicatio
Transport

and actions taken }};:s;aif - ranspor

; ; networ eon o, | datalink

— use communication Fdta CE CE physical
services provided by

transport layer protocols
(TCP, UDP)

D

Dj Distributed Computing Group Computer Networks R. Wattenhofer 2/3

Network applications: some jargon

o

* Process: program running + User agent: software process,
within a host interfacing with user “above”
— within same host, two and network “below”
processes communicate — implements application-
using interprocess level protocol
communication (defined by — Examples

Operating System).

— processes running on
different hosts
communicate with an
application-layer protocol
through messages

* Web: browser
« E-mail: mail reader

+ streaming audio/video:
media player

15

kg Distributed Computing Group Computer Networks ~R. Wattenhofer 2/4

Client-server paradigm

o 0

Typical network app has two

parts: Client and Server
e o
Client physical

« initiates contact with server ¢ reques
(“client speaks first”) @'ﬂ/

» typically requests service from server
* Web: client implemented in browser
* email: client in mail reader

Server

» provides requested service to client

L]
N
application

transport
network

* e.g., Web server sends requested ﬁﬁf_
Web page, mail server delivers e-mail 5

ah

\\\IQ Distributed Computing Group Computer Networks ~R. Wattenhofer 2/5

API: Application Programming Interface

o

+ Defines interface between » How does a process identify
application and transport the other process with which it
layers wants to communicate?

+ socket: Internet API — IP address of host running

* two processes communicate other process
by sending data into socket, — “port number”: allows
reading data out of socket receiving host to determine
to which local process the
message should be
delivered

— lots more on this later...

7D

\\\IQ Distributed Computing Group Computer Networks ~R. Wattenhofer 2/6

What transport service does an application need?

o]

Data loss Bandwidth

* some apps (e.g. audio) can + some apps (e.g. multimedia)
tolerate some loss require minimum amount of

+ other apps (e.g. file transfer) bandwidth to be “effective”
require 100% reliable data » other apps (“elastic apps”)
transfer make use of whatever

bandwidth they get
Timing

* some apps (e.g. Internet
telephony, interactive
games) require low delay to
be “effective”

D\

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/7

Transport service requirements of common applications

o

Application Dataloss Bandwidth Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents loss-tolerant elastic no

real-time audio/video loss-tolerant audio: 5Kb-1Mb yes, 100’s msec
video:10Kb-5Mb
stored audio/video loss-tolerant same as above Yyes, few secs
interactive games loss-tolerant few Kbps up yes, 100’s msec
financial apps no loss elastic yes and no

Vi

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/8

Internet transport protocols services

o

(N
\J/

TCP service

* connection-oriented: setup
required between client, server

* reliable transport between
sending and receiving process

» flow control: sender won't
overwhelm receiver

« congestion control: throttle
sender when network
overloaded

* does not provide timing,
minimum bandwidth
guarantees

UDP service

unreliable data transfer
between sending and
receiving process

does not provide connection
setup, reliability, flow control,
congestion control, timing, or
bandwidth guarantee

Why bother? Why is there a
UDP service at all?!?

Distributed Computing Group Computer Networks R. Wattenhofer 2/9

Internet apps: application, transport protocols

Application
Application layer protocol

Underlying
transport protocol

e-mail smtp [RFC 821] TCP

remote terminal access telnet [RFC 854] TCP

Web http [RFC 2068] TCP

file transfer ftp [RFC 959] TCP

streaming multimedia proprietary TCP or UDP
(e.g. Quicktime)
remote file server NSF TCP or UDP
Internet telephony proprietary typically UDP
(e.g. Vocaltec)
R
R‘D—/‘ Distributed Computing Group Computer Networks R. Wattenhofer 2/10

o

The Web: The http protocol

http: hypertext transfer protocol
+ Web’s application layer
protocol
» client/server model
— client: browser that
requests, receives, and
“displays” Web objects
— server: Web server sends
objects in response to

D

U

9

PC running
Explorer

Server

running
requests NCSA Web
« http 1.0: RFC 1945 server
+ http 1.1: RFC 2616
Mac running
Navigator
Distributed Computing Group Computer Networks R. Wattenhofer 2/11

Igny

L/

More on the http protocol

+ client initiates TCP connection
(creates socket) to server, port
80

» server accepts TCP connection
from client

+ http messages (application-layer
protocol messages) exchanged
between browser (http client)
and Web server (http server)

+ TCP connection closed

http is “stateless”

* server maintains no
information about past
client requests

aside
Protocols that maintain

“state” are complex!

past history (state) must be
maintained

if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

Distributed Computing Group Computer Networks R. Wattenhofer 2/12

Example for http

Suppose user enters URL www.inf.ethz.ch/education/index.html
(assume that web page contains text, references to 10 jpeg images)

1. http client initiates TCP
connection to http server
(process) at
www.inf.ethz.ch. Port 80 is
default for http server.

