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Abstract—Software transactional memory (STM) is a concurrency control mechanism that is widely considered to be easier to use by

programmers than other mechanisms such as locking. The first generations of STMs have either relied on visible read designs, which

simplify conflict detection while pessimistically ensuring a consistent view of shared data to the application, or optimistic invisible read

designs that are significantly more efficient but require incremental validation to preserve consistency, at a cost that increases

quadratically with the number of objects read in a transaction. Most of the recent designs now use a “time-based” (or “time stamp-

based”) approach to still benefit from the performance advantage of invisible reads without incurring the quadratic overhead of

incremental validation. In this paper, we give an overview of the time-based STM approach and discuss its benefits and limitations. We

formally introduce the first time-based STM algorithm, the Lazy Snapshot Algorithm (LSA). We study its semantics and the impact of its

design parameters, notably multiversioning and dynamic snapshot extension. We compare it against other classical designs and we

demonstrate that its performance is highly competitive, both for obstruction-free and lock-based STM designs.

Index Terms—Transactional memory, transactions, concurrency, atomicity.
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1 INTRODUCTION

THE recent move to multicore processors has resulted in
an increased research interest in transactional memory,

especially software transactional memory (STM) [1]. STMs
have been introduced as a mean to support lightweight
transactions in concurrent applications. Transactions exe-
cute concurrently and those that fail to commit automati-
cally roll back and restart their execution.

In STMs, there is currently a trade-off between consis-
tency and performance. Recent STM implementations prefer
invisible over visible reads for efficiency reasons (see Section
2), and several of them [2], [3], [4] use optimistic reads in the
sense that the set of objects read by a transaction might not be
consistent. Consistency is only checked at commit time (i.e.,
validation happens during commit only). However, having
an inconsistent view of the state of the objects during the
transactions might, for example, result in infinite loops or the
throwing of exceptions. These failures must then be detected
and masked by the STM or the program’s runtime environ-
ment, which is often both difficult and costly.

Validation, on the other hand, can be costly (see Section 2)
if it is performed in the obvious way, i.e., checking every
object previously read for changes. Typically, the validation
overhead grows linearly with the number of objects a
transaction has accessed so far. When one is forced to
validate after each step, this could result in a validation
overhead that grows quadratically with the number of objects
accessed by a transaction.

In this paper, we investigate a time-based approach to
efficiently construct “snapshots” of the objects accessed by a
transaction that remain consistent during the whole execu-
tion of the transaction. We call this algorithm the Lazy
Snapshot Algorithm (LSA). It keeps the read operations of a
transaction invisible to other transactions, and consistency
is verified by maintaining a validity interval for snapshots
on the basis of object modification time stamps obtained
from a global time base. In this way, the STM can efficiently
verify during each object access that the snapshot of
previous accesses remains consistent.

We have built object-based and word-based STMs using
the time-based algorithm.1 They ensure linearizability [5]
for read-only and update transactions. All transactions, i.e.,
even those that are eventually aborted, have always a
consistent view. Our measurements demonstrate that the
performance of time-based algorithms, such as LSA is very
competitive with other STM designs even when ensuring
linearizability and always provides transactions with a
consistent view. Many STM implementations have been
transformed to use time-based algorithms after we first
introduced LSA in [6]. Furthermore, time-based algorithms
enable using multiple versions of objects to increase
performance of read-only transactions.

In what follows, we first give necessary background
information and a brief overview of the related work in
Section 2. We then present LSA in Section 3 and discuss a few
design issues in detail in Section 4. Two STM implementa-
tions, one object-based and one word-based, are presented in
Section 5. Finally, we evaluate the performance of both
implementations and LSA in general (Section 6) and
conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORK

In early STM implementations, read operations are either
visible or invisible to other threads. In the case of visible reads,
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transactions reading an object or memory location acquire
ownership of this object by, for example, adding themselves
to a list of readers at every object they read from. With
invisible reads, transactions do not announce read opera-
tions to other transactions but ensure a consistent view of the
data by validating the entire read set when reading an object
(which is also called incremental validation).

Visible reads enable writing transactions to detect
conflicts with reading transactions. However, if several
transactions read the same object, their performance will
suffer from contention on the memory location used to
announce read operations. The performance of validation-
based invisible reads decreases if transactions read many
objects because then the costs of incremental validation rise
quickly. Scherer and Scott [7], [8] investigated the trade-off
between validation-based invisible and visible reads. They
showed that visible reads perform better in several bench-
marks but, ultimately, the decision remains application-
specific. Time-based STM algorithms improve upon this
situation by enabling the use of invisible read operations
without having to use incremental validation, thus avoiding
the problematic overheads of both visible and early
invisible read implementations.

To highlight the differences between STM designs that
use visible, validation-based invisible, and time-based
invisible reads, Fig. 1 shows the mean CPU time required
for reading a single object in read-only transactions of
different sizes on a Sun Fire T2000 (see Section 6 for details
on the experimental setup). In this microbenchmark, eight
threads read a given number of objects. All transactions
read the same objects (except for the run labeled with
“disjoint objects”) and there are no concurrent updates to
these objects. SXM and ASTM are STMs that we imple-
mented according to the algorithm descriptions in [9] and
[10]. SXM uses visible reads, whereas ASTM uses invisible
reads with incremental validation. We compare them
against LSA-STM, which uses time-based invisible reads
(see Section 5). All three STMs are object-based Java designs
that essentially differ in how they implement read opera-
tions and consistency of snapshots.

The fixed overhead of a transaction becomes negligible
when the number of objects read during the transaction is
high. SXM’s visible reads have a higher overhead than LSA-
STM’s invisible reads. This is due to the costs of the
compare-and-swap (CAS) operation, as well as the possible
cache misses and CAS failures when transactions on
different CPUs update the reader list of the same object.
ASTM has to guarantee the consistency of reads by
validating all objects previously read in the transaction,

which increases the overhead of read operations when
transactions get larger. Note that, although not shown here,
ASTM transactions with only a single validate at the end of
each transaction perform very similar to LSA-STM. How-
ever, for these transactions, consistency is not guaranteed
during the execution.

