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Abstract The problem of designing a collective coin flipping pro-
tocol in this model was suggested by Ben-Or and Linial [4].

Selection tasks generalize some well studied problems,The task of the players is to come up with a common ran-
such as collective coin flipping and leader election. We dom bit. A protocol for this task isesilientif the bit is
present new selection protocols in the full information somewhat random — regardless of the behavior of the bad
model, and new negative results. In particular, when there players, there is some probability bounded away from 0
are (1 + &)n/2 good players, we show a protocol that Wwith which the bit receives each of its two possible values.
chooses a good leader with probabilify(§'-%°), and show Naturally, the good players would need to follow a random-
that every leader election protocol has success probability ized algorithm. A case that received special attention is one
O(817¢), for everye > 0. Previously known protocols for ~ round protocols in which the value of the global coin is ob-
this problem have success probability that is exponentially tained by each player supplying one bit of input to some
smallin1/4, and no nontrivial upper bounds on the success n-argument predetermined Boolean function. Good players
probability were known. supply random bits, whereas faulty players supply arbitrary
bits that may depend on the bits of the good players. Ajtai
and Linial [2] designed a function that is resilient whenever
the number of bad players is smaller tha/\log2 n, and
Kahn, Kalai and Linial [9] showed that no function can be
resilient against more thaty log n players.

In the full information model there are players and all Leader election is the task of selecting one player out of
communication is through broadcast operations. It is as-then. A protocol for leader election is resilient if the prob-
sumed that broadcasting is a reliable atomic act: all otherability of choosing a good leader is bounded away from 0.
players receive the message uncorrupted together with thd-eader election protocols can be used as protocols for col-
identity of the player who broadcasts the message. Thelective coin flipping, by having the leader toss the coin.
players need to jointly perform some task (such as elect a Saks [14] showed that the “Baton Passing” game, in
leader). Some of the players may be faulty. The good play-which each player receiving the baton passes it to a random
ers do not know which of the other players is faulty. The player who did not yet have it, and the last player left with
faulty players may use unlimited computational powers and the baton is the leader, is resilient when the number of bad
coordinate their actions so as to make the outcome of theplayers is below:/ logn. (The bad players of course try to
task favorable to them (e.g., to have a faulty player electedalways pass the baton to a good player.) The Baton Passing
as the leader). This is modeled by a computationally unlim- game takes — 1 rounds. Saks also observed that no leader
ited adversary who picks the set of faulty players before the election protocol can be resilient if half the players are bad
execution of the protocol begins, and thereafter coordinatega proof appears in [6]).
their actions. It is assumed that players can individually = The Baton Passing game was modified by Alon and
generate random bits (each player has his own private coin)Naor [3] to a game in which in each round a player can
and that values of future coin tosses of nonfaulty players arepass the Baton to one of two players, where these two play-
unpredictable, unbiased and independent of any other eventers are determined by the complete history of the protocol.
(The coins of faulty players cannot be trusted.) The full in- They showed that the modified game is resilient against
formation model does not support standard cryptographic(1 — ¢)n/3 bad players. Boppana and Narayanan [6] im-
protocols (which require some assumption such as privateproved the analysis of such games and shown them to be
communication channels, or computational intractability). resilient againstl — ¢)n/2 bad players, for every > 0.

1. Introduction



It is not known whether the modified baton passing game
can be implemented when the computation time of players
is polynomial inn, due to the complexity of figuring out
which are the two players to which a player is allowed to
pass the Baton.

The question of reducing the number of rounds in leader
election protocols (and hence also coin flipping protocols)
was studied in [7, 11, 16] and by Russell and Zucker-
man [13] who designed a polynomial time computable
leader election protocol resilient againdt— ¢)n/2 bad
players that takes onlyg™ n + O(1) rounds. Russell, Saks
and Zuckerman [12] show th&X(log" n) are necessary for
resilient leader election if in every round the good players

Theorem 2 Let p,, be the probability that the outcome of
ann player full information protocol i if all players play
at random. Then for every < t < n, there is a set of
“influential” players who have a strategy under which with
probability at least(p, ) ~*/" the outcome is.

Theorem 2 gives a nontrivial upper bound for collective
coin flipping. When all players play randomly, then w.l.0.g.
we can assume that, the probability that the coin comes
up 0, is at least 1/2. Hence there is a setlof §)n/2 in-
fluential players that can force the coin to 0 with probability
at least(1/2)'~(1=9)/2, Hencer(d) < 1 — (1/2)1+9/2,
which is less than 0.293 whehis small enough. Note

each sends one unbiased random bit. (Neither the resultdhat this upper bound remains bounded away from O when

of [12] nor those of [9] apply when good players are al-
lowed to send biased bits.)

1.1. Marginal majorities

In the current paper we study the case in which there is
only a slight majority of good players. The number of good
players is represented 5+ ¢)n/2, for some smalb > 0.
Letp(n,d) denote the probability of choosing a good leader
in this case, under an optimal leader election protocol. Then
previous work ([6], following [3]) established:

Theorem 1 For everyd > 0 there existg > 0 such that
for everyn, p(n,d) > e.

Theorem 1 establishes that, §) can be bounded from
below as a function of, independently of.. Hence we
shall sometimes omit from the notation and ugg$). We
are interested in obtaining the best possible boungg®n
The proof in [6] gives a lower bound that is a little worse
than exponentially small, namely§) > ¢~ (°81/9)%/3 [5],
for somec > 1. An alternative proof of Theorem 1 is im-
plicit in [13], who show a protocol that has constant prob-
ability of reducing the number of players to some constant
no that depends o#, while maintaining a majority of good
players. Thereafter, it is suggested to use the protocol of [6]
on the remainingy players, but of course at this stage, any
other protocol with positive success probability would in-
sure thap(n, ) will be lower bounded in terms d@falone.
The question of whether there is a more favorable protocol
to use at this point was not addressed in [13].

In terms of upper bounds, trivially(n, d) < (1 +4§)/2,
as the faulty players can just play honestly. The author is
not aware of any other published upper bounggr).