2. http server at host
www.inf.ethz.ch waiting for
TCP connection at port 80,
“accepts” connection,
notifes client

3. http client sends http
(containing URL) into TCP request message, forms
connection socket \ response message
containing requested
/ directory education), sends
time message into socket
(D

request message 4. http server receives
object (index.html in
&j Distributed Computing Group Computer Networks R. Wattenhofer 2/13

Example for http (continued)

o

5. http server closes TCP

6. http client receives connection

response message
containing html file,
displays html. Parsing
html file, finds 10
referenced jpeg pictures

/

Then...
Steps 1-6 repeated for
each of the 10 jpeg
objects

time

7D

&j Distributed Computing Group Computer Networks R. Wattenhofer

2/14

Non-persistent vs. persistent connections

o

Non-persistent Persistent
* http/1.0 + default for http/1.1
* server parses request, + on same TCP connection:

responds, closes TCP server, parses request,

connection responds, parses new
* 2 RTTs (round-trip-time) request,...
to fetch object + client sends requests for all

referenced objects as soon
as it receives base HTML

fewer RTTs, less slow start

— TCP connection
— object request/transfer

« each transfer suffers from
TCP’s initially slow sending
rate

* many browsers open multiple
parallel connections

ah

/ Distributed Computing Group Computer Networks R. Wattenhofer 2/15

v,

http message format: request

o

+ two types of hitp messages: request, response
» http request message: ASCIl (human-readable format)

request line
(GET, POST,

HEAD commands) \
GET /somedir/page.html HTTP/1.1

Connection: close
User-agent: Mozilla/4.0
Accept-language: de

header
lines

Carriage return

and line feed _—"

indicate end
of message

(extra carriage return, line feed)

7D

/ Distributed Computing Group Computer Networks R. Wattenhofer

S,

2/16

http request message: the general format http message format: response

o 0 o

status line
sp [wersion | cr | If | reduest (protocol
S if |] L status code = HTTP/1.1 200 OK
status phrase) Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
header
o) heﬁ:; Last-Modified: Mon, 22 Jun 1998 ..
Content-Length: 6821
Content-Type: text/html
data, e.g., - data data data data data ...
: requested
By (B html file
K-u Distributed Computing Group Computer Networks R. Wattenhofer 2117 K-u Distributed Computing Group Computer Networks R. Wattenhofer 2/18
http response status codes Be your own http client
O 0 O
First line of server—client response message. 1. Telnet to your favorite Web server: + Opens TCP connection to

A few sample codes: telnet www.sbb.ch 80 port 80 (default http server
port) at www.sbb.ch.

200 OK
— request succeeded, requested object later in this message 2. Type in a GET htp request: « Anything typed in sent to
301 Moved Permanently _ - o GET /index.htm HTTP/1.0 port 80 at www.sbb.ch
— requested object moved, new location specified later in this » By typing this (hit carriage
message (Location:) return twice), you send this
400 Bad Request 3. Check out response message minimal (but complete)

sent by http server...
— request message not understood by server y http GET request to http server

404 Not Found

— requested document not found on this server Could you check the SBB timetable from
505 HTTP Version Not Supported within your own application?!?

o

Distributed Computing Group Computer Networks R. Wattenhofer 2/19 Distributed Computing Group Computer Networks R. Wattenhofer 2/20

R
U

User-server interaction: authentication

o

Cookies: keeping “state”

o

j Distributed Computing Group

» Authentication: control access client server * server-generated #, server- client server
to server content remembered #, later used for
L . \] usual http request msg — authentication T usual http request msg
* authorization credentials: —) —
typically name and password 401: authorization req. — remembering user usual http response +
. “ WWW-authenticate: preferences “ Set-cookie: #
+ stateless: client must present . .
o — remembering previous
authorization in each request choices
— authorization: header line in — usual http reguest msg _ (...privacy?) — usual http reguest msg cookie-
+ Authorization: <cred> |_, ---privacy Cookie: # L 1€
each request + server sends “cookie” to client specific
— if no authorization: header, ,_J usual http response msg (in response msg ‘__J usual http response msg (action
server refuses access, Set - cooki e: 1678453
sends — usual http request msg * client ptresents cookie in later — usual http request msg cookie-
. . + Authorization: <cred> |, reques s Cookie: # — o
WAW aut hent i cat e: . Cooki e: 1678453 specific
J usual http response msg (time J usual http response msg action
header line in response
@A) 1D
&Q Distributed Computing Group Computer Networks R. Wattenhofer 2/21 &Q Distributed Computing Group Computer Networks R. Wattenhofer 2/22
Conditional GET: client-side caching Web Caches (a.k.a. proxy server)
o] o]
* Goal: don’t send object if client server . Goal: satisfy client N
cllen_t has up-to-date cached 1 http request ms request without involving origin
version quest msg - server
If-modified-since: — object origin server
Client: itv date of cached <date> not User sets browser: Web proxy
ient: specify date of cache " modified accesses via web cache server
copy in http request http response .
I f-nodified-since: T HTTP/1.0 + client sends all http
<dat e> 304 Not Modified requests to web cache
+ Server:response containS N0 - - & 0 - 0 C C m e e e e e e - = = — object in web cache: \\Q@Q\) <G
gbjtect if cached copy is up-to- __| http request msg web cache returns D < =
ate. G i o object ®
HTTP/ 1.0 304 Not If-modified-since: object J @
Deo <date> - — else web cache lient
Modi fi ed modified . clien .
o R requests object from origin
. HTTE/;e?pZ%nOS%K origin server, then server
<déta> returns object to client
(1D 1IN
k) Distributed Computing Group Computer Networks ~R. Wattenhofer 2/23 k Computer Networks ~R. Wattenhofer 2/24

Why Web Caching?