All STM designs that we consider in this paper guarantee
linearizability for committed transactions [5]. In earlier work
[6], we showed how to use LSA to build STMs that provide
snapshot isolation [11]. The key idea of snapshot isolation
(SI) is to provide each transaction with a consistent snapshot
of all objects at a given time. Writes of this transaction occur
atomically but possibly at a later time than that of the
snapshot. This decoupling of the reads and the writes has the
potential of increasing the transaction throughput. How-
ever, linearizability is a stronger guarantee and is easier to
use by programmers (even though SI does always provide
transactions with a consistent snapshot).

2.1 Related Work

Software Transaction Memory is not a new concept [1] but it
only recently attracted much attention because of the rise of
multiprocessor and multicore systems.

Two other STM designs based on a notion of time were
published at roughly the same time as LSA. First, Dice et al.
show in [12] how to use a global version clock to improve the
performance of a low-overhead STM. However, in contrast
to LSA, the validity of snapshots is fixed to the start time of a
transaction and is not extended on demand. Second, Spear
et al. [13] use a heuristic based on global counting of commits
of update transactions to decrease the number of validations.
Specifically, their STM still uses validation-based invisible
reads but validates only if some update transaction
committed since the last validation. This heuristic is not
precise and can lead to many unnecessary validations,
especially in large systems with many threads. In contrast,
with LSA, a transaction can precisely detect whether a
snapshot would still be consistent when reading an object,
and validity extensions (which are similar to validations)
only need to be performed when really necessary.

More recently, several STMs have been presented that
use algorithms very similar to LSA [14], [15]. Riegel et al.
[16] show how to extend LSA so that imprecisely
synchronized clocks can be used as a scalable implementa-
tion of the global commit time base. Zhang et al. [17]
present and evaluate several variations of the commit phase
of time-based STM algorithms to avoid unnecessary
updates of global time and unnecessary validations.

The LSA-based STM designs, presented in this paper,
use various implementation techniques derived from other
STMs, most importantly from DSTM [18] and TL2 [12].

3 THE LAZY SNAPSHOT ALGORITHM

We first informally explain the general principle of our
algorithm and the way snapshots are constructed incre-
mentally. We then give a formal definition of the algorithm
and prove its correctness.

3.1 Principle of the Algorithm

Our LSA algorithm [19] handles transactional accesses to
shared objects, which can designate either a complex data
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structure (as in object-oriented programming) or a single
memory location. We will discuss and evaluate two
concrete implementations of our algorithm in Java and C,
which, respectively, support the two different kinds of
shared objects.

Every time an object is written by a committed
transaction, a new version of this object is created and the
previous one becomes obsolete. Our algorithm does not
require to maintain old versions but can take advantage of
them if they are available.

Our transactional memory uses a discrete logical global
clock, designated by clock.2 When an update transaction
commits, it acquires a unique time stamp from clock
(informally, this represents progress by advancing the global
time) and associates it with the objects it has written. That is,
every shared object in the system has a time stamp that
indicates the time from which its current version is valid, as
well as an optional set of older versions with associated time
stamps. The latest version of an object remains valid until it is
overwritten by a committed transaction.

Every transaction maintains a snapshot that corresponds
to a range of valid linearization points. The transaction can
only commit if its snapshot is nonempty at completion time.
Initially, the snapshot of a transaction is ½start;1�, where
start is the value of clock at the time the transaction starts
(see Fig. 2a).

When a transaction reads an object, it must pick a version
whose “validity range” (i.e., the period during which it is
valid, see Section 3.2) intersects with the transaction’s
snapshot. The bounds of the snapshot are adjusted to the
intersection. When reading the latest version of an
object—the usual case—the upper bound is capped by the
current value of the clock (see Fig. 2b with version 1 of
object A being read).

If the latest version of an object read by a transaction has a
validity range that starts after the upper bound of the
transaction’s snapshot (see Fig. 2c with object C being read),
the transaction can either read an old version with a validity

range that overlaps the snapshot, or attempt to extend the
snapshot. An extension consists of trying to move the upper
bound to some later point in time no higher than—but
typically equal to—the current value of the clock. To that
end, the transaction must verify that the versions of all the
objects previously accessed by the transaction are still valid.
If the extension succeeds, the transaction can read the latest
version of the object and adjust the snapshot accordingly (see
Fig. 2d with version 2 of object C being read). Otherwise, if
the transaction cannot read a valid version of the object while
maintaining a nonempty snapshot (more precisely, a snap-
shot with a nonempty validity range), it aborts.

A transaction can only commit if it has a nonempty
snapshot and a commit time that falls within the bounds of
that snapshot. For a read-only transaction, as long as the
snapshot is not empty, any point within the snapshot is a
possible linearization point and, hence, a valid commit
time. Therefore, such transactions can commit immediately
(see Fig. 2e).

Committing update transactions is slightly more compli-
cated. In LSA, writes are visible, i.e., a transaction can
determine whether an object is being written by another
transaction. When an update transaction commits, it writes
new versions of each updated object time stamped by the
commit time of the transaction. Consider the example in
Fig. 2f where transaction T reads objects A and B before
writingC. At commit time, transaction T must acquire a new,
unique time stamp from the global clock that will be
associated with the new version of C being written. Then, it
must validate that all objects previously accessed are still valid
at commit time, which corresponds to the linearization point
of the transaction. In our example, another transaction has
written a new version of objectA, i.e., the version read by T is
not valid anymore. Therefore, the transaction must abort.

We now describe the algorithm more precisely in the rest
of this section.

3.2 Notations

A transactional memory consists of a set of shared objects
O. Transactions are either read-only, i.e., they do not write
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Fig. 2. Principle of the LSA-STM algorithm illustrated on a transaction T accessing three objects A, B, and C. Object versions are delimited by
vertical lines and denoted, respectively, by Ai, Bi, and Ci (i ¼ 1; 2; . . . ). We represent the last committed version with a darker shade of gray. The
thick arrow below the figures indicates the current time and the shaded region between large square brackets represents the transaction snapshot.
(a) Transaction T starts. (b) T reads Object A. (c) T has read B and reads C. (d) T ’s Snapshot is Updated After reading C. (e) T can Read-Only, it
can commit Immediately. (f) T writes C, it aborts as A has been Updated.

2. Note that the global clock can be replaced by more scalable
alternatives, like approximately synchronized clocks as discussed in [16].



any object, or are update transactions, i.e., they write one or
more objects.