For collective coin flipping and as above, let:(d) be
the minimum of the two probabilities that the coin comes

0 tends to 0.

Theorem 2 is not directly applicable to leader election
protocols, because there the choices of which are the bad
players and what is a bad outcome are correlated. For ex-
ample, there is a protocol that elects a good leader with
probability (n — 1)/n when at most one player is bad. See
Section C.1 in the appendix.

1.2. Our results

We present a simple protocol, based on lightest bin
principle, that can be used to reduce the number of players
while maintaining (in a probabilistic sense) the fraction of
good players.

This protocol and simple variations on it have several
immediate consequences:

e It gives a simplified proof of Theorem 1, thatn, )
can be lower bounded by a function®findependent
of n.

It gives a simplified proof of the result of [13] that
for every fixedsd, leader election can be performed in
log™n + O(1) rounds.

It gives a quasipolynomial lower bound an(9),
namelyp(s) > §°0°e1/9) The protocol achieving
this depends only on but not ond, so this bound
can be achieved for all > 1/n simultaneously.

It shows that leader election and collective coin flip-
ping can be performed essentially with the same suc-
cess probability. Namely(5) = ©(r(9)).

The main technical contribution of the paper is the proof
of the following theorem:

Theorem 3 There are universal constants > ¢ > 0

up 1 or 0, under the worst case strategy for the adversaryg,ch that:

in the best coin flipping protocol. Letting the leader flip the
coin we obtain~(é) > p(d)/2. An upper bound om ()
follows from the following theorem of [4, 8].

1. For everyd, there is a leader election protocol (de-
pending ony andn) achievingp(d) > Q(5).



2. For every leader election protocgl(d) < O(5¢2) out reading this section. Section 3 presents a simple pro-
tocol, perhaps even practical, for tasks such as leader elec-

The lower bound is proved by establishing a connec- tion. The success probability of this protocol is improved
tion between leader election protocols and monotone cir-in Section 4, by adding a second phase to the protocol. Our
cuits for majority.p(6) can be lower bounded as a function upper bound on the success probability of collective coin
of the depth of such circuits. The upper bound is proved by flipping protocols is presented in Section 5. The appendix
representing leader election protocols (or rather, collective contains the technical part of the proof of the upper bound
coin flipping protocols) as Markov chains, and using mar- (Section A), upper bounds for specialized problems (Sec-
tingale tail inequalities. The values that our proofs give are tion B), and toy examples of protocols (Section C).
c1 < 1.65 andcy > 1 — e for everye > 0.

: . 2. A general framework for selection protocols
1.3. Selection versus sampling

There aren players, some of which are faulty. There
arem possible candidates, some of which are bad. It is not
known a-priori which are the faulty players and which are
the bad candidates. We are interested in protocols in which
the players collectively select a candidate. Our protocols
are robust in the following sense. If at leastaalition of
players is nonfaulty andguorumof candidates is good (we

leader election problems in a somewhat different frame- shall define coalitions and quorums shortly), then the non-
work, that we call selection protocols. In these protocols, f@ulty players can force the outcome of the protocol to be a

a set of players need to jointly decide on an action (such as90d candidate. We now describe our setting formally.

selecting a leader, or flipping a coin). Some of the players  1hereisasetpy, ..., P} of n players and a collection

may be faulty, and some of the actions may be bad. TheS = {51, 52, ...} of coaliions where each coalition is a

goal is to design protocols that allow good players to force Subsetofthe players. Thereis aget, . .. an } of m possi-

the choice of a good action, provided there are sufficiently P& candidates, and a collectich= {Q1, @, . ..} of quo-

many good players and good actions. We call such proto-"Yms where gach quorum is a gubset of candidates. P]ay—

cols robust. We found this view as useful both for designing €S communicate by broadcasting messages from a fixed

sampling protocols (by letting the good players just play at alphabet. Aprotocol spemﬁes the order in which players

random in a robust protocol) and in proving negative results SP€ak, and the candidate selected when the protocol ends

(similar to the impossibility of leader election with a ma- (depending on the actual messages broadcast by the play-

jority of faulty players). The more general framework is ers). Astrategyfor a player tells the player which character

presented in Section 2. to broadcast as a function of the complete history of broad-
We note that Goldreich, Goldwasser and Linial [8] pre- Casts seen so far. Aandomized strategis a probability

sented a different generalized framework for fault tolerant distribution over strategies.

computation in the full information model. In their frame-

work, each player has an input (unknown to other players), Definition 1 A protocol isrobustwith respect toQ and S

and all players jointly compute the value of a known if for every coalitionS < S and for every quorund) <

argument functionf on these inputs. The faulty players Q, the players inS have a strategy such that regardless of

may influence the outcome of the computation towards athe strategy of the other players, the candidateventually

valuew that they favor, by modifying their inputs, based on selected satisfias € Q.

what they learn on the inputs of the good players. Goldre-

ich et.al. study the influence the bad players have when the A pair (S, Q) specifies a selection problem. We are in-

inputs to the good players are chosen at random. They giveerested in characterizing the selection problems for which

protocols that in some settings limit the influence of the bad a robust protocol exists.

players to be within a constant multiplicative factor of the

Collective coin flipping can be viewed as a multiplayer
random sampling problem, in whiehplayers want to sam-
ple at random from{0,1}. Leader election can also be
viewed as a sampling problem, in which thelayers wish
to sample at random frorfil ..., n}, making the sampled
player the leader.

In establishing our results, we found it useful to study

bounds given in Theorem 2. Definition 2 Let j be a positive integer. Collectiof is j-
intersectingf there arej — 1 mutually disjoint coalitions,
1.4. Roadmap but noj coalitions are mutually disjoint.

In Section 2 we describe our general framework for se-  As an example of g-intersecting collection, le§ con-
lection protocols. Other sections can be understood with-tain all subsets of cardinality greater thayy.