+ Assumption: cache is “close” @ o
to client (e.g., in same @ orgin
network) @\ : servers

. public

» Smaller response time: cache Internet _@

“closer” to client

» Decrease traffic to distant

ftp: The file transfer protocol

o

« transfer file to/from remote host

+ client/server model
— client: side that initiates transfer (either to/from remote)
— server: remote host

« ftp: RFC 959

« ftp server: port 21
Servers 1.5 Mbps P P
+ Link out of institutional/local access link
ISP network is often a institutional
FTP file transfer
bottleneck network 100 Mbps LAN - user
! Ot 4 interface
,@ user
at host local file remote file
institutional system
cache
M D
‘\\.Q Distributed Computing Group Computer Networks R. Wattenhofer 2/25 ‘\\.Q Distributed Computing Group Computer Networks R. Wattenhofer 2/26
ftp: separate control and data connections ftp commands and responses
O O O
+ ftp client contacts ftp server at Sample commands Sample return codes
port 21, specifying TCP as + sent as ASCII text over control + status code and phrase (as in
transport protocol channel http)
+ two parallel TCP connections e USER user name e 331 Username OK
Opened TCP control connection Y
port 21 « PASS password password required
— control: edxchange « LI ST returns list of files in + 125 data connection
commands, responses ' current directory alr ea_dy open; transfer
between client, server. ETP TCP data connection]) starting
“out of band control” port 20 FTP « RETR fil enane retrieves
. client server (gets) file * 425 Can’t open data
— data: file data to/from _ connecti on
server + STOR fil ename stores (puts) o)
. file onto remote host © 452 Error witing file
+ ftp server maintains “state”:
current directory, earlier
authentication
\. / Distributed Computing Group Computer Networks R. Wattenhofer 2127 \. / Distributed Computing Group Computer Networks R. Wattenhofer 2/28

Electronic Mail Electronic Mail: mail servers

o 0 o

Three major components

* user agents

* mail servers

+ simple mail transfer protocol: smtp

User Agent

+ ak.a. “mail reader”

* composing, editing, reading mail
messages

» Examples: Outlook, Netscape
Messenger, elm, Eudora

servers to send email SMTP
messages

ﬁ + mailbox contains incoming

messages (yet to be read) for

‘ user

N * message queue of outgoing (to

SMTQ be sent) mail messages SMTP
‘ » smtp protocol between mail

SMTP

SMTP

“client”: sending mail server
— “server”: receiving mail

* outgoing, incoming messages
stored on server

[outgoing
message queue

O user mailbox

. server
[outgoing
message queue

O user mailbox * Why not sending directly?

\./ Distributed Computing Group Computer Networks R. Wattenhofer 2/29 \./ Distributed Computing Group Computer Networks R. Wattenhofer 2/30

Electronic Mail: SMTP Sample smtp interaction
O 0 O
S: 220 hanburger. edu
+ uses TCP to reliably transfer email message from C HELO crepes. fr
client to server, on port 25 S: 250 Hello cr epes. fr, pleased to neet you
. C MAIL FROM <alice@repes.fr>
+ direct transfer: sending server to receiving server S: 250 alice@repes.fr... Sender ok
+ three phases of transfer C. RCPT TO <bob@anbur ger. edu>
— handshake (greeting) 2 2Di$Abob@1anburger. edu ... Recipient ok
— transfer of messages S: 354 Enter mail, end with "." on a line by itself
— closure C. Do you like ketchup?
« command/response interaction g How about pi ckl es?
— commands: ASCII text S: 250 Message accepted for delivery
— response: status code and phrase C QUT
. SMTP: RFC 821 S: 221 hanburger. edu cl osi ng connection

You can be your own smtp client: telnet to a mail server you know
(tel net mail.inf.ethz.ch 25)and play with the protocol...

K‘./ Distributed Computing Group Computer Networks R. Wattenhofer 2/31 K‘./ Distributed Computing Group Computer Networks R. Wattenhofer 2/32

smtp: more details

o

Mail message format

o 0

encoded data —

D\

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/35

+ smtp uses persistent Comparison with http * smtp: protocol for exchanging email msgs
connections « http: pull + RFC 82?: standard for text message format:
-+ smtp requires message « email: push * headerlines, e.g.,
(header & body) to be in 7-bit « both have ASCII - To:
ASCII command/response interaction B From.] blank
. certai_n chgracter strings not and status codes - iUth?Ct-. " ot Nine
E):eRTI]:Itt(e:dRLIrIL msr?éﬁgs sed to » http: each object encapsulated - C:;&?:ﬁdsfﬁ-i:;eapg “i:tﬁe
deterr.nine th,ewer:d olf au in its own response msg (1.0), header of a letter; whereas smtp
m by the server or by use of content-length commands are like the address
essage by the server). field (1.1) on the envelope
* Thus IrInS.g haslttrc]) bienc%cled + smtp: multiple objects sent in * body
(usutady |n.tc§ T)II er base-o4 or multipart msg (as we will see — the “message”
quoted printable) on the next slides) — ASCII characters only
M D
‘\\.Q Distributed Computing Group Computer Networks R. Wattenhofer 2/33 ‘\\.Q Distributed Computing Group Computer Networks R. Wattenhofer 2/34
Message format: multimedia extensions MIME types
O O O
- MIME: multimedia mail extension, RFC 2045, 2056 Content - Type: type/subtype; paraneters
+ additional lines in message header declare MIME content type Text Vid
ex ideo
* example subtypes: pl ai n, * example subtypes: npeg,
- enriched, htm qui ckti me
. From alice@repes.fr
MIME version To: bob@anbur ger . edu
method used \ Subj ect: Picture of yumy crepe. Image Application
"M ME-Version: 1.0 . ;
. I : f .
to encode data ————+ Cont ent - Tr ansf er - Encodi ng: base64 example subtypes: j peg, g other datr; tgat ml(stt k;)ef
. . >Cont ent - Type: i nmage/j peg E)rpcesse " y reader beiore
multimedia data Audio viewable
type, subtype, 'base64 encoded data « example subtypes: basi ¢ (8-bit example subtypes: mswor d,
parameter declaration | . L.) octet-stream
mu-law encoded), 32kadpcm
...... base64 encoded data