We designate the discrete logical global time base of LSA
by clock. It can be implemented using a simple shared integer
counter that is incremented atomically by update transactions
to acquire a unique commit time stamp.3

A transaction T accesses a finite set of objects OT � O.
Each object o traverses a series of versions o1; o2; . . . ; oi. The
transactional memory may—but does not need to—keep
multiple versions of an object at a given time; only the latest
version is necessary.

We assume that objects are only accessed and modified
within transactions. Hence, we can describe a history of an
object with respect to the global time base clock. We denote by
boic the time when version i of object o has been written, and
by doie the last time before the next version is written. We call
the interval between these two bounds the “validity range” of
the object version and we denote it simply by ½oi�. If oi is the
latest version of object o, then doie is undefined (because we
do not know until when oi will be valid), otherwise
doie ¼ boiþ1c � 1. For convenience, we denote by o? the most
recent version of object o.

The sequence HðoÞ ¼ ðbo1c; . . . ; boic; . . .Þ denotes all the
times at which updates to object o are committed by some
update transactions. bo1c is the time when the object was
created. Sequence Hi is strictly monotonically increasing,
i.e., 8oi 6¼ o? : boic < boiþ1c.

Each transaction T maintains a read set T:R and a write
set T:W that keep track of the object versions read and
written by the transaction, respectively. To simplify the
presentation, we assume in the pseudocode that an object is
accessed only once by a transaction (it is either read or
written). We will explain in the description of the algorithm
how multiple accesses by the same transaction are dealt with.

A transaction T incrementally constructs a snapshot of
objects versions and keeps track of the validity ranges of these
objects. To that end, T maintains the known bounds on the
validity rangeT:S of the snapshot. These bounds, denoted by
bT:Sc and dT:Se, are computed as the intersection of the
validity ranges of the objects accessed by the transaction. We
say that the snapshot is consistent if its bounds correspond to a
nonempty range. Note that, by construction, the object
versions contained in a consistent snapshot are always the
most recent versions at any time t 2 T:S.

3.3 Snapshot Construction

The lazy snapshot algorithm is presented in Algorithm 1. A
transaction completes successfully if it executes the algo-
rithm until commit without encountering a call to ABORT (in
which case it immediately terminates). Note that the
pseudocode does neither show how mutual exclusion is
achieved nor how objects are atomically updated in memory.
This will be discussed in Section 5 where we present two
instantiations of LSA: obstruction-free and lock-based.

The main idea of the algorithm is to construct consistent
snapshots on the fly during the execution of a transaction
and to extend the validity range on demand (lazily). By this,
we can reach two goals. First, transactions working on a
consistent snapshot always read consistent data. Second,

verifying that there is an overlap between the snapshot’s
validity range and the commit time of a transaction can
ensure linearizability. We first describe the basic algorithm
and then prove its correctness in Section 3.6.

The objects accessed by a transaction T are only dis-
covered during its execution, i.e., the snapshot cannot be
constructed beforehand. The final value of T:S might not
even be known at the commit time of the transaction. We,
therefore, maintain a preliminary validity range in T:S that
represents the known bounds. When the transaction is
started, we set T:S to ½clockclock;1� (line 3). Note that T:S will
never hold values smaller than the start time of T .

When accessing (i.e., reading or writing) the most recent
version o? of object o, it is not yet known when this version
will be replaced by a new version. We, therefore, conserva-
tively approximate the upper bound of its validity range by
the current time t and we set the new snapshot range to
T:S \ ½bo?c; t� (lines 10 and 21). During the execution of a
transaction, time will advance and thus the preliminary
validity ranges might get longer. We can try to “extend” T:S
by recomputing its upper bound (lines 8, 19, and 25-28). Note
that this is not required for correctness—it only increases the
chance that a suitable object version is available.
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3.4 Read Accesses and Read-Only Transactions

Read accesses in LSA are optimistic and invisible to other
transactions. The algorithm assumes that the underlying
STM always keeps the most recent version of an object. In
addition, we might also have access to some older versions
(e.g., objects that have not yet been garbage collected) that
can be used to increase the probability of obtaining a
consistent snapshot. When a transaction reads object o at
time t, it first tries to select the most recent object version o?
(lines 9-11). If that version cannot be used because it was
created after T:S, we might still read some older version
oi 2 HðoÞ whose validity range overlaps T:S and, hence,
keeps the snapshot consistent (lines 12-14). In that case,
we simply set the new range to T:S \ ½oi�. As a simple
optimization (not shown in the code), we can mark the
transaction as “closed” to indicate that it cannot be extended
anymore. If there are multiple versions to chose from, we
select the most recent one. If no such version exists, the
transaction needs to be aborted (line 16).

If an object previously accessed by the current transaction
is read, the same version must be returned to preserve
consistence even if a new version has been committed in the
meantime; otherwise the snapshot would contain multiple
versions of the same object with nonoverlapping validity
ranges and the transaction would obviously have no
linearization point.

By construction of T:S, LSA guarantees that a transaction
started at time t has a snapshot that is valid at or after the
transaction started, i.e., bT:Sc � t. Hence, a read-only
transaction can commit iff it has used a consistent snapshot
for its whole lifetime (i.e., T:S remains nonempty). The
global clock does not need to be increased when committing
a read-only transaction because no object has been written.
This optimization improves the memory cache hit rate if the
clock is implemented as a counter in shared memory. Note
that, as a consequence, multiple read-only transactions
(even in the same thread) may share the same commit time.

3.5 Write Accesses and Update Transactions

Write accesses are very similar to reads except that one must
always access the latest version o? of an object o (lines 20-22)
because a new version will be written at commit time. If the
validity range of the latest version does not intersect with the
snapshot even after extension, the transaction aborts (line 24).

When writing an object that has already been accessed by
the current transaction, the version previously read or written
must still be the most recent one. If a new version has been
committed in the meantime, the transaction should abort
because snapshot validation cannot succeed at commit time.

Informally, an update transaction T performs the
following steps when committing: 1) it acquires a unique
commit time tc from the global time base clock, which is
atomically incremented (line 31), 2) it validates T (lines 32-
35), and 3) it writes new versions of updated objects with
time stamp tc if validation was successful (lines 36-38), or
aborts otherwise (line 35).

Update transactions can only commit if their validity
range and their unique commit time (i.e., the global version
that they are going to produce) overlap, which guarantees
that the transaction is atomic. This is checked during the
validation step: ðtc � 1Þ 2 T:S. Therefore, accessed object

versions must always be the most recent versions during
the transaction.