Definition 3 Leti be a positive integer. Collectio@ is an
i-quorum systenif every: quorums have a common inter-
section, and there aré + 1 quorums that do not have a
common intersection.

As an example of airquorum system, le® contain all
subsets of cardinality greater thar(1 — 1/4).

Theorem 4 LetS bej-intersecting and? be ani-quorum.
Then there is a robust protocol with respect@and S if
and only ifi > j — 1.

Proof: Assume: > j — 1, and consider the follow-
ing protocol. Each player announces an arbitrary quorum
Q € Q. Call a quorum popular if all players from some
coalition announced this quorum. The candidahosen
by the protocol is the first candidate that belongs to every
popular quorum. There must be such a candidatbe-
cause there can be at mgst 1 different popular quorums,
and thesg — 1 quorums have a common intersection. The
protocol is robust because all players in a coalitbean
announce the same quorug This completes thé direc-
tion.

Assumei < j — 1. There arej — 1 coalitions inS that
are mutually disjoint. W.l.o.g., let them bs,...,5;_1.
There arel + 1 quorums inQ that do not have a common
intersection. W.l.o.g., let them b@,,...,Q;+1. Thenit
cannot be that for every < i + 1 < j there is strategy for
the players inSy to force the candidate to be chosen from

Qy, because there is no candidate in the intersection of the

QS. This completes thenly if direction. O
Theorem 4 gives a complete characterization of selection
problems that have robust protocols in the full information

model. Robust protocols are characterized by an existential
statement: the coalition of good players has a strategy that

forces the candidate to be selected from the good quorum
However, we will be interested in cases when the good play-
ers do not know which is the good coalition, and which is
the good quorum. Hence the good players might not follow
the favorable strategy. We would like a randomized strat-
egy for the good players that maximizes the probability of
choosing a good candidate, regardless of which is the goo
coalition, which is the good quorum, and the strategy em-
ployed by the bad players. Here we may assume that prio
to the beginning of the execution of the protocol, an ad-

versary makes some of the players faulty and some of the
candidates bad, but leaves at least one nonfaulty coalitior?

and at least one good quorum. During the execution of the
protocol, the adversary has full control of the messages sen
by the faulty players.

Corollary 5 LetS bej-intersecting and? be ani-quorum,
withi > j — 1. Let|Q| denote the number of quorums, and
let S be a minimal coalition of maximum cardinality (min-
imal in the sense that it does not properly contain another

coalition). Then there protocols and randomized strategies
that have success probability at leagl| ~°!, regardless of

the strategy of the adversary. Furthermorej i= 2, then
there are protocols and randomized strategies with success
probability at leastn 14!

Proof: For the general case, use the robust protocol
of Theorem 4, and the randomized strategy in which each
player chooses a random quorum. For the gase 2, let
each player choose a random candidate, and select a candi-
date chosen by a coalition (if there is none, select an arbi-
trary candidate). O

3. Thelightest binprotocol

In this section we present a simple protocol for the com-
mittee election problem. In this problem, there arplay-
ers, at leask of which are good, and they want to elect a
good committee of players, where a committee is good if
it contains at least one good player. This problem s solvable
ifand only if & > n/(c + 1) (Theorem 4). The case= 1
corresponds to leader election, but we shall also find the
casec = 2 very useful. The case ~ logn was suggested
by Moni Naor (private communication) as having potential
cryptographic applications.

We use the following notation and conventions:

S — Set of all players.

X — Temporary set created during the protocol.

L — Final set, outcome of the protocol.

n — Number of players.

k — Number of good players.

¢ — Size of the committee to be chosen.

6 — Theadvantaged = Eletl) _q,

p(n, k, ¢) — Probability ofsuccess- that of choosing a
good committee.

Our protocols return a sét € S. If |L| < ¢, we add
players toL arbitrarily.

As noted earlier, we neell> 0 for the committee elec-

dJion problem to be solvable, which in fact impligs> 1/n.

We shall use the notatign(J, ¢) if all we assume om and

Jisthatk(c +1)/n > 1+ 4, and omitc from the notation

whenc = 1.

Our protocols can be described as games of throwing
alls into bins. The game proceeds in rounds. There are
several bins, and each player gets to throw his ball into a
fandom bin. The bin that then contains the smallest num-
ber of balls is called théghtest bin The players who have
their balls in the lightest bin continue to the next round, and
all other players are discarded. The balls are returned to the
players, and the protocol is repeated recursively. When the
lightest bin contains not more tharplayers, these players
become the elected committee.



Of course, the bad players need not throw their ballsintoi > 1 and—(c+ 1) < j < cthen Halfn) = (¢ + 1)i — 1.
random bins. Rather, they wait to first see where the goodWe now describe thiightest binprotocol in full detail.
player’s balls land, and then try to place as many of their  Lightest Bin (LB) Protocol:
own balls as possible in the lightest bin. However, any bin
that contains many bad balls will not be light, and will not 1. X < S.
continue to the next round. Hence even though the number
of players is reduced in each round, the proportion of good
players remains favorable.

The simplest version of our protocol works for leader
election whenk, the number of good players, is an exact
power of 2, anch = 2k — 1.

2. Repeat whiléX| > ¢

(a) Each player inX broadcasts a random bit. Let
Xy denote the set of players who broadcast 0,
and X; denote the set of players who broad-

. . L : cast 1.
Lightest Bin Protocol (simplified version):
(b) If | Xo| < Half(]X]|,¢), thenX — X,. Other-
1. X « S. wise, X «— X;.
2. Repeat whileX| > 1: 3. L X.

