Distributed \((\Delta+1)\)-Coloring in Linear \((\text{in } \Delta)\) Time

Nico Eigenmann
Authors

- Leonid Barenboim
- Michael Elkin
- University of Negev
Message Passing Model

- Undirected Graph G(V,E)
- Synchronous
- Reliable Message Transfer
- Unlimited Computing Power
- Unlimited Message Size
What is a coloring?

A coloring is a function $\varphi : V \rightarrow \mathbb{N}$, that assigns a color to each vertex, such that for all edges $(u,v) \in E$ $\varphi(u) \neq \varphi(v)$
What is a coloring?

A coloring is a function \(\varphi : V \rightarrow \mathbb{N} \), that assigns a color to each vertex, such that for all edges \((u,v) \in E\) \(\varphi(u) \neq \varphi(v) \).
Applications

- Scheduling
- Pattern Matching
- Radio Frequency Assignment
What is Δ?

- $\text{deg}(v)$: #edges adjacent to v
- $\Delta = \max_{v \in V} \{\text{deg}(v)\}$
Why \((\Delta+1)\)-coloring?
Why \((\Delta+1)\)-coloring?
log

- \(\log^i(n) = \log(\log^{i-1}(n)) \)
- \(\log^*(n) = \min\{i \mid \log^i(n) < 2\} \)
m-defective Coloring
m-defective Coloring
Previous Work

- Kuhn, Wattenhofer
deterministic: $O(\Delta \cdot \log \Delta + \log^* n)$
randomized: $O(\Delta \cdot \log \log n)$

- New deterministic
$O(\Delta) + \frac{1}{2} \log^* n$
Algorithms used in the paper

- Szegedy Vishwanatan-algorithm
 - Input: Graph G
 - Output: valid $O(\Delta^2)$-coloring
 - Running Time: $\frac{1}{2}\log^*n + O(1)$

- Kuhn Wattenhofer-iteration
 - Input: valid m-coloring
 - Output: valid $(\Delta+1)$-coloring
 - Running Time: $O(\Delta \log(m/\Delta))$
Idea of the algorithm

- Divide Graph into subgraphs
 - Procedure Defective Color
- Color each subgraph
- Merge colorings of subgraphs
Procedure Refine

- **Input**
 - m-defective c-coloring
 - Parameter p, $1 \leq p \leq \Delta$

- **Output**
 - $(m + \lfloor \Delta/p \rfloor)$-defective p^2-coloring

- **Running Time**
 - $O(c)$
Procedure Refine

- $S(v)$: all neighbors of v with “smaller” color
- $B(v)$: all neighbors of v with “bigger” color
Procedure Refine

- Each vertex:
 - If \(v \) has no vertices in \(B(v) \) choose number \(b \in \{1..p\} \) at random and send it to all neighbors
 - Else wait until received \(b \) from all neighbors in \(B \)
Procedure Refine

- Each vertex:
 - If received all numbers b from neighbors in B
 - Choose number b ∈ {1..p}, which is has least occurrence in all of the received b
Procedure Refine

- Each vertex:
 - If received all numbers b from neighbors in B
 - Choose number $b \in \{1..p\}$, which is has least occurrence in all of the received b
 - Send b to all neighbors
Procedure Refine

- Each vertex:
 - If v has no vertices in $S(v)$ choose number $s \in \{1..p\}$ at random and send it to all neighbors
 - Else wait until received s from all neighbors in S
Procedure Refine

Each vertex:

- If received all numbers s from neighbors in S
- Choose number s ∈ \{1..p\}, which is has least occurrence in all of the received s
Procedure Refine

- Each vertex:
 - If received all numbers \(s \) from neighbors in \(S \)
 - Chose number \(s \in \{1..p\} \), which has least occurrence in all of the received \(s \)
 - Send \(s \) to all neighbors
Procedure Refine

- Each vertex:
 - Final color: \((b-1) \cdot p + s\)
Procedure Refine

- **Input**
 - m-defective c-coloring
 - Parameter p, \(1 \leq p \leq \Delta\)

- **Output**
 - \((m + \lfloor \Delta/p \rfloor)\)-defective \(p^2\)-coloring

- **Running Time**
 - \(O(c)\)
Adriana Lima
Procedure Defective Color

- **Input**
 - Graph G
 - Parameter p, $1 \leq p \leq \Delta$
 - Parameter q, $p^2 < q$

- **Output**
 - $O(\log \Delta / \log(q/p^2) \cdot (\Delta/p))$ defective p^2-coloring of G

- **Running Time**
 - $O(\log^*n + \log \Delta / \log(q/p^2) \cdot q)$
Procedure Defective Color

