

Overview

- Small-world phenomenon
- Definitions and routing algorithm
- Building categories
- Summary

Part 1

Small-world phenomenon

Small world phenomenon

- The phenomenon of elements being perceived to be very far away but are only at a distance of few hops
- The experience of meeting a complete stranger and finding out you share a mutual friend
- "It's a small world" ... we say

The notion of the small world phenomenon

- Milgram's experiment form the 1960's
- Given: Social network
- Idea: How many jumps are needed to reach a random person?
- Starters: Random people from Nebraska
- Target: Person, who lived in Massachusetts and worked in Boston
- Known: Basic information about the target
- Rule: Send to a people known on first name basis
- Routing using only local information and simple facts

The social network of celebrities

The notion of the small world phenomenon

- Milgram's experiment form the 1960's
- Given: Social network
- Idea: How many jumps are needed to reach a random person?
- Starters: Random people from Nebraska
- Target: Person, who lived in Massachusetts and worked in Boston
- Known: Basic information about the target
- Rule: Send to a people known on first name basis
- Routing using only local information and simple facts
- Routing works!
... and uses always very short paths

Results from Milgram's experiment

- Chain: between 2 and 10 intermediate acquaintances
- Median: 5 intermediates
- Conclusion: Any person appeared to be reachable in just 6 jumps

Results from Milgram's experiment

- Chain: 2 to 10 intermediate acquaintances
- Median: 5 intermediates
- Conclusion: Any person appeared to be reachable in just 6 jumps
"Six degrees of separation"

Six Degrees of Kevin Bacon

The Oracle of Bacon:

Six Degrees of Kevin Bacon

The Oracle of Bacon

Importance

- Indicative of the underlying structure of modern social networks
- In what other context:
- infectious disease spreading
- computer virus transmission

Observation from Milgram's experiment

- Decisions people take for selecting routes are overwhelmingly categorical in nature
- Categories are based on different factors like:
- occupation, location, ethnicity

Consider a set of categories ... in the scenario of a social network of celebrities

Part 2

Definitions and routing algorithm

Definitions:

- Collection of categories: $S \subset 2^{U}$

Definitions

- Membership dimension: $\operatorname{memdim}(S)=\max _{u \in U}|\operatorname{cat}(u)|$
where $\operatorname{cat}(u)=\{C \in S \mid u \in C\}$ is the set of categories of a node u

Definitions

- Maximum length of any shortest path: $\operatorname{diam}(\mathrm{G})=\mathrm{max}_{\mathrm{s}, \mathrm{t} \in \mathrm{U}} \mathrm{sp}(\mathrm{s}, \mathrm{t})$

Definitions

- Maximum length of any shortest path $\operatorname{diam}(\mathrm{G})=\max _{\mathrm{s}, \mathrm{t} \in \mathrm{U}} \mathrm{sp}(\mathrm{s}, \mathrm{t})$

Greedy routing algorithm

- The category-based distance function: $\mathrm{d}(\mathrm{s}, \mathrm{t})=|\operatorname{cat}(\mathrm{t}) \backslash \operatorname{cat}(\mathrm{s})|$
- Sending from u to w : forward to a neighbor v that is closer to w than u : $\mathrm{d}(\mathrm{v}, \mathrm{w})<\mathrm{d}(\mathrm{u}, \mathrm{w})$

Greedy routing algorithm

- The category-based distance function: $\mathrm{d}(\mathrm{s}, \mathrm{t})=|\operatorname{cat}(\mathrm{t}) \backslash \operatorname{cat}(\mathrm{s})|$
- Sending from u to w : forward to a neighbor v that is closer to w than u : $\mathrm{d}(\mathrm{v}, \mathrm{w})<\mathrm{d}(\mathrm{u}, \mathrm{w})$

Greedy routing algorithm

- The category-based distance function: $\mathrm{d}(\mathrm{s}, \mathrm{t})=|\operatorname{cat}(\mathrm{t}) \backslash \operatorname{cat}(\mathrm{s})|$
- Sending from u to w : forward to a neighbor v that is closer to w than u : $\mathrm{d}(\mathrm{v}, \mathrm{w})<\mathrm{d}(\mathrm{u}, \mathrm{w})$

Properties of successful routing

- Internally connected:
(G, S) is internally connected, if for each $C \in S, G$ restricted to C is internally connected
- Shattered: A pair (G, S) is shattered if, for all $s, t \in U, s \neq t$, there is a neighbor u of s and a set $C \in S$ such that C contains u and t, but not s.

Examples

Internally connected
$\&$
Not shattered

Shattered \&
Not internally connected

Shattered

- In order for someone to advance a letter to a target, there must be an acquaintance that shares additional interests with the target.
- Lemma 1: If (G, S) is not shattered, Routing fails.

What about routing in trees?