(a) Each player inX broadcasts a random bit. Let As a concrete example of how the protocol runs, consider
Xy denote the set of players who broadcast 0, again the case whe$contains three good players and two
and X; denote the set of players who broad- bad players and we wish to choose a leader. Heneel

cast 1. and Half5,1) = 1. Assume that in the first round, exactly
(b) If |Xo| < |X|/2, thenX — X,. Otherwise, one of the t_h_ree good pla_yers broadcasts 0. This happens
X X:. with probability3/8. Then if both bad players broadcast 1,
the setX, continues to the next round, and as it contains just
3. L — X. the good player, a good player is chosen as leader. If at least
one bad player broadcasts 0, then theXsegtontinues to the
Proposition 6 Whenk is an exact power df andn < 2k, next round, even though it may be larger than theset
the simplified protocol elects a good leader with probability The setX; contains two good players and at most one bad
at leastp ~ k—(logk)/4, player. Thereafter, if exactly one of the two good players

broadcasts 0 (which happens with probabilif{2), the bad
Proof: Let k = 2¢. With probability roughlyl/\/E, the player cannot prevent a good player from being declared as
good players will split evenly betweeki, and X;. Then, leader. Hence a good leader is chosen with probability at
regardless of how the bad players split, the lightest bin will least3/16.
contain a majority of good players, and this majority is an  If in the above example the goal would have been to
exact power of two. Continuing this argument faounds, choose a committee of size 2, then we would have had
there is probability roughly ~ T:Z} \ /2 /k ~ k~(ogk)/4 Half(5,2) = 2. If the good players do not all broadcast
that the lightest bin at rounticontains exactly one player, the same bit (which happens with probabilty4), then a
and that this player is good.O good committee is elected already in the first round.
Observe that the above proposition holds when 2k —
1, and thery = 1/n = 1/(2k — 1). For this case we have 3.1 Analysis of success probability
thatp = §©Uce1/9) We shall show that a similar protocol
achieves similar success probability for general valués of Lemma 7 If k& > n/(c + 1) then the LB protocol selects a
The simplified protocol does not work for general values good committee with probabilitit /k)©(oe¥)
of k. Consider for example a case wh&rcontains three
good players and two bad players. If the bad players throw Proof: Observe that a committee of sizeis good if
their balls into different bins, then the lightest bin will con- more than a fraction of /(¢ + 1) of the players are good.
tain at least one bad player and at most one good player. In - We consider for each round the invariant that a frac-
the next round, the bad player can broadcast 0 and prevention of more thanl/(c + 1) of the players passing to the
the good player from being elected. next round are good. When HAIX|) = (¢ + 1)i — 1,
To overcome the above difficulty, while also generalizing the invariant is preserved whenever exaatlgood play-
the protocol to arbitrary committee sizewe definethetwo  ers broadcast 0. As the number of good players in the
argument function Half such that H&lf, ¢) for n > ¢ is beginning of the round is at least roughly, and as we
an integer approximately equal 492, and Halfn,c) = ¢ may assume that their number is actually not larger than
moduloc+1. Specifically, if we writen as2(c+1)i+j with 2i (by ignoring some of the good players), then this event



happens with probabilit§2(1/1/%). As there are at most Leader election implies collective coin flipping: The
1+ log(n/(c+ 1)) < 1+ logk rounds and noting that elected leader can flip the coin. Heneén,k) >
i < k, the lemma is proved. O p(n, k,1)/2.

Collective coin flipping implies leader election: Use
the lightest bin protocol to elect a committee of size two.
Then use a global coin to select one member of the com-
mittee as the leader. Henpén, k,1) > p(n, k,2)r(n, k).
Fork > n/2, we have a committee election problems with
parametep > (n/2)(3/n) —1 > 1/2. Theorem 9 implies
that in this case(n, k,2) = (1), implying the corollary.

Lemma 8 Consider electing a committee of sizehen the
good players have advantage There is some universal
dp > 0 such that for every < § < ¢y and for everyn >
/&4, if the LB protocol is performed only until the number
of players is reduced fromto c/§*, then with probability at
leastl/2 the fraction of good players remains abavé c+

1). -

Proof: Recall thatk > (1 + §)n/(c + 1). Letn; (k;) The LB protocol is oblivious to the value 6f which can
be the number of players (good players, respectively) re-be an arbitrary positive function of. Previous studies on
maining after round. Thenn;, 1 < n;/2 + ¢/2. When leader election focused on the case of fidedt 0, andn
k; is sufficiently large (we only considér= Q(1/(50)*)), tending to infinity.
then with probability at least — ¢; > 1 — 1/k;, kip1 > Wheno is known to be relatively large comparediton,

ki(1/2 — (ki)fl/B) (the good players are partitioned in thenitis possible to condense several rounds of the LB pro-
two by the Binomial distribution, which is centered around tocol into one round. This leads to a protocol that takes

its mean). Lett be such that, < ¢/§*. Thenn, < log™ n+0(log 1/§) rounds, as follows. Each players broad-
n2~t + ¢, implying t ~ log(ké*). Hence ifk; is split casts in one round the bits forconsecutive rounds of the

in two in each round, thek, ~ 1/4%, which is large by ~ LB protocol. This partitions the players into= 2" bins,
our choice of smalb,. Assuming inductively that the im-  and the players in the smallest bin are chosen to continue

balance in the splits is always at md#t)2/3, with prob- the protocol. More generally, we assume that therelare
ability at leastl — Eﬁ;é G > 1-— 22;5 1k > 1/2, bins, wherel need not be a power of two. Each player
ke > k2701 — 2(ke_1)"V3). Ask,; > 1/26% it fol- has its own ball which it thrO\_Ns_ into a random bin. [If
lows thatk; > nt%‘f(l —0(6*3)) > ny/(c+1), for small is small enough so that each bin is expected to have roughly
enoughy (forced by the choice of)). O the same number of good players, then the analysis of this

_ variant of the protocol is similar to that of Theorem 9. Using
Theorem 9 Regardless of the number of players, if the ad- this approach, the number of active players can be reduced
vantage is at least, then the probabilityp that the final from n to O((logn)®) for somec > 0 (e.g.,c = 4) in a
outcomeL of theOLB P“gt000| contains at least one good single round, with only negligible loss in the advantage and
player is at least©(°&1/9), in the success probability. Iterating this flog* . rounds,