(32 kbps coding)

Vi

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/36

MIME Multipart Type

From alice@repes.fr

To: bob@anbur ger. edu

Subj ect: Picture of yumy crepe.

M ME- Version: 1.0

Cont ent - Type: nmultipart/m xed; boundary=98766789

--98766789 —
Cont ent - Tr ansf er - Encodi ng: quot ed- pri nt abl e
Content - Type: text/plain

Dear Bob,

Pl ease find a picture of a crepe.

--98766789 —
Cont ent - Tr ansf er - Encodi ng: base64

Cont ent - Type: inage/jpeg

--98766789- -
@A)
‘\\-u Distributed Computing Group Computer Networks R. Wattenhofer 2/37

Mail access protocols

o

+ SMTP: delivery/storage to receiver’s server
» Mail access protocol: retrieval from server
— POP: Post Office Protocol [RFC 1939]
+ authorization (agent <-->server) and download
— IMAP: Internet Mail Access Protocol [RFC 2060]
» more features (more complex)
* manipulation of stored messages on server

— HTTP: Hotmail, Yahoo! Mail, etc.
SMTP g SMTP g POP3or gllly &%
IMAP P

sender’s mail receiver’s mail
server server
\./ Distributed Computing Group Computer Networks R. Wattenhofer 2/38

POP3 protocol

E +OK POP3 server ready
Authorization phase — |G user alice
. S +K
» client commands: C pass hungry
— user: declare username S: +OK user successfully |ogged on
— pass: password :C li st
* server responses S 1 498
- +OK S 2 912
- -ERR S
Transaction phase C retr 1
. T ———| S <message 1 contents>
» client commands s:
— list: list message numbers C dele 1
— retr: retrieve message by C retr 2
number S: <nmessage 1 contents>
— dele: delete S
~ quit C de! e 2
C quit
/1‘\ S. +OK POP3 server signing off

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/39

DNS: Domain Name System

o

People have many identifiers Domain Name System
* passport number, AHV * distributed database
number, student number, implemented in hierarchy of

name, etc. many name servers

* application-layer protocol host,
routers, name servers to
communicate to resolve names
(name/address translation)

— note: is a core Internet
function, but only
implemented as application-
layer protocol

— complexity at network’s
“‘edge”

Internet hosts, routers

+ [P address (129.132.130.152);
used for addressing datagrams

* Name (photek.ethz.ch);
used by humans

* We need a map from names to
IP addresses (and vice versa?)

Vi

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/40

DNS name servers

o

Why not centralize DNS?

...it does not scale!

local name servers
— each ISP, company has
local (default) name server

— host DNS query first goes to
local name server

single point of failure

traffic volume

distant centralized database
maintenance

authoritative name server
— for a host: stores that host’s
IP address, name
— can perform name/address
translation for that host’s
name

no server has all name-to-IP
address mappings

Distributed Computing Group Computer Networks R. Wattenhofer 2/41

DNS: Root name servers

o

» contacted by local name server that can not resolve name
* root name server
— contacts authoritative name server if name mapping not known
gets mapping
returns mapping to local name server
currently 13 root name servers worldwide

a NSI Herndon, VA

c PSinet Herndon, VA

d U Maryland College Park, MD
g DISA Vienna, VA
h ARL Aberdeen, MD

NS (TBD) Hermw

k RIPE London
i NORDUnet Stockholm

m WIDE Tokyo
e NASA Mt View, CA

f Internet Software C. Palo Al
CA

b USC-ISI Marina del Rey, CA
| ICANN Marina del Rey, CA

Distributed Computing Group Computer Networks R. Wattenhofer 2/42

8
\

Simple DNS example

. contact local DNS server,
. dns.ethz.ch contacts root name

. root name server contacts

i @

t1
local name server

host photek.ethz.ch wants IP
address of gaia.cs.umass.edu

dns.ethz.ch

server, if necessary

e authoritative
authoritative name server, dns.ethz.ch name server
dns.umass.edu, if necessary ’ ’ dns.umass.edu

] 5 . .

requesting host

gaia.cs.umass.edu
photek.ethz.ch

Distributed Computing Group Computer Networks R. Wattenhofer 2/43

DNS extended example

o

root name server

AN\
g B

tl

[4
local name server intermediate name server
dns.ethz.ch dns. rrass.edu
4 5

Root name server:

* may not know
authoritative name server

* may know intermediate
name server: who to
contact to find
authoritative name server

