Category-based routing in social networks

00

Denitsa Dobreva

-00

Overview

- Small-world phenomenon
- Definitions and routing algorithm
- Building categories
- Summary

Part 1

Small-world phenomenon

Small world phenomenon

- The phenomenon of elements being perceived to be very far away but are only at a distance of few hops
- The experience of meeting a complete stranger and finding out you share a mutual friend
 - "It's a small world" ... we say

The notion of the small world phenomenon

- Milgram's experiment form the 1960's
 - Given: Social network
 - Idea: How many jumps are needed to reach a random person?
 - Starters: Random people from Nebraska
 - Target: Person, who lived in Massachusetts and worked in Boston
 - Known: Basic information about the target
 - Rule: Send to a people known on first name basis
- Routing using only local information and simple facts

The notion of the small world phenomenon

- Milgram's experiment form the 1960's
 - Given: Social network
 - Idea: How many jumps are needed to reach a random person?
 - Starters: Random people from Nebraska
 - Target: Person, who lived in Massachusetts and worked in Boston
 - Known: Basic information about the target
 - Rule: Send to a people known on first name basis
- Routing using only local information and simple facts
- Routing works!
 - ... and uses always very short paths

Results from Milgram's experiment

- Chain: between 2 and 10 intermediate acquaintances
- Median: 5 intermediates
- Conclusion: Any person appeared to be reachable in just 6 jumps

Results from Milgram's experiment

- Chain: 2 to 10 intermediate acquaintances
- Median: 5 intermediates
- Conclusion: Any person appeared to be reachable in just 6 jumps

Six Degrees of Kevin Bacon

The Oracle of Bacon:

Six Degrees of Kevin Bacon

The Oracle of Bacon

Importance

- Indicative of the underlying structure of modern social networks
- In what other context:
 - Infectious disease spreading
 - computer virus transmission

Observation from Milgram's experiment

- Decisions people take for selecting routes are overwhelmingly categorical in nature
- Categories are based on different factors like:
 - occupation, location, ethnicity

Consider a set of categories ... in the scenario of a social network of celebrities

Part 2

Definitions and routing algorithm

Definitions:

• Collection of categories: $S \subset 2^U$

Definitions

• Membership dimension: memdim(S)= $\max_{u \in U} |cat(u)|$

where $cat(u) = \{C \in S \mid u \in C\}$ is the set of categories of a node u

Definitions

 Maximum length of any shortest path: diam(G)=max_{s,t∈U}sp(s,t)

Definitions

 Maximum length of any shortest path diam(G)=max_{s,t ∈ U}sp(s,t)

Greedy routing algorithm

- The category-based distance function: $d(s,t) = |cat(t) \setminus cat(s)|$
- Sending from u to w: forward to a neighbor v that is closer to w than u: d(v,w) < d(u,w)

Greedy routing algorithm

- The category-based distance function: $d(s,t) = |cat(t) \setminus cat(s)|$
- Sending from u to w: forward to a neighbor v that is closer to w than u: d(v,w) < d(u,w)

Greedy routing algorithm

- The category-based distance function: $d(s,t) = |cat(t) \setminus cat(s)|$
- Sending from u to w: forward to a neighbor v that is closer to w than u: d(v,w) < d(u,w)

Properties of successful routing

- Internally connected:
 - (G, S) is internally connected, if for each $C \in S$, G restricted to C is internally connected

• Shattered: A pair (G, S) is shattered if, for all $s,t \in U, s \neq t$, there is a neighbor u of s and a set $C \in S$ such that C contains u and t, but not s.

Examples

Internally connected & Not shattered Shattered & Not internally connected

Shattered

• In order for someone to advance a letter to a target, there must be an acquaintance that shares additional interests with the target.

• Lemma 1: If (G, S) is not shattered, Routing fails.

What about routing in trees?

Lemma 2:

If G is a tree, and (G, S) is internally connected and shattered, then Routing is guaranteed to work.

• Not enough for arbitrary connected graphs

Summary of the definitions

- memdim(S)= $\max_{u \in U} |cat(u)|$
- diam(G) = $\max_{s,t \in U} sp(s,t)$
- Routing: forward to a neighbor v that: d(v,w) < d(u,w)
- Internally connected
- Shattered

Part 3

Building categories

Lower and upper bounds

If G and S are a graph and a category system such that Routing works:

- $memdim(S) \ge diam(G)$
- memdim(S) = $O((\operatorname{diam}(G) + \log n)^2)$

Lower bound of the cognitive load

• Lemma 3:

If (G,S) be a graph and a category system, respectively, such that Routing works for G and S. Then $memdim(S) \ge diam(G)$

Routing in a graph as path

• Lemma 4:

If G is a path, then there exists an S s.t. (G, S) is shattered and internally connected with memdim(S) = diam(G)

Routing in a graph as path

• Lemma 4:

If G is a path, then there exists an S s.t. (G, S) is shattered and internally connected with memdim(S) = diam(G)

Routing in a binary tree

• Lemma 5:

If G is a binary tree, then there exists an S s.t. (G,S) is shattered and internally connected with: memdim(S) = $O(\text{diam}^2(G))$

Why memdim(S) =
$$O(diam^2(G))$$
 ?

For $v \in U$: $u \in ancestors(v)$ $\Rightarrow v \in S_u$ and v belongs to O(height(u)) sets of L_u and R_u $\Rightarrow v$ belongs to O($\sum_{u \in ancestor(v)}$ height(u)) sets $\Rightarrow O(diam^2(G))$

Converting a n-node rooted tree

• Lemma 6:

Let T be an n-node rooted tree with height h. We can embed T into a binary tree such that the ancestor-descendant relationship is preserved, and the resulting tree has a height $O(h+\log n)$

Upper bound of the cognitive load

Theorem:

If G is connected, there exists S s.t. Routing works and memdim(S) = $O((\operatorname{diam}(G) + \log n)^2)$

- Compute a low-diameter spanning tree T of G
- Arbitrary root T and embed T into a binary B
 with height O(diam(T) + log n), by Lemma 6
- $\operatorname{diam}(B) = O(\operatorname{diam}(T) + \log n)$
- By Lemma 5 \longrightarrow memdim(S_B) = O((diam(T) + log n)²)
- From S_B to S_T and memdim $(S_T) \le \text{memdim}(S_B) = O((\text{diam}(T) + \log n)^2)$

memdim(S) = O((diam(G) + $\log n)^2$)

BFS

 $diam(T) \leq 2diam(G)$

Summary

- Arbitrary graph: memdim(S) \ge diam(G)
- Path: memdim(S) = diam(G)
- Binary tree: memdim(S) = $O(\text{diam}^2(G))$
- From arbitrary to binary tree: height of O(h+log *n*)
- Arbitrary graph: memdim(S) = $O((\operatorname{diam}(G) + \log n)^2)$

Thank you!