Proof: If § > &, of Lemma 8, then chang&to &, and reduces the number of players@{6—<), after which the

the proof below then shows that there is a universal succes&ormﬁl LE protocclJI IS crje;umed. (Aléerna;lvely, the pro:cocol
probability py > 0, independent of the value 6f If § < can then be completed in one round, at the expense of worse

do, then Lemma 8 implies that with probability at ledge dependence gionJ.)

the protocol gets to a stage where there are lessdhén

players left, a majority of which are good. Thereafter, the 4. The monotone circuit game
Theorem follows from Lemma 7. O

Recall thatp(n, k, 1) is the probability of choosing a As we have seen in Theorem 9, whenever there is a ma-
good leader when there akegood players. Similarly, let jority of good players, the lightest bin protocol elects a size
7(n, k) denote the probability of the less likely outcome of two committee that with constant probability has at least
a global coin flip when there arke good players. It was  one good player. We may implement other tasks by pre-
known that leader election implies collective coin flipping. senting two player protocols for them. Specifically, we shalll
Using Theorem 9, we show a stronger connection betweenpe interested in having the committee of size two choose a
the two problems. leader from the: original players. We show that this two

Corollary 10 The collective coin problem and leader elec- phase approach gives leader election protocols with higher
puccess probability that the LB protocol by itself.

tion have the same success probability, up to some universa .
P Y, Up For the leader election task, we may assume that there

constant. Thatisp(n, k, 1) = O(r(n, k)). are two players, one of which is bad, amdandidates from

Proof: Whenk < n/2, neither leader election nor col- which the two players need to choose a leader. The majority
lective coin flipping have robust protocols (e.g., by Theo- of the candidates are good, and we want to maximize the
rem 4). Hence we assunme> n /2. probability of choosing a good leader.



The protocol we suggest is based on monotone circuitsthe or player itself) is selected. Consider now an arbitrary
for majority. For simplicity of the presentation, we shall internal node on the path, and assume inductively that it has
concentrate on circuits with very regular structure. A mono- value 1 (which is true for the root). If it is aandnode then
tone circuit of depthl is a full binary tree of deptl. The necessarily the value of the next node is also 1, as both in-
leaves of the tree are labeled by variables and by the conputs to the node have value 1. If it is annode then maybe
stants 0 and 1. Several leaves may have the same label. Thenly one of its inputs has value 1. But a random choice by
internal nodes of the tree are labeleddnd if they are in the or player has probability /2 of maintaining the invari-
an even layer and bgr if they are in an odd layer. When ant. As there are at mo§f + 1)/2 or nodes on the path,
variables get Boolean values, the circuit computes a mono-the invariant is maintained throughout the execution of the
tone function in a natural way, and the output is obtained protocol with probability at least—(¢+1)/2,
at the root of the tree. We say that the circuit computes Iftheandplayer is good, treat each of the variables of the
the majority function if the output agrees with the value of good candidates as if it has value 0, and proceed as above,
the majority of the variables (assume for simplicity that the using duality of0/1 and ofandor. O

number of variables is odd). The sorting network of [1] im- Using Valiant's monotone circuits for majority, Theo-
plicitly gives a construction of a majority circuit of depth rem 11 implies thap(n) > Q(n=2%). The monotone cir-
O(logn), with a rather large constant hidden by theno- cuit approach can be modified so as to obtain the following

tation. Valiant [15] shows that for a circuit of depth roughly improvements:
5.3logn, there is a way of labeling its leaves so that it com-
putes the majority function om variables. His proofis non-
constructive in the sense that it does not describe an explicit o The protocol can be made explicit.
labeling of the leaves.

e Higher success probability.

e The success probability can be expressed as a func-
Theorem 11 If there are circuits for majority of deptH, tion of 4.
then there are leader election protocols with success prob-

ability at leastp(1 /2, 2)2~ (@+1)/2 One needs to observe that Valiant in his proof [15] shows

the following amplification result:

Proof: First choose a committee of sizeé two. AS the Thegrem 12 Let T be a full binary alternatingandor tree
majority of players are good, Theorem 9 implies that the it or gates at the level closest to the leaveslet 1 —
probability p(1/2,2) of having at least one good commit- 2(3—/5)n/(n—1) ~ 0.24, and lets be sufficiently small in
tee member is bounded below by some universal constantgpcote value, in particular satisfyingl < & < 1. Label
Now call then candidatesr; to ;.. Treat them as inputs  the |eaves independently at random with 0 with probability
to a depthd majority circuit. Now the two players play the a+(1—a)(1—4)/2 and with 1 with probability 1 — o) (1+
following game on the circuit. One of the players is #rel §)/2. Then if the depth dF is 3.3log(1/8) + 2t then with

player and the o'ther is ther player. The game proceeds probability 1 — 2-2" the circuits outputs 1 i > 0 and O if
in rounds. Starting from the root of the tree, the players

trace a path to one of the leaves, by having the players al-
ternate in choosing the next edge on the pathardgates, Theorem 12 has the following implication for two player
theandplayer chooses one of the two incoming edges, andselection protocols. Given a leader election problem with
at or gates theor player makes this choice. When a leaf advantage, if the two players could agree on a truly ran-
is reached, its label is examined. If the label is a variable,dom labeling for the leaves of a circuit of depth +
then the respective candidate is selected leader. If the labed(1))3.31og(1/4), where aleaf is labeled 0 with probability
is 0 (or 1) then theand player ©r player, respectively) is  « and by arandom candidate otherwise, this circuit could be
elected leader. (In the more general case where the playersised in the proof of Theorem 11. The truly random labeling
themselves are not candidates, then this elected leader caoan be relaxed to agreeing on a somewhat random labeling,
choose a leader at random from the set of candidates.) provided that the probability of hitting a set of labelings of
We now show that when at least one of the two com- measure2—2" is low (e.g., below one half). Using some
mittee members is good, then the strategy of choosing theencoding mechanism for labelings, the problem of gener-
next edge at random selects a good candidate with probaating a somewhat random labeling can be formulated as a
bility at least2—(¢+1)/2 Assume that ther player is good. problem of generating a somewhat random binary string of
Treat each of the variables of the good candidates as if it hadengthi, where there is a set of strings of small measure that
value 1. Then the output of the majority circuit is 1. When needs to be avoided. Two player sampling protocols for this
tracing a path from root to leaf, we want to maintain the in- problem were studied in [8], and the following simple pro-
variant that the value of the gate at the current location is tocol (which we present for completeness) suffices for our
always 1. If this holds at a leaf, then a good candidate (or purpose (see proofin [8]).