The way conflicts are detected and new versions are
atomically updated will be discussed in Section 5. One
should note at this point that, if a new version of an object
accessed by T has been written by another transaction with
an earlier commit time t < tc, validation will fail because
T:S will have an upper bound strictly smaller than t and,
hence, will not contain tc � 1.

3.6 Proof of Linearizability

We now sketch proofs that transactions executed by an STM
using LSA are linearizable. To that end, we need to show that
T takes effect atomically between its start and its commit
time. After introducing two lemmas, we demonstrate that
this is the case for read-only and update transactions.

Lemma 1. For any transaction T that started at time ts, we have
at any time bT:Sc � ts.

Proof. This property directly follows from the algorithm.
bT:Sc is initialized with the start time of the transaction
and it never decreases (it is always set to the maximum
of its current value and another value). tu

Lemma 2. For any transaction T that has accessed at least one
object, at any time t, we have dT:Se � t.

Proof. This property also follows from the algorithm. Each
time an object is accessed, dT:Se is set to the minimum of
the current time and another value. Upon extension, it
never exceeds the current value of the clock. tu

With the help of these lemmas, we can now prove that
transactions executed with LSA are linearizable.

Theorem 1. LSA guarantees that every read-only transaction T
that started at time ts and that successfully commits between
tc � ts and tc þ 1 is linearizable.

Proof. T can only commit if its preliminary validity range
T:S is nonempty when it commits. We know from
Lemmas 1 and 2 that T:S is contained in ½ts; tc�. As T:S
defines by construction a range during which all
accessed objects are valid and not updated, T takes
effect atomically at some time during T:S, which happens
between the start and the end of the transaction. tu

Theorem 2. Each update transaction T that started at time ts,
that commits at time tc � ts, and that satisfies dT:Se � tc � 1,
is linearizable.

Proof. On commit, LSA checks that ðtc � 1Þ 2 T:S (lines 32-
35) and, hence, that all object versions that T has
accessed are still valid up to the time tc when T commits
its changes. Since each update transaction has a unique
commit time, no other transaction can commit at tc. This
means that, logically, T reads all objects and commits all
its updates atomically at time tc, which happens between
the start and the end of the transaction. tu

4 DISCUSSION

In this section, we discuss four aspects in the design space
of the LSA related to the extension of snapshots, accesses to
the global clock, the number of versions to keep, and the
semantics of software transactional memory.
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4.1 Snapshot Extensions

Validation is typically the performance bottleneck of STMs
that use invisible reads. LSA only performs validation at
commit time (for update transactions), or upon extension
when accessing object versions that are more recent than the
snapshot’s upper bound. One might expect that LSA needs to
perform extensions frequently when there are concurrent
updates. It turns out, however, that LSA is quite independent
of the speed in which concurrent transactions increase time.

If there are no concurrent updates to the objects that a
transaction T accesses, the most recent object versions do not
change and no extension is required for obtaining a
consistent read snapshot. This is the case, in particular, if
the value of clock has not changed since the start of T . If clock
has been increased concurrently and T is an update
transaction that commits at time tc, one extension to tc � 1
is needed. LSA requires at most one extension per accessed
object. However, this worst case is extremely rare in practice
because it requires very specific update patterns. In addition,
once a concurrent update to an object previously accessed by
T is detected, the validity range T:S becomes closed and no
further extension is attempted. Experimental results (see
Section 6) also suggest that extensions are seldom required.

4.2 Global Time

Accesses to the global commit time might become a bottle-
neck when many transactions execute concurrently. In
practice, however, the number of accesses to clock remains
small. All transactions must read the current time once when
they are started, and update transactions must additionally
acquire a unique commit time. Further accesses are not
required for correctness. For example, if an update transac-
tion needs to access a version more recent than its current
validity range, it can extend the snapshot’s upper bound up
to any time at which the version was valid, not necessarily up
to the current time (as shown in the algorithm). Time
information gathered from the accessed objects can thus be
used instead of reading the global commit time. Note again
that the global clock can also be replaced by more scalable
alternatives, such as approximately synchronized clocks
[16], and various optimizations can be applied to improve
performance of the commit phase [17].

4.3 Number of Versions

As previously mentioned, LSA can—but does not need
to—maintain multiple object versions. The number of
versions kept has an influence on the likelihood that a
transaction can successfully commit.

LSA requires an update transaction to read the most
current version of an object to be able to commit. A read-only
transaction can commit even if its snapshot contains objects
that have been overwritten at the time it commits. To
guarantee the property that any read-only transaction can
commit without retry, it would be sufficient to keep all object
versions valid at the start of the transaction. The number of
old versions to maintain per object could, therefore, be
bounded by the number of concurrent read-only transactions.

When updating an object, we would need to check if the
validity range of the replaced version contains the start time
of an active read-only transaction. This check is prohibi-
tively expensive to implement and, hence, we prefer

maintaining a constant number of versions or use simple
heuristics to determine at runtime the number of versions to
keep. We evaluate several alternatives in Section 6.

4.4 Linearizability versus Snapshot Isolation

Most STM implementations, including LSA, guarantee
linearizability; i.e., each transaction appears to take effect
atomically at a point between its start and its commit time.
Some STMs guarantee serializability (e.g., [20], [21], [22]) in
an attempt to increase the commit rate of the transactions,
but they require more complex algorithms4 and are not
competitive in terms of performance.

LSA can be configured to provide snapshot isolation [11]
semantics. The idea of snapshot isolation is to take a
consistent snapshot of the data at the time when a
transaction starts, and have all its read and write operations
performed on that snapshot. When an update transaction
tries to commit, it must acquire a unique time stamp that is
larger than any existing start or commit time stamp.
Snapshot isolation does not guarantee serializability but
avoids common isolation anomalies like dirty reads, dirty
writes, lost updates, and fuzzy reads. Snapshot isolation is
an optimistic approach that is expected to perform well for
workloads with short update transactions that conflict
minimally and long read-only transactions. This matches
many important application domains and slight variations
of snapshot isolation are used in common databases.

When configured for snapshot isolation, only three
minor modifications are necessary to the algorithm of
Fig. 1. First, no extensions are performed upon read or
write (lines 8 and 19). Second, all read accesses are directed
to the object versions that were valid at the start time of the
transaction (lines 9-14). Third, validation is omitted upon
commit (lines 32-35). It naturally follows that, when keeping
sufficiently many versions, transactions can always commit
except in case of write/write conflicts when executing
under snapshot isolation.