1 8

2

requesting host
photek.ethz.ch

authoritative name server
dns.cs.umass.edu

gaia.cs.umass.edu
Distributed Computing Group Computer Networks R. Wattenhofer 2/44

DNS lterated queries

© o
root name server
. ay
Recursive query
* puts burden of name iterated aue
resolution on contacted 24/ ! query
name server 3
* heavy load? @ 4
7 @
Iterated query tl

. tacted i local name server intermediate name server
contacted server replies dns.ethz.ch dns.umass.edu

with name of server to 5 11g

contact 1)
* “I'don’t know this name,

but ask this server” authoritative name server

dns.cs.umass.edu

requesting host

DNS: Caching and updating records

+ once (any) name server learns mapping, it caches mapping
— cache entries timeout (disappear) after some time

+ update/notify mechanisms under design by IETF
— RFC 2136
— http://www.ietf.org/html.charters/dnsind-charter.html

photek.ethz.ch
25 aia.cs.umass.edu 25
(1N ° (1N
&‘ j Distributed Computing Group Computer Networks R. Wattenhofer 2/45 &j Distributed Computing Group Computer Networks R. Wattenhofer 2/46
DNS resource records Example of DNS lookup
O O O

DNS: distributed database storing resource records (RR)

RR format: (name, ttl, class, type, value)

* Type=A + Type=CNAME
— name is hostname — nane is alias name for some
— val ue is IP address “canonical” (the real) name
www. i bm com is really
+ Type=NS server east . backup2. i bm com

— name is domain (e.g. foo.com)
— val ue is IP address of

authoritative name server for —
this domain Type=MX

— val ue is canonical name

— val ue is name of mail server
associated with nane

T8 R

kj Distributed Computing Group Computer Networks ~R. Wattenhofer 2/47

host -v dcg. ethz.ch

Trying "dcg. ethz.ch"
- >>HEADER<<- opcode: QUERY, status: NOERROR, id: 27554
flags: gr aa rd ra; QUERY: 1, ANSVER 1, AUTHORITY: 3,
ADDI TI ONAL: 3

QUESTI ON SECTI ON:
;dcg. et hz. ch. I'N ANY

ANSVER SECTI ON:
dcg. ethz. ch. 86400 I'N CNAME dcg.inf.ethz.ch.

;; AUTHORI TY SECTI ON:

et hz. ch. 3600000 IN NS dnsl. et hz. ch.
et hz. ch. 3600000 I N NS dns2. et hz. ch.
et hz. ch. 3600000 I N NS dns3. et hz. ch.
ADDI TI ONAL SECTI ON:
dnsl. ethz.ch. 86400 I'N A 129.132.98. 12
dns2. et hz. ch. 86400 I'N A 129. 132. 250. 220
dns3. et hz. ch. 86400 IN A 129. 132. 250. 2
(1N
k j Distributed Computing Group Computer Networks R. Wattenhofer 2/48

DNS protocol, messages

o

DNS protocol
query and reply messages, both with same message format

msg header

identification: 16 bit
number for query, reply to
query uses same number

flags:

— query or reply

— recursion desired

— recursion available
— reply is authoritative

(N
v

identification flags

number of questions number of answer RRs 12 bytes

number of autharity RRs [number of additional RRs

questions
(variable number of questions)

answers
(variable number of resource records)

authority
{variable number of resource records)

additional information
(variable number of resource records)

Distributed Computing Group Computer Networks R. Wattenhofer 2/49

DNS protocol, messages

o

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

identification flags
murmber of answer RRs

number of questions

number of authority RRe | number of additional RRs

™ questions
{variable number of questions)
answers
{variable number of resource reconds)
authority
™ {variable number of resource records)

additional information

> {variable number of resource records)

additional “helpful” _—"]

info that may be used

15

j Distributed Computing Group Computer Networks R. Wattenhofer

2/50

Socket programming

o

Goal

» Learn building client/server applications that communicate using
sockets, the standard application programming interface

Socket API

* introduced in BSD4.1 UNIX,

1981

+ explicitly created, used,
released by applications

+ client/server paradigm

» two types of transport service

via socket API
— unreliable datagram

— reliable, byte stream-
oriented

(N
D

— socket

a host-local, application-
created/owned,
OS-controlled interface (a
“door”) into which
application process can
both send and
receive messages to/from
another (remote or
local) application process

Distributed Computing Group Computer Networks R. Wattenhofer 2/51

Socket programming with TCP

Socket

* adoor between application process and end-end-transport

protocol (UDP or TCP)
TCP service

+ reliable transfer of bytes from one process to another

controlled by Al e ‘) controlled by
appIicationI process process I application
developer developer
controlled by | |TCP with controlled by
operating buffers, Internet operating
system | lvariables variables| | system
host or host or
server server

15

j Distributed Computing Group Computer Networks R. Wattenhofer

2/52

Socket programming with TCP

Client must contact server .