The protocol proceeds in rounds, with the players messages actually broadcast in the protocol, and under the
switching roles in each round. In a single round, a player assumption that in future messages, all playefs; ifollow
uniformly selects a-dimensional binary vectar; linearly the random strategy and the other players are controlled by
independent of the vectors used in previous rounds and thea 0-adversary. We note that > r, becauséT;| = k. Let
other player then selects a randomdit After / rounds, the  v* be the vectofp?, . .., p}), and letjv’| denote itsp-norm
string selected is the uniquit string whose inner product  (j.e., [t|P = Zle(Pﬁ)p)' where the value of < p < 2
with everyv; is o;. will be optimized later in the proof. Let+ 1 be a step in

which a player fromB is to broadcast. The strategy of the
Corollary 13 There is an explicit protocol for leader elec-  1-adversary is to broadcast a character that maximizes the

tion with success probability(s) = Q(5'%). resulting|v'*+1| (breaking ties arbitrarily).
We now give a lower bound foPr[z = 1] when the
5. Upper bounds 1-adversary control® and follows the adversarial strategy

above. We make the following observations:

Theorem 14 The success probability of collective coin flip- 0 0 "
ping protocols tends to O as the fraction of faulty players ~ 1- Pi = - Hencejv”| > rk/?.

tends tol/2. uantitatively, for every3 > 0, r(§) = .
O((l/(s)l,/,g). Q y W r@) 2. After stepT, either allp? = 1orallp! =0. 2 =1

implies|v” | = k/» whereag = 0 implies|v”'| = 0.

Proof: In order to prove Theorem 14 we use the con-
ventions below. It is not hard to see that they may adopted
without loss of generality. The players are numbered from 1
to n. The protocol proceeds in steps where in each step a
single processor broadcasts a single character from a fixed
alphabet. The total number of stepss fixed in advance,
and so is the order in which processors broadcast (e.g., in
round robinfashion). Arandom strategppecifies for each
player a probability distribution over the next character to
be broadcast, based on all previous characters that were
broadcast. (This is known adahavioral strategywhich in
games of full information is the most general kind of strat-
egy.) Good players follow the strategy. Bad players do not i i ,
necessarily follow the strategy, but they do follow the pro-  1h€ most crucial observaﬂctm we make is the effect of a
tocol (broadcast a single character when it is their turn to Message by gla}yer St kon|v|. On every coordinatg
do s0). The bad players are chosen by an adversary befor@her than;, pi™" > p;, making nonnegative contribution
the protocol begins, and thereafter their messages are chdowards|v‘™|. For coordinate, we haveE[p,™'] = p!,
sen by the adversary_ A O_adversary (1_adversary) is Oneand W.l.O.g., with nonzero variance (OtherWise, ignore this
that tries to force the outcomeof the coin to O (1, respec-  Step). Now considefu*|?. Forp > 1, convexity implies
tively). We assume that the number of good players is  thatE[[v**!]#] > |[v'|?. Moreover, the increase in expecta-
and that the total number of playerssis= 2k — 1, im- tion can be quantified as a function of the variancg!of .
plying § = 1/n. (For the sake of negative results, for any Hence as the protocol progresses|” is expected to drift
value of§ that is the inverse of an odd integer, the most dif- to larger and larger values, making it unlikely to ever reach

3. If a playeri < k broadcasts at time + 1, then
E[pit!] = pt (a martingale property).

4. Ifi,j < k,i # j and playerj broadcasts at step-1,
thenp! ™ > p! (because thg; are defined relative to
worst case behavior of playegy.

5. If t + 1 is a step in which a player i broadcasts,
then|v! ™t > |v!| (asv! is the weighted average of
the possible vectorg*!, and the adversary’s strategy
maximizesvi*1|).

ficult case is whem = 1/6. The case in whicm = ¢/§ a value of 0, implying that the 1-adversary almost surely

for some integer > 1 can be simulated by having each of causes = 1.

1/6 players play the role of players.) We shall fix an ar- The above sketch of proof is formalized by modeljng

bitrary (supposedly optimal) coin flipping protocol and let as a submartingale. See Section A in the appendiX.

r = min[Pr[z = 0], Pr[z = 1], taken over the worst ad- Acknowledgements

versary. The author is the incumbent of the Joseph and Celia Re-
Consider aset of playei® = {k+1,k+2,...,2k—1}. skin Career Development Chair. This manuscript was writ-

In our proof, these players are controlled by a 1-adversary.ten while visiting Compaq Systems Research Center, Palo
To define its strategy, consider the collection of sEts= Alto, California. | thank Miki Ben-Or, Ravi Boppana, Moni
{T1,...,Tx}, whereT; = {i}|UB. Forl < i < k and Naor, Babu Narayanan, Mike Saks and David Zuckerman
1 <t < T, letp! denote the conditional probability that for directing me to related work, for explaining it to me,

z = 1, where probability is taken conditioned on the first  and for useful discussions.



References [14] M. Saks. “A robust noncryptographic protocol for

(1]

(2]

(3]

(4]

(5]
(6]

[7]

(8]

collective coin flipping”.SIAM J. Discrete Math.2

M. Ajtai, J. Komlos and E. Szemeredi. “AB(n log n) (1989), 240-244.
sorting network”Proc. 15th ACM Symposium on The-

ory of Computing1983, 1-9. [15] L. Valiant. “Short monotone formulae for the majority

function”. J. Algorithms 5 (1984), 363—366.