Algorithms typically need to be adapted for snapshot
isolation. Unlike linearizability, snapshot isolation permits
read/write conflicts. In our experience, this makes algo-
rithms more difficult to design because a programmer
needs to identify which read/write conflicts need to be
detected and convert them into write/write conflicts. For
example, when removing an element from a linked list, one
would need to add an extra write to the node that is
removed. This prevents a concurrent transaction to insert a
new element right after the removed one. Such a conversion
is not always easy, e.g., trying to modify a red/black tree to
support snapshot isolation proved to be more difficult than
expected. Since the performance improvement of using
snapshot isolation instead of linearizability showed to be
minimal [6], we decided to only support linearizability.

5 LSA-BASED STM DESIGNS

We briefly outline in this section, how one can use the LSA
algorithm to implement concrete software transactional
memories. We discuss two designs. The first one is object-
based, written in Java, and provides obstruction freedom.
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The second one is word-based, written in C, and uses
revocable locks (i.e., it is blocking). Both designs will be
evaluated in Section 6.

5.1 An Obstruction-Free Design

Our first LSA implementation is object-based, i.e., the
granularity of conflict detection is an application-specific
object (as defined by the programming language). As it
closely follows the operation principle of DSTM [18], with
the notable addition of multiple versions and LSA-specific
data structures, we only give here a brief overview. It
provides obstruction freedom, which informally means that
any thread that runs for long enough by itself makes
progress. We call this design LSA-STM.

LSA-STM is implemented as a Java software library. The
main components exposed to the application developer are
transactions and transactional objects.

Transactions are implemented as thread-local objects, i.e.,
the scope of a transaction is confined inside the current thread
of control. The application developer can programmatically
start a transaction, try to commit it, or force it to abort.

As in [18], transactions (see Fig. 3) contain a status field,
initially set to ACTIVE, that can be atomically changed to
either COMMITTED or ABORTED using an atomic compare-
and-swap operation depending on whether the transaction
successfully completes or not. A transaction can additionally
keep track of the objects being read and updated (read set
and write set) and maintains time stamps indicating the
snapshot’s lower and upper bounds. Time stamps are
discrete values generated by a global lock-free counter
(shared clock) that can be atomically read and incremented.

Transactional objects are STM-specific wrappers that
control accesses to application objects. They manage multiple
versions of the object’s state on behalf of active transactions.
Regular objects being wrapped must be able to duplicate their
state, i.e., clone themselves, as transactional wrappers need to
create new versions.

Transactional objects maintain a reference to a descriptor,
called locator according to the terminology of [18], that keeps
track of several versions of the object’s state: a tentative (new)
version being written to by an update transaction; a
committed (old) version together with its commit time stamp;

and several previous committed versions of the object
together with their commit time stamp. A locator addition-
ally stores a reference to its owner, i.e., the transaction that
updates the tentative version, if any. Note that the locator
does not keep track of transactions that read the object.

References to a locator can be read atomically and
updated using a CAS operation. Once a locator is
referenced by a transactional object, it becomes immutable
and is never modified.

The current version of the object is defined as follows: if
the owner field of the locator is null, or if the last writer has
aborted, then the current version corresponds to the
committed (old) version of the object with the commit time
stamp stored in the locator; if the last writer has committed,
then the current version corresponds to the tentative (new)
version of the object with a commit time stamp equal to that
of the writer; finally, if the writer is still active, the current
version is undefined.

When a transaction writes an object for the first time, we
check in the current locator whether there is already an
active writer. If that is the case, there is a conflict and we ask
a contention manager to arbitrate before retrying. A conten-
tion manager is a configurable module, invoked when a
conflict occurs between two transactions, which must take
actions to resolve the conflict, e.g., by aborting or delaying
one of the conflicting transactions. If there is no conflict and
the transaction’s snapshot is valid, we create a new locator
and register the current transaction as writer. We store
references to the current and previous versions in the new
locator and we create a new tentative version by duplicating
the state of the current version. Finally, we try to update the
reference to the locator in the transactional object using a
CAS operation. If this fails, then a concurrent transaction
has updated the reference in the meantime and we retry the
whole procedure. Otherwise, the current transaction con-
tinues its execution by accessing its local tentative version.
The use of the CAS operation is key to achieving
obstruction freedom in this design.

Upon reading an object for the first time, a transaction
chooses the most recent version whose validity range
intersects with the transaction’s snapshot. If no such version
exists, it aborts. One should stress that a transaction can read
the last committed version of an object with an active writer.
This allows the STM to defer read-write conflicts to the
commit time of the updating transaction, which minimizes
the duration of such conflicts and lets reading transactions
run unobstructed for a longer time.

It is important to note that aborting or committing a
transaction can be achieved by atomically changing the
status of its descriptor from active to aborted or committed,
respectively. Therefore, upon commit, after acquiring a new
commit time and validating its snapshot, a transaction
simply updates its status using a CAS operation. If this fails,
it has been aborted in the meantime. Otherwise, all the
objects updated by the transaction will be considered as
committed by other transactions.

Our LSA-STM implementation uses a declarative ap-
proach based on Java byte-code transformations to ease
integration of transactional memory in Java applications.
The developer simply needs to add annotations to shared
objects and atomic methods for the STM to automatically
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weave transactional constructs in the application. LSA-STM
is freely available from http://tmware.org/lsastm.

5.2 A Lock-Based Design

Our second LSA implementation is word-based, i.e., conflict
detection is achieved at the level of memory addresses, and
it uses revocable locks to protect shared data from
concurrent accesses. It follows the same general principle
used by TL2 [12] and other word-based STMs designs,
notably Ennals’ [23] and Saha et al.’s [2], [14]. It uses a
single-version variant of LSA, i.e., transactions can only read
the latest committed versions of an object. We call our
implementation TINYSTM because of the simplicity of its
design. Again, given the commonalities of TINYSTM with
other classical STM implementations like TL2, we only
describe its data structures and operation briefly.

As several other word-based STM designs, TINYSTM
relies upon a shared array of locks to protect memory from
concurrent accesses (see Fig. 4). Each lock covers a portion
of the address space. In our implementation, we use a per-
stripe mapping where addresses are mapped to locks based
on a hash function.