» server process must first be
running already

* server must have created
socket (“door”) that
welcomes client’s contact

Client contacts server by

» creating client-local TCP
socket

» specifying IP address and
port number of server
process

When client creates socket: client
TCP establishes connection to
server TCP
When contacted by client, server
TCP creates new socket for
server process to communicate
with client

— allows server to talk with

multiple clients

application viewpoint

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

Distributed Computing Group Computer Networks R. Wattenhofer 2/53

Socket programming with TCP (Java)

Example client-server appliation
+ client reads line from standard
input (i nFromJser stream),

sends to server via socket
(out ToSer ver stream)

» server reads line from socket

+ server converts line to
uppercase, sends back to
client

» client reads and prints

modified line from socket
(i nFronter ver stream)

keyboard monitor

inFromUser

Client
process

Input stream:
sequence of byt
into process

l

S

out of|process \

output
stream

input
stream

outToServer
inFromServer

client TCP
socket

to network from'network

Distributed Computing Group Computer Networks R. Wattenhofer 2/54

s
LY

Client/server socket interaction with TCP (Java)

o

Server (running on hostid)

create socket,
port=x, for
incoming request:
welcomeSocket =
ServerSocket()
s

wait for incoming <= = = = = —

connectionSocket =
welcomeSocket.accept()
write reply to

close 1
connectionSocket

Client

create socket,

connection request connection setup connect to hostid, port=x

clientSocket =
Socket()

l send request using
read request from / clientSocket
connectionSocket ‘
connectionSocket \ read reply from

clientSocket

close l
clientSocket

Distributed Computing Group Computer Networks R. Wattenhofer 2/55

Example: Java client (TCP)

o e}

import java.io.*;
import java.net.*;

class TCPClient {
public static void main(String argv[]) throws Exception
{
String sentence;
String modifiedSentence;

Create]

input stream BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));
Create]

client socket, — Socket clientSocket = new Socket("hostname", 6789);
connect to server |
Create}— DataOutputStream outToServer =

output stream new DataOutputStream(clientSocket.getOutputStream());

attached to socket]

Distributed Computing Group Computer Networks R. Wattenhofer 2/56

Example: Java client (TCP), continued

(e} 0
Create BufferedReader inFromServer =
input stream new BufferedReader(new
attached to socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

Send line

to servegl_' outToServer.writeBytes(sentence + '\n');

Read Iine]—» modifiedSentence = inFromServer.readLine();

from server
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}
D
‘\\-u Distributed Computing Group Computer Networks ~R. Wattenhofer 2/57

Example: Java server (TCP)

o e}

import java.io.;
import java.net.;

class TCPServer {
public static void main(String argvl[]) throws Exception

String clientSentence;

Create String capitalizedSentence;

welcoming socket

at port 6789 ServerSocket welcomeSocket = new ServerSocket(6789);

Wait on welcoming| while(true) {

socket for Con.tact —> Socket connectionSocket = welcomeSocket.accept();
by client_|
. BufferedReader inFromClient =
Create Inpur__' new BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to socket_|

7D

\\\IQ Distributed Computing Group Computer Networks ~R. Wattenhofer 2/58

Example: Java server (TCP), continued

o e}

Create output_
stream, attached

to socket j— DataOutputStream outToClient =

new DataOutputStream(connectionSocket.getOutputStream());

Read in line]
from socket| " clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + \n';

Write out ling |

to socket | outToClient.writeBytes(capitalizedSentence);

}

}
} End of while loop,

loop back and wait for
another client connection

D\

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/59

Problem: One client can block other clients

o e}

Problem can be solved with threads:

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {
Socket connectionSocket = welcomeSocket.accept();
ServerThread s = new ServerThread(connectionSocket);
s.start();

}

public class ServerThread extends Thread {
/* Handles connection socket */
/* “More or less” code of old server loop */

}

Alternative solution: Client opens socket after reading input line!

Vi

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/60

Socket programming with UDP Client/server socket interaction: UDP (Java)

0 o

Remember: UDP: no “connection” between client an rver .
emember: U o “connection” between client and serve Server (running on hostid) Client

* no handshaking create socket, sreate socket,
+ sender explicitly attaches IP port=x, for clientSocket =

K . incoming request:

address and port of destination _ application viewpoint ———— serverSocket = DatagramSocket()
» server must extract IP address, UDP provides unreliable transfer W Creat l ddress (hostid, port

. reate, aaadress (hostid, port=x,
port of sender from received P e (Yot ” send datagram request P
dat of groups of bytes (“datagrams”) / send dtagram r
alagram between client and server read request from o
serverSocket

* UDP: transmitted data may be write reply to

. serverSocket \
received out of order, or lost specifying dlient read reply from

host address, clientSocket

hostname to IP
Address using DNS |

packet packet

port number close l
| clientSocket
e Ve
K-u Distributed Computing Group Computer Networks R. Wattenhofer 2/61 K-u Distributed Computing Group Computer Networks R. Wattenhofer 2/62
Example: Java client (UDP) Example: Java client (UDP)
O 0 O 0
keyboard monitor |mp0rt J:ava.io.*;*
import java.net.”;
5 class UDPClient {
2 public static void main(String args[]) throws Exception
Client € Create] *
process Input: receives input stream — BufferedReader inFromUser =
packet (TCP Creatd] new BufferedReader(new InputStreamReader(System.in));
. received "byte .
Output: sends stream”) Y client socket|— DatagramSocket clientSocket = new DatagramSocket();
packet (TCP sent 5 Translate]
“byte stream”) uoe (£ uDP " InetAddress IPAddress = InetAddress.getByName("hostname");

receivePacket

byte[] sendData = new byte[1024];

client UDP byte[] receiveData = new byte[1024];

socket
String sentence = inFromUser.readLine();

to network from network

sendData = sentence.getBytes();