Lemma 2:

If G is a tree, and (G, S) is internally connected and shattered, then Routing is guaranteed to work.

- Not enough for arbitrary connected graphs

Summary of the definitions

- $\operatorname{memdim}(S)=\max _{u \in \mathrm{U}}|\operatorname{cat}(\mathrm{u})|$
- $\operatorname{diam}(\mathrm{G})=\max _{\mathrm{s}, \mathrm{t} \in \mathrm{U}} \mathrm{sp}(\mathrm{s}, \mathrm{t})$
- Routing: forward to a neighbor v that: $\mathrm{d}(\mathrm{v}, \mathrm{w})<\mathrm{d}(\mathrm{u}, \mathrm{w})$
- Internally connected
- Shattered

Part 3

Building categories

Lower and upper bounds

If G and S are a graph and a category system such that Routing works:

- $\operatorname{memdim}(S) \geq \operatorname{diam}(G)$
- $\operatorname{memdim}(\mathrm{S})=O\left((\operatorname{diam}(G)+\log n)^{2}\right)$

Lower bound of the cognitive load

- Lemma 3:

If (G, S) be a graph and a category system, respectively, such that Routing works for G and S. Then memdim(S) $\geq \operatorname{diam}(G)$

Routing in a graph as path

- Lemma 4:

If G is a path, then there exists an S s.t. (G, S) is shattered and internally connected with memdim $(\mathrm{S})=\operatorname{diam}(\mathrm{G})$

Routing in a graph as path

- Lemma 4:

If G is a path, then there exists an S s.t. (G, S) is shattered and internally connected with memdim $(\mathbf{S})=\operatorname{diam}(\mathrm{G})$

Routing in a binary tree

- Lemma 5:

If G is a binary tree, then there exists an S s.t. (G,S) is shattered and internally connected with: memdim $(S)=O\left(\operatorname{diam}^{2}(G)\right)$

Why memdim $(\mathrm{S})=\mathrm{O}\left(\operatorname{diam}^{2}(\mathrm{G})\right)$?
For $\mathrm{v} \in \mathrm{U}: \mathrm{u} \in$ ancestors(v)
$\Rightarrow v \in S_{u}$ and v belongs to $O($ height $(u))$ sets of L_{u} and R_{u}
$\Rightarrow \mathrm{v}$ belongs to $\mathrm{O}\left(\sum_{\mathrm{u} \in \text { ancestor(v) }}\right.$ height(u$\left.)\right)$ sets
$\Rightarrow \mathrm{O}\left(\operatorname{diam}^{2}(\mathrm{G})\right)$

Converting a n-node rooted tree

- Lemma 6:

Let T be an n -node rooted tree with height h . We can embed T into a binary tree such that the ancestor-descendant relationship is preserved, and the resulting tree has a height $\mathrm{O}(\mathrm{h}+\log n)$

Upper bound of the cognitive load

Theorem:

If G is connected, there exists S s.t. Routing works and $\operatorname{memdim}(\mathrm{S})=O\left((\operatorname{diam}(G)+\log n)^{2}\right)$

- Compute a low-diameter spanning tree T of $\mathrm{G} \stackrel{\mathrm{BFS}}{ } \operatorname{diam}(\mathrm{T}) \leq 2 \operatorname{diam}(\mathrm{G})$
- Arbitrary root T and embed T into a binary B with height $\mathrm{O}(\operatorname{diam}(\mathrm{T})+\log n)$, by Lemma 6
- $\operatorname{diam}(\mathrm{B})=\mathrm{O}(\operatorname{diam}(\mathrm{T})+\log n)$
- By Lemma $5 \Rightarrow \operatorname{memdim}\left(\mathrm{~S}_{\mathrm{B}}\right)=\mathrm{O}\left((\operatorname{diam}(\mathrm{T})+\log n)^{2}\right)$
- From S_{B} to S_{T} and $\operatorname{memdim}\left(\mathrm{S}_{T}\right) \leq \operatorname{memdim}\left(\mathrm{S}_{B}\right)=\mathrm{O}\left((\operatorname{diam}(\mathrm{T})+\log n)^{2}\right)$
$\operatorname{memdim}(\mathrm{S})=\mathrm{O}\left((\operatorname{diam}(\mathrm{G})+\log n)^{2}\right)$

Summary

- Arbitrary graph: memdim(S) $\geq \operatorname{diam}(\mathrm{G})$
- Path: $\operatorname{memdim}(\mathrm{S})=\operatorname{diam}(\mathrm{G})$
- Binary tree: $\operatorname{memdim}(S)=O\left(\operatorname{diam}^{2}(G)\right)$
- From arbitrary to binary tree: height of $\mathrm{O}(\mathrm{h}+\log n)$
- Arbitrary graph: $\operatorname{memdim}(\mathrm{S})=O\left((\operatorname{diam}(G)+\log n)^{2}\right)$

Thank you!