M. Ajtai and N. Linial. “The influence of large coali-

. . X 16] D. Zuckerman. “Randomness-optimal oblivious sam-
tions”. Combinatorica 13 (1993), 129-145. [16] P

pling”. Random Structures and Algorithmk1:345—

N. Alon and M. Naor. “Coin-flipping games immune 367,1997.

against linear-sized coalitionsSIAM J. Comput.22

(1993), 403-417. A. Proof of new upper bound for collective coin
flipping

M. Ben-Or and N. Linial. “Collective coin flipping”.
In Advances in Computing Researc Micali, ed.,

vol. 5. Randomness and Computation, JAI Press, In this section we complete the proof of Theorem 14.

Greenwich. CT. 1989 91-115 Recall that we are following the evolution in tinteof a
T ’ ' k-dimensional vector® = (pi,...,p}), where each of its
R. Boppana. Private communication. entries is bounded between 0 and 1. We consideriterm

vt|, where|v!|® = 3% (pt)”. We shall choose to be a

R. Boppana and O. Narayanan. “Perfect-information number slightly larger than 1. In every time step, we either
leader election with optimal resilience3IAM J. Com- have an adversarial move, which produces an arbitrary new
put, to appear. v+ with 0!t > |vt|, or a random move, which for some

o _ ~ coordinate satisfiesE[p. "] = pt, and for every other co-
J. Cooper a_md N. Linial. f‘Fa_st pe_rfect—mformatlon ordinate; satisfies;o§+1 > pt. Initially, p? > r for everyi,
Ie_ader-_electlon protocols with linear immunitom- and we wish to upper bound the probabiljtthat at timeT’
binatorica, 15 (1995), 319-332. |vT| = 0, whereT may be arbitrarily large.

O. Goldreich, S. Goldwasser and N. Linial. “Fault-
tolerant computation in the full information model”. In

Proc. 32nd Symposium on Foundations of Computer )
Science1991, 447-457. We shall use known results about submartingales

(see [10], for example). Lej; be the message broadcast

A.l. Submartingales

[9] J. Kahn, G. Kalai and N. Linial. “The influence of ran- by a player at step, and consider the quantity, = |v¢|°.

[10]

[11]

[12]

[13]

dom variables on Boolean functions”. Proc. 29th It satisfies:
Annual Symposium on Foundations of Computer Sci-

ence 1988, 24-26. 1. Elz] < 0.

S. Karlin and H. TaylorA First Course in Stochastic 2. Elzipalyr, - u] > @ (becauser” is a convex
Processes (Second Editiodcademic Press 1975. function wherp > 1).

R. Ostrovsky, S. Rajagopalan and U. Vazirani. “Sim- 3. ¢ is afunction of(yy, ..., u).

ple and efficient leader election in the full information _ )
model”. InProc. 26th Annual ACM Symposium onthe ~ Hencez: is a submartingale.

Theory of Computingl 994, 234-242. o
A.2. Some simplifications

A. Russell, M. Saks and D. Zuckerman. “Lower
bounds for leader election and collective coin-flipping  As we are interested in upper bounding the probability
in the perfect information model”. I®Rroc. 31st An- that|v”| = 0 and the entries of” are nonnegative, we can

nual ACM Symposium on the Theory of Computing w.|.0.g. make the following simplifying assumptions:
1999, 339-347.

. . e Adversarial moves may changé but leave|v!| un-
A. Russell and D. Zuckerman. “Perfect information changed.

leader election itog* n+O(1) rounds”. InProc. 39th
Annual Symposium on Foundations of Computer Sci- e Random moves at coordinatdeave the other coor-
ence 1998, 576-583. dinates unchanged.



We then make the following additional assumption:

e For some fixede (that may depend ok), random
moves have the following effecti ™ = p! 4 ¢ with
probability 1/2, andp! ™ = p! — e with probability
1/2.

This expression increases with and hence can be
bounded from above (using the Taylor expansion}py
2.2
pUes.
Leta = (p — 1)/2p, which is a positive constant when-
everp > 1. From the above we obtain for every step of our
protocolM; > aV;.

To justify this last assumption, consider an arbitrary coin A 4. An inequality for partial sums

flipping protocol P. At each step, a good player would

choose its next broadcast according to some probability dis-

tribution. Approximate this distribution (which may involve
irrational probabilities) by a distribution with rational coef-

For X; and a as above we use the following lemma
(equation (4.14) in [10]):

ficients. Now every event in the protocol has a probability Lemma 15 The probability that the sum of th&;'s ever
whose denominator is a product of all denominators of all drops below-1 is at mostl /(1 + al).

coefficients. Let be the inverse of this product.

Now we simulate the behavior of protocs! by using
only +¢ steps. If at step+ 1 playeri makeg! ™ = p! +a
with probabilityb/ (a+b) andp’t! = pt—bwith probability
a/(a+0), then instead take a random walk frgénwith +e
step size until eithep! + a or p! — b is hit. This gives the
same distribution. If at step+ 1 playeri can givep! ™

more than two different values, partition these values into
two groups (those abovy€ and those not above), and take

a random walk with+e step size until the expectation of

one of these groups is hit. Continue recursively within the

group.

A.3. Drift versus variance

In our special case, where the valuesigfare bounded
(and in fact, arbitrarily small by a small enough choice)of
we have the following corollary:

Corollary 16 For integerc > 1, the probability that the
sum of theX;’s ever drops below-cl is at mostl /(1 +al)°.

Proof: When the sum drops belowl, we may assume
that it is in fact—I, because individual changes to the sum
are arbitrarily small. Hence to drop belowcl, we need
¢ successive drops of magnitudleand the probability of
each new drop is upper bounded independently of previous
drops. O

We can now complete the proof of Theorem 14. Assume
thatr > (1/k)'~# for somes > 0. Then for somel <

Based on the simplifications above, and as we shall be, < 1/(1 — 3) we havezy = [v°° > k(1/k)—F)r >

considering only the valugs?|?, we can ignore adversarial
moves. For other moves, consid&f = z; — x;_;. Let
M; = E[X:|Xs,...X:—1]. Assume the random move at
stept is at coordinaté, and leta = pﬁ‘l. Then

(a+e)f +(a—¢)
2
M; is a decreasing function ef whenl < § < 2 and
a > e (the derivative is negative by concavity of 1), so
we can boundV/; from below by assuming = 1 — ¢. As
we can assume thafs arbitrarily small, we use the the first
terms of the Taylor expansion to obtain

—af

M; =

plp — 1)ap7262

(a£€)f ~a” +pa” te+ 5

with arbitrarily high precision. Substituting = 1 we get
My > p(p —1)€*/2.