D

Distributed Computing Group Computer Networks R. Wattenhofer 2/63 Distributed Computing Group Computer Networks R. Wattenhofer 2/64

.
\
80
\

Example: Java client (UDP), continued

o 0

Create datagram with]
data-to-send,| DatagramPacket sendPacket =

length, IP addr, portf— new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datagran; — clientSocket.send(sendPacket);
to server

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);
Read datagram|

from server™ clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}
}
@A)
‘\\-u Distributed Computing Group Computer Networks R. Wattenhofer 2/65

Example: Java server (UDP)

o e}

import java.io.*;
import java.net.”;

class UDPServer {
public static void main(String args|]) throws Exception
Create {

datagram socket b ‘ Kot = b ‘)
at port 9876 atagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{
Create space for]

received datagram [DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);
Receive serverSocket.receive(receivePacket);
datagram
D

\\\IQ Distributed Computing Group Computer Networks ~R. Wattenhofer 2/66

Example: Java server (UDP), continued

o e}

String sentence = new String(receivePacket.getData());

Get IP addr
port #, of
sender

InetAddress IPAddress = receivePacket.getAddress();
—int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

Create datagram

|m— =
to send to client DatagramPacket sendPacket

new DatagramPacket(sendData, sendData.length, IPAddress,
. port);
Write out
datagram [— serverSocket.send(sendPacket);
to socket| }

}
} End of while loop,
loop back and wait for
\ another datagram
\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/67

Network System in Active Oberon / Bluebottle

o e}

» AosNet: Defines a generic network device.
* AoslP: Offers IP
* AosTCP

— Contains a Connection-oriented class that keeps track of the
connection status

— Offers a Receive and a Send Method
+ AosUDP: Offers datagram services
* AosDNS

— Implements a DNS cache and offers host lookup functionality
* AosTCPServices

— Offers a simple abstraction to write TCP services

Vi

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/68

Establishing a Client to Server Connection

o

Client wants to connect to ,huga.ethz.ch® on port 80
» It needs to find the IP address with a DNS-Lookup

Client HostByName(,huga.ethz.ch®, ip, res)

Process . AosDNS
returns ip = 129.132.134.32, res = Ok

2. Open the Connection (to 129.132.134.32:80)
1. NEW(connection);

2. connection.Open(AoslP.NilPort, ip, 80, res);
AoslIP.NilPort tells the system to automatically ~ Send(-..)
select the outgoing port. Receive(...)

Close

AosConnection

Open(localPort, ip,
foreignPort, res);

3. If res = Ok then use the connection

i
"}" Distributed Computing Group Computer Networks R. Wattenhofer 2/69

Open a Server on Port 80 using AosTCPServices

o e}

AosTCPServices.OpenService(service, 80, generator);

This opens port 80 and waits for clients. For each arriving
client, ClientGenerator is called to instantiate a Handler
for this connection.

4. 1. Client Request
client-
: :
Service / sgent| 2. Service calls Generator
client connect | igions on | Nefient 3. Generator returns

port 80 agen, —— client-agent object

‘ 3.
E%SALG 4. Service passes the
— ___ connection to the client-
S ZN agent.

Y4

i
"}" Distributed Computing Group Computer Networks R. Wattenhofer 2/70

Open a Server on Port 80 using AosTCPServices

o}

Since the client-agent is an active object that runs in its
own process, the service is right-away ready to handle
new client requests.

The client-agent must be a subclass of
AosTCPServices.Agent. AosTCPServices.Agent provides
the connection “client” and implements code to close the
connection.

When the connection is no longer needed — determined
either by the protocol state or by a connection failure —
the client-agent calls the “Terminate” procedure to close
the connection correctly.

N
j-‘ Distributed Computing Group Computer Networks R. Wattenhofer 2171

TCP Client in Active Oberon: RFC865 (Quote of the day)

o} e}

The following Active Oberon program opens a TCP client connection to a
RFC865 compliant “Quote of the day” server, reads the quote and prints
it to the kernel log.

The program demonstrates these steps:

* Open a reader stream on the ,command line*
* Perform a DNS lookup

» Print the IP address to the kernel log

* Open a TCP connection

» Open a reader stream on a TCP connection
* Reading from the connection

» Closing the connection

N
j-‘ Distributed Computing Group Computer Networks R. Wattenhofer 2/72

TCP Client in Active Oberon (1)

o

MODULE RFC865CIient; (* Author TF: QOID dient *)
| MPORT

AosCQut, AosCommands, Aosl P, AosDNS, AosTCP, Aosl O
CONST QuotePort = 17;

PROCEDURE Get Quote*(par : PTR) : PTR
VAR
s : AosCommuands. Par anet er s;
sr : Aosl O StringReader;
connection : AosTCP. Connecti on;
server Name : ARRAY 32 OF CHAR
line : ARRAY 513 OF CHAR,
serverl P, res : LONG NT;
reader : Aosl O Reader;
BEGA N

s := par(AosCommands. Paraneters); (*open reader stream .*)

Aosl O OpenStringReader (sr, LEN(s.str?));
Aosl O Set String(sr, s.str”); (* ...on paraneters *)
Aosl O ReadToken(sr, serverNane); (* read server nane

ah

\\\IQ Distributed Computing Group Computer Networks ~R. Wattenhofer

*)