Each lock is the size of an address on the target
architecture. Its least-significant bit is used to indicate
whether the lock has been acquired by some transaction. If
it is free, we store in the remaining bits a version number that
corresponds to the commit time stamp of the transaction that
last wrote to one of the memory locations covered by the lock.

If the lock is taken, we store in the remaining bits an
address to the owner transaction.5 Note that addresses point
to structures that are word-aligned and their least-significant
bit is always zero; hence, it can be safely used as lock bit.

When writing to a memory location, a transaction first
identifies the lock entry that covers the memory address and
atomically reads its value. If the lock bit is set, the transaction
checks if it owns the lock using the address stored in the
remaining bits of the entry. In that case, it simply writes the
new value and returns. Otherwise, the transaction can try to
wait for some time6 or abort immediately depending on the
contention management strategy. By default, we use the
latter option in our implementation.

If the lock bit is not set, the transaction tries to acquire the
lock by writing a new value—a pointer to itself and the lock
bit—in the entry using a CAS operation. Failure indicates
that another transaction has acquired the lock in the
meantime and the whole procedure is restarted. If the CAS
succeeds, the transaction becomes the owner of the lock. Our
basic design does thus implement visible writes with objects
being acquired when they are first encountered (this
approach is usually called “encounter-time locking” or
“eager acquire semantics”). Note that TINYSTM also
provides a variant in which lock acquisition is delayed until
the end of the transaction (“commit-time locking” or “lazy
acquire semantics”), as will be discussed in Section 6.

When reading a memory location, a transaction must
verify that the lock is not owned nor updated concurrently.
To that end, the transaction reads the lock, then the memory
location, and finally the lock again (obviously, appropriate
memory barriers are used to ensure correct ordering of
accesses). If the lock is not owned and its value (i.e., version
number) did not change between both reads, then the value
read is consistent.

Once a value has been read, LSA checks if it can be used
to construct a consistent snapshot. If that is not the case and
the snapshot cannot be extended, the transaction aborts.

Upon commit, an update transaction that has a valid
snapshot writes its changes to memory and releases the
locks (by storing its commit time stamp as version number
and clearing the lock bit). Upon abort, it simply releases any
lock it has previously acquired.

TINYSTM provides a simple C API for using STM in
concurrent applications. It is freely available from http://
tmware.org/tinystm.

6 PERFORMANCE EVALUATION

To evaluate the performance of LSA-STM, we compared it
with two other classical implementations. The first one
follows the object-based design with visible reads of SXM
by Herlihy et al. [9]. The second follows the design of Eager
ASTM by Marathe et al. as described in [10]. Henceforth, we
shall call these STM implementations SXM and ASTM. All
three STMs are implemented using Java. Read operations in
SXM are visible to other threads, whereas they are invisible
in ASTM and LSA-STM. All STM implementations guar-
antee that all objects read in a transaction always represent
a consistent view.

Similarly, TINYSTM has been compared with another
widely used word-based implementation, TL2 [12], which
also uses revocable locks. TL2 mainly differs from TINYSTM
in that it does not support incremental snapshot construc-
tion, and it uses a commit-time locking strategy. To evaluate
these implementations, we use a collection of microbe-
nchmarks, as well as the more realistic STAMP [24]
benchmark suite.

6.1 Experimental Setup

All Java benchmarks were run on a Sun Fire T2000 server with
an eight-core 1.2 GHz UltraSPARC T1 processor. Each core
handles four hardware threads concurrently, i.e., the pro-
cessor is capable of processing up to 32 concurrent threads.
The machine has 16 GB of main memory and runs Solaris 10
with Java 1.6.0 (HotSpot 64-bit server VM, mixed mode).
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Fig. 4. Data structures for a lock-based design, similar to TL2 [12].

5. To be accurate, we store a pointer to an entry in the write set of the
owner transaction for faster lookup.

6. Note that the transaction must not wait indefinitely as this might lead
to deadlocks.



The C benchmarks were run on a machine with two
quad-core 3 GHz Intel Xeon processors (X5365) and 5 GB of
main memory running Linux 2.6.24-19 SMP (64-bit). Up to
eight threads can execute concurrently. Benchmarks were
compiled using gcc version 4.2.3 and -O3 optimization
flags. We used TINYSTM version 0.9.5, TL2’s x86 imple-
mentation version 0.9.6, and STAMP version 0.9.10.7

Results were obtained by executing 10 runs of 10 seconds
for every tested configuration and computing the 20 percent-
trimmed mean, i.e., the mean of the six median values.
Unless mentioned otherwise, Java STMs use the Karma [7]
contention manager that provides good overall performance
for most workloads (see Section 6.2.2).

6.2 Java Experiments

We evaluate several aspects of our Java-based LSA-STM
implementation. We first consider transaction throughput.
Next, we briefly observe the effect of different contention
management strategies. We then study the impact of the
number of versions kept, and finally the influence of
extensions.

6.2.1 Throughput

Fig. 5 shows throughput results for three microbenchmarks
that are commonly used to evaluate STM implementations,

namely integer sets implemented via sorted linked lists,
skip lists, and red/black trees. Each benchmark consists of
read transactions, which determine whether an element is
in the set, and update transactions, which either add or
remove an element. The sets are initially populated with a
given number of elements and their size is maintained
constant by alternating insertions and removals. We
consider two sizes for each data structure and four different
update rates ranging from 0 (i.e., all transactions are read-
only) to 100 percent (i.e., only update transactions).

The linked list benchmark models transactions in which
an update depends on a larger amount of data (nodes read
during the list traversal) that might be concurrently
modified by other transactions. We observe good scalability
for low update rates. When the proportion of update
transactions is high and when the list is long, adding more
threads actually decreases performance. Only SXM handles
write-dominated workloads satisfactorily because it uses
visible reads and does not waste resources for doomed
transactions that will eventually abort. The performance of
ASTM is poor, especially with long lists, because of the
incremental validation costs. In contrast, LSA-STM uses
version information to compute the validity range much
faster and scales up well to the number of available CPUs.
Overall, LSA-STM performs significantly better than the
other two designs on workloads with low contention.
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Fig. 5. Performance of LSA-STM compared to ASTM and SXM with three common microbenchmarks.