LetV; = E[(X; — M;)?|Xa,..., X;_1]. Then simple
manipulations show that with notation as above

Vt_<<a+e>ﬂ—<a—e>ﬂ>2

2

(logk)/a, wherea = (p — 1)/2p as above. Observe that
zr = 0 only if 3 X; drops below—(log k) /«, which has
probability at mos2~'°8¥ = 1 /k, by Corollary 16. Hence

we exhibited a strategy for the adversary that causes the coin
to come up 1 with probability — 1/, contradicting the
assumed value of.

B. Some specialized upper bounds
B.1. One round coin flipping

One round protocols are of special interest. There we
assume that the good players broadcast simultaneously, and
then the bad players broadcast their messages. We make no
restrictions on the length of a message. t&k — 1,k)
denote the probability of the less likely outcome of a global
coin flip z when there aré good players and — 1 bad
players. The protocol in which each player sends a random
bit and the value of is the majority of the bits has(2k —

1,k) = 27F. This is best possible for one round protocols.

Theorem 17 For every one round protocel(2k — 1,k) <
27k,



Proof: For setS with |S| = k and player € S, call a C.1. Leader election with one faulty player
messagen by i deadlyfor S if broadcastingn leavesS in
a situation where regardless of the messages broadcast by The following protocol elects a good leader with proba-
the other members &, the players outside ¢ can force bility 1 — 1/n when there is just one faulty player. Hence
z = 0. Letq(i, S) denote the probability thatbroadcastsa  Theorem 2 is not applicable in this setting.

deadly message fa. StartBaton Passin@t player 1. The penultimate player
We now distinguish between two cases. to receive the Baton then chooses player 1 as the leader with
Case 1:The expectation over S satisfies E[q(i, S)] > probabilityl/n, and the player never receiving the baton as

1/2. In this case there is some sgtwith |[S| = k such  the leader with probability — 1/n.

that the expectation over its playersE[q(i, S)] > 1/2.

Then (by comparing geometric and arithmetic mean) with C.2. Leader election with five players

probability at least — 2% some player inS broadcasts a

deadly message fa¥. When this happens, the complement The following leader election protocol chooses a good
of S (which is of sizek — 1) can forcez = 0, and hence leader with probability at least/9 when the number of

Priz=1] <27 good players is three and the number of bad players is two.
Case 2: The expectation over S satisfies E[q(i, S)] < The question of determining the best valuep@$, 3, 1) is

1/2. In this case there is some sgtwith |S| = £ — 1 open.

such that the expectation over thelayers: outside ofS, Player 1 removes a player chosen uniformly at random.

Elq(i, S\U{i})] < 1/2. Then with probability at least — The removed player then removes one player: player 1 with

2-* some playet outsideS broadcasts a message that is Probability1/2, any other player with probability/6. Ob-

not deadly for the respectivé| J{i}. When this happens, Serve that regardless of whether player 1 is good or bad,

S (which is of size less thah — 1) can forcez = 1. Hence with probability2/3 one of the two removed players is bad.

Prlz=0]<27% O On the remaining three players, select a leader using a pro-
For one round leader election protocols, see Section C.3tocol that succeeds with probability 2/3 when two players
An interesting open question regarding collective coin aré honest, as discussed above. The overall success proba-

flipping protocols is whether there are one round protocols Pility is (2/3)% = 4/9.

with success probability lower bounded as a function ofthe ~ Note that for the corresponding selection problem (five

advantagé, independent of the number of players players, at least three of which are good, need to select one
of five candidates, at least three of which are good), there
B.2. Two player selection games are always two players who can cause a bad candidate to

be chosen with probabilit{2/5)'~2/> ~ 0.577 > 5/9 (by
We used two player games as a subroutine for leaderTheorem 2).

election protocols. .
C.3. One round leader election

Proposition 18 For every two player protocol of selecting

one out oRk—1 candidates of whick candidates are good, Finding the best one round protocol for leader election is
one of the players has a strategy by which the probability of open even in the simplest case of two good players and one
choosing a good candidate is at magt. bad one. The lightest bin protocol chooses a good leader

o . with probability 1/2 (when the good players go into dif-
Proof: We assume for simplicity that the protocol is o ant bins), but is not optimal. Lei = (v5 — 1)/2
sure to end. Playett has a strategy of forcing the se- ¢ = (3—+5)/2 sothatp+ ¢ = 1 andg = p®. The

lected candidate to be betweérandk, as these may be  to)10wing protocol elects a good leader with probability
the good candidates. When playgrlays randomly against p =~ 0.618.

this strategy, one candidate< i < k has probability at
most1/k of being chosen. Now & is the good playerand \yith probability p. Player C does not speak. If player A
{i,k+1,k+2,...,2k — 1} are the good candidates, then sent o then player B is leader. If players A and B sent 1,
playera has a str_ategy_ underwhich the probability of choos- o, player C is leader. If player A sent 1 and B sent 0, then
ing a good candidate is at mastk. O player A is leader.

If all players are honest, then A, B and C each have prob-
C. Some toy examples ability pq, ¢ andp? = ¢ of being leader, respectively. Nei-
ther B nor C can increase their own probability of being
In this section we present selection protocols for severalleaders by cheating. If player A cheats and deterministi-
toy examples. This may help in avoiding making unfounded cally sends 1, then A's probability of being leader increases
conjectures regarding what cannot be done. tog.

Players A and B each send 0 with probabilityand 1