2/73

TCP Client in Active Oberon (2)

o 0

(* performa DNS | ookup *)
AosDNS. Host ByNane(server Nane, serverlP, res);
IFres # 0 THEN (* result not O = DNS | ookup failed *)
AosQut. String("Host not found."); AosCQut.Ln;
RETURN NI L
END;
(* print IP address *)
Aosl| P. Adr ToStr (server| P, line);
AosQut . String("Server found at ");
AosQut . String(line); AosCQut.Ln;
(* open a connection to the serverlP *)
NEW connect i on);
connection. Qpen(AoslI P.Ni | Port, serverlP, QuotePort, res);
IF res # 0 THEN
AosQut. String("Could not connect to host.");
AosCut . Ln; RETURN NI L
END;

7D

\\\IQ Distributed Computing Group Computer Networks ~R. Wattenhofer 2/74

TCP Client in Active Oberon (3)

o

(* Open a reader streamon the connection receiver *)
Aos| O OpenReader (reader, connection. Receive);
REPEAT
reader. Ln(line);
AosQut. String(line); AosQut.Ln
UNTIL reader.res # O;
(* Close the connection to release the |ocal port *)
connecti on. d ose;
RETURN NI L
END Cet Quot e;

END RFC865C i ent .

System Free RFC865C ient ~

Syst em OpenKer nel Log

(* Execute the Aos.Call command to start the program*)
Aos. Cal I RFC865C i ent. Get Quot e bl uebottle.ethz.ch ~

D\

\. / Distributed Computing Group Computer Networks R. Wattenhofer

2/75

TCP Server in Active Oberon (1)

O O
The following Active Oberon program implements an Echo server (RFC
862). The setup of the connection is left to AosTCPServices.
AosTCPServices opens the server port and accepts TCP connections to
this port. For each connection it starts an Active Object as an agent to
handle the requests.

MODULE EchoServer; (*Author pjm PURPOSE: TCP echo server*)
| MPORT AosMbdul es, AosCQut, AosTCP, AosTCPServices, Aosl O
CONST EchoPort = 7; EchoBuf Si ze = 4096;
TYPE
(* EchoAgent is a subclass of AosTCPServices. Agent *)
EchoAgent = OBJECT (AosTCPServi ces. Agent)
VAR | en, res: LONG NT;
buf: ARRAY EchoBuf Si ze OF CHAR;
(* body creates a new process for each instance *)
BEGA N { ACTI VE}

Vi

\. / Distributed Computing Group Computer Networks R. Wattenhofer 2/76

TCP Server in Active Oberon (2)

o o

BEGA N { ACTI VE}

LOOP
client. Receive(buf, 0, LEN(buf), 1, len, res);
IFres # 0 THEN EXIT END; (*abort if reading failes*)
client. Send(buf, 0, len, FALSE, res);
IFres # 0 THEN EXIT END; (*abort if witing failes*)

END;

Terminate (*termnate the agent?*)

END EchoAgent ;

VAR echo: AosTCPServi ces. Servi ce;

PROCEDURE Open*(par: PTR): PTR;

BEG N (* Open a new service on the EchoPort. *)
AosTCPSer vi ces. OpenServi ce(echo, EchoPort, NewEchoAgent);
(* NewkchoAgent is procedure to be called whenever
a connection is nmade to the port *)
RETURN NI L

_ END Open;
ok

&j Distributed Computing Group Computer Networks R. Wattenhofer 2077

TCP Server in Active Oberon (3)

O
PROCEDURE C ose*(par: PTR): PTR
BEG N (* close the service *)

AosTCPSer vi ces. Cl oseServi ce(echo);
RETURN NI L
END d ose;

PROCEDURE NewEchoAgent (c: AosTCP. Connection; s:

AosTCPSer vi ces. Servi ce): AosTCPServi ces. Agent ;

VAR a: EchoAgent;

BEG N (* Create a new agent of type EchoAgent *)
NEWa, ¢, s); RETURN a

END NewEchoAgent ;

PROCEDURE Cl eanup;

BEA N (* d eanup handler; invoked if nodule is unloaded *)
IF Cose(NIL) = NIL THEN END

END C eanup;

BEG N (* install term nation handler *)
AosModul es. I nst al | Ter mHandl er (O eanup)
- END EchoSer ver.
71N

&j Distributed Computing Group Computer Networks R. Wattenhofer 2/78

Networking Examples in Active Oberon

o e}

» The source code of all the networking code is available and
installed. The following list of modules is particularly interesting:

* A0s3Com90x.Mod, AosRTL8139.Mod: low level hardware drivers
* AoslP.Mod: implements IP

* AosTCP.Mod: implements TCP

* AosTCPServices.Mod: implements an abstract TCP service

* AosTestServer.Mod

— implements RFC 862 (Echo), RFC 863 (Discard), RFC 864
(Chargen) and RFC 867 (Daytime)

* AosQuoteServer.Mod: implements RFC865 (Quote of the day)
+ WebFTPServer.Mod: implements a FTP server

* WebHTTPServer.Mod: implements a HTTP1.1 server

* AosHTTPServer.Mod: implements a basic HTTP/1.0 server

* AosSMTPClient.Mod: implements RFC 862 (SMTP client)

ah

j Distributed Computing Group Computer Networks R. Wattenhofer 2/79

v,