7. TL2 and STAMP are available from http://stamp.stanford.edu.



For the skip list, STMs using invisible reads (ASTM and
LSA-STM) outperform SXM, which suffers from the
contention on the reader lists. As concurrent transactions
typically follow different paths through the linked list,
contention is limited even with high update rates and we
observe good scalability with all workloads.

Finally, red-black trees exhibit the same trends as skip
lists for low update rates, but do not perform as well when
increasing the frequency of update. This can be explained
by the larger number of nodes modified upon insertion and
removal (due to repainting and rotations) and the higher
contention, especially on nodes close to the root.

6.2.2 Contention Management

We have evaluated the performance of LSA-STM with
different contention managers presented in the literature
[7], [8], [25]. Our evaluation corroborates the conclusions of
[8] that there is no single all-around winner. In fact, in our
benchmarks, the choice of the contention manager had little
influence on the transaction throughput. Fig. 6 shows the
performance of seven contention managers with the linked
list and skip list benchmarks under a significant level of
contention. The contention managers are:

1. Aggressive systematically kills the enemy transaction;
2. Suicide systematically aborts the current transaction;
3. Time stamp kills younger transactions and waits for

the completion of older ones;
4. Polite waits for an exponentially increasing delay for

the conflict to be solved before killing the enemy;
5. Karma takes into account the amount of work

already done by the transactions to decide which
one to abort;

6. Polka extends Karma with a randomized exponential
back off mechanism;

7. Greedy is a variant of Time stamp with the additional
rule that blocked transactions are killed upon
conflict irrespective of their priority.

One can observe that the performance of all contention
managers is remarkably similar. An intuitive explanation
for this lack of significant differences is that LSA uses
invisible reads: only few conflicts trigger the contention
manager and transactions have reduced ability to determine
which other transactions they are in contention with. When
a transaction cannot extend or validate its snapshot, it
aborts without intervention of the contention manager.

6.2.3 Number of Object Versions

In all previous benchmarks, we always configured LSA-STM
to keep eight old versions per object besides the most recent

committed version. Keeping several versions can typically
increase the commit rate but also adds memory overhead. In
the following, we examine this problem further.

In LSA-STM, references to object versions are stored in
both a “locator” structure associated with transactional
objects and an extra version array referenced by the locator.
Like SXM and ASTM, LSA-STM is an object-based STM
based on the design of DSTM [18] and thus uses locators to
manage two object versions. However, whereas the other
STMs use one of these versions as the working copy
modified by updating transactions and the other version as
a backup copy, LSA-STM can—because of LSA and validity
range information—let reading transactions efficiently
access the backup copy when an update is happening (it
is the most recent version) and when the working copy is
committed (then the backup copy is the most recent old
version). Thus, LSA-STM can provide one or two consistent
versions of the object with the same space overhead. In the
following, we denote accesses to the two versions (primary
and backup) managed by the locator as accesses to version 0
or version 1, respectively. The extra version array stores
references to older versions (the most recent version in the
array has number 2).

Which object versions are accessed by a read-only
transaction depends on how objects are concurrently
updated by other transactions. To investigate this, we use a
simple bank microbenchmark, which consists of two transac-
tion types: 1) transfers, i.e., a withdrawal from one account
followed by a deposit on another account, and 2) computa-
tion of the aggregate balance of all accounts. Whereas the
former transaction is small and contains two read/write
accesses, the latter is a long transaction consisting only of read
accesses (one per account and always in account order).

Fig. 7 shows access histograms of transactions comput-
ing the aggregate balance, with 16 threads performing a mix
of 90 percent transfers and 10 percent balance computations
on a set of 1,000 accounts. There are three benchmark
modes: 1) no hotspots, that is, the update probability is
equal for all accounts, 2) hotspots are encountered early
during aggregate-balance computation, and 3) late hotspots.
Hotspots are modeled by making the probability of updates
to the first or last 50 accounts (accessed early or late,
respectively) as probable as updates to other accounts.

We can see how different update frequencies affect
LSA’s version selection (note the logarithmic scale). First,
we observe that most accesses are performed to recent
versions. When there are no hotspots, eight old versions are
sufficient. When hotspots are encountered early during the
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Fig. 6. Evaluation of several contention manager with the linked list and
skip list benchmarks.

Fig. 7. Object versions accessed by long read-only transactions (bank
microbenchmark).



runtime of a transaction, subsequent accesses will use even
more recent object versions, because the relative update
frequency of objects accessed late is smaller. In contrast, if
hotspots are encountered late, the transaction has to use
older versions if one of the objects accessed early has been
updated, which prevents further extension of the validity
range. Thus, the probability that an old version will be
useful increases with the size of the transactions and when
hotspots happen late in their execution.

We now study how the number of versions kept
influencing performance. We investigate three strategies
for determining the number of versions to keep. The first
one consists in maintaining a constant number of old
versions (we experiment with 0, 1, and 10). With the second
strategy (“per-class adaptive”), we maintain a per-class
counter that is incremented each time a transaction aborts
because it cannot find a version old enough to proceed;
this counter indicates how many versions to keep for the
objects of that class. The last strategy (“all potentially
useful”) dynamically determines the number of versions to
keep by discarding versions whose validity range ends
before the start time of the oldest active transaction.

Fig. 8 shows the commit and abort rates of the bank
application when using each of these strategies, with the
same mix of 90 percent transfers and 10 percent balance
computations. We can observe that keeping old versions
can be beneficial as it can help long-running transactions to
commit, especially with early hotspots. In fact, with multi-
ple versions the number of aborts decreases when adding
threads because old versions are more likely to be useful

(i.e., to have been written by a nonconflicting thread).
Dynamically determining which versions to discard based
on the validity ranges (“all potentially useful”) adds non-
negligible runtime overhead and will not be considered
further: keeping a constant or per-class adaptive number of
versions provides the best performance versus overhead
trade-off.

On benchmarks with less contention, as for red-black
trees (Fig. 9), we can observe that the throughput actually
increases when keeping less versions. Indeed, older ver-
sions are rarely necessary and the overhead of maintaining
multiple versions dominates their benefits, as confirmed by
the very limited reduction in abort rates (right-hand graph).
In addition, reading old versions will close the validity
range, which is disadvantageous for transactions that
become update transactions after reading many objects,
e.g., insertions in linked lists. Nevertheless, we have
configured LSA-STM to use by default eight extra versions
because this solution adapts well to various workloads
(note that, in contrast, the variant of the LSA algorithm used
by TINYSTM does not keep old versions).

