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Part 1 
 

 Small-world phenomenon 
 



Small world phenomenon 

•  The phenomenon of elements being perceived to be very 
far away but are only at a distance of few hops 	


	

•  The experience of meeting a complete stranger and 

finding out you share a mutual friend	


•  “It’s a small world” … we say	




The notion of the small world phenomenon 

•  Milgram’s experiment form the 1960’s	

	

▫  Given: 	
Social network	

▫  Idea: 	
How many jumps are needed to reach a random person?	

▫  Starters: 	
Random people from Nebraska	

▫  Target: 	
Person, who lived in Massachusetts and worked in Boston	

▫  Known: 	
Basic information about the target	

▫  Rule: 	
Send to a people known on first name basis	


•  Routing using only local information and simple facts	


	




The social network of celebrities 
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The notion of the small world phenomenon 

•  Milgram’s experiment form the 1960’s	

	

▫  Given: 	
Social network	

▫  Idea: 	
How many jumps are needed to reach a random person?	

▫  Starters: 	
Random people from Nebraska	

▫  Target: 	
Person, who lived in Massachusetts and worked in Boston	

▫  Known: 	
Basic information about the target	

▫  Rule: 	
Send to a people known on first name basis	


•  Routing using only local information and simple facts	


•  Routing works! 	

… and uses always very short paths	


	




Results from Milgram’s experiment 

 	

•  Chain: 	
between 2 and 10 intermediate acquaintances	


•  Median: 	
5 intermediates	

	

•  Conclusion: Any person appeared to be reachable in just 6 jumps	


	




Results from Milgram’s experiment 

  
•  Chain:  2 to 10  intermediate acquaintances 

•  Median:  5 intermediates 

•  Conclusion: Any person appeared to be reachable in just 6 
jumps 

 
  “Six degrees of separation” 





Six Degrees of Kevin Bacon 

The Oracle of Bacon: 
 
 

        
     



Six Degrees of Kevin Bacon 

The Oracle of Bacon 



Importance 

•  Indicative of the underlying structure of modern social 
networks	


•  In what other context:   	

▫  infectious disease spreading 	

▫  computer virus transmission 	




Observation from Milgram’s experiment 

	

•  Decisions people take for selecting routes are overwhelmingly 

categorical in nature	


•  Categories are based on different factors like:	

▫  occupation, location, ethnicity	




Consider a set of categories 
… in the scenario of a social network 

of celebrities 









Part 2 
 

Definitions and routing algorithm 



Definitions:  
 •  Collection of categories:  

 
                                               

 
 

S ⊂ 2U



Definitions 
 •   Membership dimension:	


     	

     where                                         is the set of categories of a node u 	

                                              	


 
 

memdim(S)=
u ∈ U
max cat(u)

cat(u)={C∈S | u ∈C}



Definitions 
 

•  Maximum length of any shortest path:	


 
  
 
 
 

diam(G)=maxs,t ∈ Usp(s,t)
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Greedy routing algorithm 
 
•  The category-based distance function:  	

	
	


•   Sending from u to w: forward to a neighbor v that is closer to w than u:	

 d(v,w) < d(u,w)

  d s, t( ) = cat t( ) \ cat s( )
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Greedy routing algorithm 
 
•  The category-based distance function:  	

	
	


•   Sending from u to w: forward to a neighbor v that is closer to w than u:	

 d(v,w) < d(u,w)

  d s, t( ) = cat t( ) \ cat s( )



Properties of successful routing 

•  Internally connected:	

(G, S) is internally connected, if for each C     S, G restricted to C is 

internally connected	

	

	


•  Shattered: A pair (G, S) is shattered if, for all                       , there is a 
neighbor u of s and a set             such that C contains u and t, but not s.	


∈

s,t ∈U, s ≠ t
C ∈S
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Shattered 

•  In order for someone to advance a letter to a target, there must be an 
acquaintance that shares additional interests with the target.	


•  Lemma 1: If (G, S) is not shattered, Routing fails.	




What about routing in trees? 

Lemma 2: 	

If G is a tree, and (G, S) is internally connected and shattered, then 
Routing is guaranteed to work.	

	

•  Not enough for arbitrary connected graphs	
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Summary of the definitions  

•                                 

•                                

•  Routing: forward to a neighbor v that:  	
 	
 	

	
 	
	


•  Internally connected	

	

•  Shattered	


memdim(S)=
u ∈ U
max cat(u)

diam(G) = maxs,t ∈Usp(s, t)

d(v,w) < d(u,w)



Part 3 
 

 Building categories 



Lower and upper bounds 
 

 If G and S are a graph and a category system such that 
Routing works: 	


 
•    

•    
   

memdim(S) ≥ diam(G)

memdim(S) =  O((diam(G) +  logn)2 )



Lower bound of the cognitive load 

•  Lemma 3: 	

If  (G,S) be a graph and a category system, respectively, such that 
Routing works for G and S. Then                                          	

 

          

memdim(S) ≥ diam(G)



Routing in a graph as path 
•  Lemma 4: 	

If G is a path, then there exists an S s.t. (G, S) is shattered and 
internally connected with memdim(S) = diam(G)	
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Routing in a graph as path 

•  Lemma 4: 	

If G is a path, then there exists an S s.t. (G, S) is shattered and 
internally connected with memdim(S) = diam(G)	
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Routing in a binary tree 

•  Lemma 5:	

 If G is a binary tree, then there exists an S s.t. (G,S) is shattered 
and internally connected with:  	

	


memdim(S) =O(diam2(G))

Why memdim(S) = O(diam2 (G)) ?

For v∈U: u ∈ancestors(v)
⇒  v ∈Su  and v belongs to O(height(u)) sets of Lu  and Ru

⇒ v belongs to O( u ∈ ancestor(v) height(u)∑ ) sets 

⇒O(diam2 (G))



Converting a n-node rooted tree 

•  Lemma 6: 	

Let T be an n-node rooted tree with height h. We can embed T 
into a binary tree such that the ancestor-descendant relationship 
is preserved, and the resulting tree has a height 	
O(h+logn)



Upper bound of the cognitive load 
Theorem: 	


If G is connected, there exists S s.t. Routing works and 	

	


•  Compute a low-diameter spanning tree T of G 	


•  Arbitrary root T and embed T into a binary B 	


    with height                                , by Lemma 6	


•                           	


•  By Lemma 5 	


•  From                 and	


	
 	
 	
	

                               	


memdim(S) =  O((diam(G) +  logn)2 )

diam(B) = O(diam(T) + logn)
memdim(SB) = O((diam(T) + logn)2 )

SB  to ST

diam(T) ≤  2diam(G)
BFS 

O(diam(T) + logn)

memdim(ST ) ≤ memdim(SB ) = O((diam(T) +logn)2 )

memdim(S ) = O((diam(G) +logn)2 )



Summary 
	

•   Arbitrary graph:	


•  Path: memdim(S) = diam(G)	


•  Binary tree: 	


•  From arbitrary to binary tree: height of 	

	

•   Arbitrary graph:	

	

  	


memdim(S) ≥ diam(G)

memdim(S) =O(diam2(G))

O(h+logn)

memdim(S) =  O((diam(G) +  logn)2 )



Thank you! 