- Compute initial $O(\Delta^2)$-coloring

 $\#\text{colors } c = d \cdot \Delta^2$
Procedure Defective Color

1,...,p^2

Refine

1,...,q

1,...,p^2

Refine

1,...,q

1,...,p^2

Refine

G(V_1)

p^2+1,...,2p^2

Refine

q+1,...,2q

G(V_2)

2p^2+1,...,3p^2

Refine

2q+1,...,3q

G(V_3)

3p^2+1,...,4p^2

Refine

3q+1,...,4q

G(V_4)
Procedure Defective Color

- # Iterations:
 - $\log d \cdot \Delta^2 / \log(q/p^2)$

- Procedure Refine
 - Running time $O(q)$
 - Δ/p-defective
Procedure Defective Color

- **Input**
 - Graph G
 - Parameter p, $1 \leq p \leq \Delta$
 - Parameter q, $p^2 < q$

- **Output**
 - $O(\log\Delta/\log(q/p^2) \cdot (\Delta/p))$ defective p^2-coloring of G

- **Running Time**
 - $O(\log^*n + \log\Delta/\log(q/p^2) \cdot q)$
The first algorithm

- Run Defective Color
 - \(p = \log\Delta \)
 - \(q = \Delta^\varepsilon \)
- \(O(\Delta / \log\Delta) \)-defective \((\log\Delta)^2\)-coloring
- Create subgraphs \(V_j \) for each color \(j \in \{1..[(\log\Delta)^2]\} \)
- \(\Delta_j = O(\Delta / \log\Delta) \)
- Run KW-algorithm on each subgraph with \(O(\Delta / \log\Delta) \)-colors
- Valid \(O((\log\Delta)^2 \cdot \Delta / \log\Delta)) = O(\Delta \cdot \log\Delta) \)-coloring
- Run KW-iteration
The first algorithm (Runtime)

- Defective Color: $O(\Delta^\varepsilon) + \frac{1}{2} \log^* n$
- KW-algorithm: $O(\Delta + \log^* n)$
- KW-iteration: $O(\Delta \cdot \log \log \Delta)$

Total:

$O(\Delta \cdot \log \log \Delta + \log^* n)$
Recursive Algorithm

- Assume that algorithm A_k computes $(\Delta + 1)$-coloring
 Running time: $O(\Delta \log^{(k)}\Delta) + \frac{k}{2} \log^* n$
- Algorithm A_{k+1}
 - Defective Color
 - $p = \log^k \Delta$
 - $q = \Delta^\varepsilon$
 - Run A_k on all subgraphs
 - Run KW-iteration
Recursive Algorithm (Runtime)

- Defective Color: $O(\Delta^\varepsilon) + \frac{1}{2} \log^*n$
- A_k-algorithm: $O(\Delta) + k/2 \log^*n$
- KW-iteration: $O(\Delta \log^{(k+1)}\Delta)$

Total:

$O(\Delta \log^{(k+1)}\Delta) + (k+1)/2 \log^*n$
Recursive Algorithm

- A_k-algorithm:
 \[O(\Delta \log^{(k)} \Delta + \log^* n) \]

- $A_{\log^* \Delta}$-algorithm:
 \[O(\Delta + \log^* \Delta \cdot \log^* n) \]
Final improvements

- Each iteration calls Defective Color
- Defective Color invokes SV-algorithm
- SV needs $\frac{1}{2}\log^* n$ time
Final algorithm

- Final version:
 \(O(\Delta) + \frac{1}{2} \log^* n \)

- Trade off version
 \(O(\Delta^* t) \)-coloring in \(O(\Delta/t) + \frac{1}{2} \log^* n \) time
Conclusion

- Improved $(\Delta+1)$-coloring algorithm
- Using defective coloring

Further Research

- Improve p-defective q-coloring
Q & A
Theorem by Erdös, Frankl, Füredi

For every positive integer \(A \), there exists a collection \(T \) of \(\Theta(A^3) \) subsets of \(\{1,2,\ldots,cc\cdot A^2\} \) such that for every \(A+1 \) subsets

\[
T_0 \not\subseteq \bigcup_{i=1}^{A} (T_i)
\]

\(T_0', T_1', \ldots, T_A \in T \),
Procedure Defective Color

- Compute initial coloring ϕ, #colors $c=d\cdot\Delta^2$
- while $c>p^2$ for each vertex v
 - $j = \min\{\lceil \phi(v)/q \rceil, \lfloor c/q \rfloor \}$
 - Vertex v joins set V_j
 - $\tau_j(v) = \text{Invoke Refine on } G(V_j)$
 - $\phi(v) = \tau_j(v) + (j-1)\cdot p^2$
 - $c = \lfloor c/q \rfloor \cdot p^2$
- end while
- Return ϕ