6.2.4 Snapshot Extensions

We now study the number of validity range extensions
performed by LSA-STM in the benchmarks and whether they
are useful for ultimately committing transactions. Fig. 10
shows the commit and abort rates for each successive
validity range extensions with the linked list, skip list, and
red-black tree microbenchmarks. We first observe that the
number of validity range extensions is very small. The vast
majority of transactions uses less than two to four extensions.

6.2.5 Throughput

In general, it can be observed that committed read-only
transactions mostly use no or a single extension, whereas
aborted read-only transactions often use at least one
extension but seldom more. This is not surprising because
high numbers of extensions can essentially be caused by
scenarios in which 1) the update frequencies of objects
accessed late during the transactions runtime are higher
than those of objects accessed earlier, or 2) updates always
happen immediately prior to accesses. Update transactions
behave as expected: the number of extensions for obtaining
a snapshot is similar to that of read-only transaction, plus
at most one extension per object update and at most one
per commit.

The figure shows that extensions do indeed help increase
the number of committed transactions. In particular, with the
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Fig. 8. Influence of the number of versions on performance without and
with early and late hotspots (bank microbenchmark).

Fig. 9. Influence of the number of versions on performance (red-black
tree with low contention).



skip list, more than half of the extended transactions

successfully commit even with an update rate as high as
50 percent. Note, however, that this increase in number of
committed transactions does not necessarily translate into

better system performance because of the cost of performing
the extensions, as discussed next.

Fig. 11 shows the transaction throughput when limiting

the number of extensions (i.e., the transaction aborts when
the snapshot should be extended but the maximum number
of extensions has been reached). One can observe that

extensions provide the highest throughput benefits with
linked list, as the cost of aborting is important (the complete
list must be traversed again). In contrast, skip lists and red-

black trees access less objects and the cost of an abort is
proportionally smaller, hence, extensions do not provide as
much performance gain.

6.3 C Experiments

We now evaluate the performance of TINYSTM, our LSA
implementation in C. We first reproduce a subset of the Java
experiments and we then evaluate TINYSTM using the

realistic STAMP [24] benchmark suite. We test three
variants of TINYSTM: ETL-WB uses encounter-time locking

(i.e., locks are acquired at the time data are written) and a

write-back update strategy (i.e., writes are buffered until
commit time); ETL-WT also uses encounter-time locking,

but with a write-through update strategy (i.e., writes are
directly performed into main memory and an undo log is

maintained in case of abort); CTL uses commit-time locking
(i.e., locks are acquired at commit time and writes are
buffered). We also compare the performance of TINYSTM
with the x86 port of TL2 [12].

Fig. 12 evaluates the throughput of TINYSTM with the
integer set microbenchmarks, using the same workloads as
for Java experiments (see Fig. 5). We first observe that
TINYSTM systematically outperforms TL2 by a small
margin. Part of this difference can be explained by the
extension mechanism of LSA, which helps improve
throughput over TL2, especially, with high update rates.
Commit-time locking is slightly less efficient than encoun-
ter-time locking on these benchmarks, likely because the
latter detects write conflicts early and avoids wasting time
executing transactions that are doomed to abort. Scalability
is good for all workloads, except write-dominated linked
list where the cost of aborts is high due to the large number
of transactional accesses. Remarkably, all STMs scale well
with the skip list and red-black tree benchmarks even with
100 percent updates.

6.3.1 Snapshot Extensions

Fig. 13 shows the commit and abort rates for each successive
validity range extensions with the three integer set microbe-
nchmarks. Comparing with the Java experiments (see
Fig. 10), we observe that less extensions are performed and
they are, in general, less successful. The obvious reason is that
TINYSTM does not keep multiple versions. Nevertheless,
with high update rates, a non-negligible of extensions lead to
a commit especially in the linked list benchmark.
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Fig. 11. Throughput when limiting the number of extensions for the
linked list, skip list, and red-black tree microbenchmarks.

Fig. 10. Commit and aborts per extension for the linked list, skip list, and
red-black tree microbenchmarks.



6.3.2 Real Applications

In our last experiment, we evaluate TINYSTM on STAMP
[24], a set of realistic benchmarks. We ran tests using six
different applications: genome takes a large number of
DNA segments and matches them to reconstruct the original
source genome; intruder emulates a signature-based
network intrusion detection system; kmeans is an applica-
tion that partitions objects in a multidimensional space into
a given number of clusters; labyrinth executes a parallel
routing algorithm in a three-dimensional grid; ssca2

constructs a graph data structure using adjacency arrays
and auxiliary arrays; and vacation implements an online
travel reservation system. Additionally, two sets of para-
meters are recommended by the developers of STAMP for
vacation and kmeans, for producing executions with low
and high contention. The single-threaded execution time of
STAMP applications takes from a few seconds to several
minutes depending on the benchmark and parameters.

Performance results, shown in Fig. 14, represent the
scaling factor compared with a sequential execution without
STM. While not all applications benefit as much from using
STM, one can observe that both TINYSTM and TL2 exhibit
good scalability up to eight cores. The performance of TL2 is
slightly lower on most experiments, which can be again
explained by the differences in the underlying algorithms.

7 CONCLUSION

Time-based transactional memory inherits the performance

of optimistic invisible reads without incurring the overhead

of incremental validation. We have presented the original

time-based STM algorithm, a lazy snapshot algorithm that

creates consistent snapshots on the fly. It is efficient both

theoretically and practically. The idea is to maintain, for

each transaction, a validity range based on global time that

is sufficient to decide if a snapshot is consistent and if

transactions are linearizable. The snapshots are created in

such a way that their freshness is maximized: they can be

dynamically extended and they might actually become

valid at a time after the corresponding transactions have

started. The algorithm takes advantage of old object

versions, if any, to increase the probability of successfully

constructing a consistent snapshot.
We have presented two instantiations of the LSA

algorithm: an obstruction-free implementation in Java based

on an object-based design, and a lock-based implementation

in C that uses a word-based design. Performance evaluation

demonstrates the benefits of the time-based approach for

STM compared to earlier algorithms. As a matter of fact,

several recent STM implementations have also adopted time-

based designs.
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Fig. 12. Performance of TINYSTM (ETL-WB, WTL-WT, and CTL) and TL2 with three common microbenchmarks.
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