
Chapter 4

Distributed Sorting

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of sorting [and searching]!”

– Donald E. Knuth, The Art of Computer Programming

In this chapter we study a classic problem in computer science—sorting—
from a distributed computing perspective. In contrast to an orthodox single-
processor sorting algorithm, no node has access to all data, instead the to-be-
sorted values are distributed. Distributed sorting then boils down to:

Definition 4.1 (Sorting). We choose a graph with n nodes v1, . . . , vn. Initially
each node stores a value. After applying a sorting algorithm, node vk stores the
kth smallest value.

Remarks:

• What if we route all values to the same central node v, let v sort the values
locally, and then route them to the correct destinations?! According to the
message passing model studied in the first few chapters this is perfectly
legal. With a star topology sorting finishes in O(1) time!

Definition 4.2 (Node Contention). In each step of a synchronous algorithm,
each node can only send and receive O(1) messages containing O(1) values, no
matter how many neighbors the node has.

Remarks:

• Using Definition 4.2 sorting on a star graph takes linear time.

4.1 Array & Mesh

To get a better intuitive understanding of distributed sorting, we start with two
simple topologies, the array and the mesh. Let us begin with the array:

31

32 CHAPTER 4. DISTRIBUTED SORTING

Algorithm 16 Odd/Even Sort

1: Given an array of n nodes (v1, . . . , vn), each storing a value (not sorted).
2: repeat
3: Compare and exchange the values at nodes i and i + 1, i odd
4: Compare and exchange the values at nodes i and i + 1, i even
5: until done

Remarks:

• The compare and exchange primitive in Algorithm 16 is defined as follows:
Let the value stored at node i be vi. After the compare and exchange node
i stores value min(vi, vi+1) and node i + 1 stores value max(vi, vi+1).

• How fast is the algorithm, and how can we prove correctness/efficiency?

• The most interesting proof uses the so-called 0-1 Sorting Lemma. It allows
us to restrict our attention to an input of 0’s and 1’s only, and works for any
“oblivious comparison-exchange” algorithm. (Oblivious means: Whether
you exchange two values must only depend on the relative order of the
two values, and not on anything else.)

Lemma 4.3 (0-1 Sorting Lemma). If an oblivious comparison-exchange algo-
rithm sorts all inputs of 0’s and 1’s, then it sorts arbitrary inputs.

Proof. We prove the opposite direction (does not sort arbitrary inputs ⇒ does
not sort 0’s and 1’s). Assume that there is an input x = x1, . . . , xn that is not
sorted correctly. Then there is a smallest value k such that the value at node
vk after running the sorting algorithm is strictly larger than the kth smallest
value x(k). Define an input x∗i = 0 ⇔ xi ≤ x(k), x∗i = 1 else. Whenever the
algorithm compares a pair of 1’s or 0’s, it is not important whether it exchanges
the values or not, so we may simply assume that it does the same as on the
input x. On the other hand, whenever the algorithm exchanges some values
x∗i = 0 and x∗j = 1, this means that xi ≤ x(k) < xj . Therefore, in this case the
respective compare-exchange operation will do the same on both inputs. We
conclude that the algorithm will order x∗ the same way as x, i.e., the output
with only 0’s and 1’s will also not be correct.

Theorem 4.4. Algorithm 16 sorts correctly in n steps.

Proof. Thanks to Lemma 4.3 we only need to consider an array with 0’s and
1’s. Let j1 be the node with the rightmost (highest index) 1. If j1 is odd (even)
it will move in the first (second) step. In any case it will move right in every
following step until it reaches the rightmost node vn. Let jk be the node with
the kth rightmost 1. We show by induction that jk is not “blocked” anymore
(constantly moves until it reaches destination!) after step k. We have already
anchored the induction at k = 1. Since jk−1 moves after step k − 1, jk gets
a right 0-neighbor for each step after step k. (For matters of presentation we
omitted a couple of simple details.)

4.1. ARRAY & MESH 33

Algorithm 17 Shearsort

1: We are given a mesh with m rows and m columns, m even, n = m2.
2: The sorting algorithm operates in phases, and uses the odd/even sort algo-

rithm on rows or columns.
3: repeat
4: In the odd phases 1, 3, . . . we sort all the rows, in the even phases 2, 4, . . .

we sort all the columns, such that:
5: Columns are sorted such that the small values move up.
6: Odd rows (1, 3, . . . ,m− 1) are sorted such that small values move left.
7: Even rows (2, 4, . . . ,m) are sorted such that small values move right.
8: until done

Remarks:

• Linear time is not very exciting, maybe we can do better by using a dif-
ferent topology? Let’s try a mesh (a.k.a. grid) topology first.

Theorem 4.5. Algorithm 17 sorts n values in
√
n(log n+ 1) time in snake-like

order.

Proof. Since the algorithm is oblivious, we can use Lemma 4.3. We show that
after a row and a column phase, half of the previously unsorted rows will be
sorted. More formally, let us call a row with only 0’s (or only 1’s) clean, a row
with 0’s and 1’s is dirty. At any stage, the rows of the mesh can be divided
into three regions. In the north we have a region of all-0 rows, in the south all-1
rows, in the middle a region of dirty rows. Initially all rows can be dirty. Since
neither row nor column sort will touch already clean rows, we can concentrate
on the dirty rows.

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since odd and
even rows are sorted in opposite directions, two consecutive dirty rows look as
follows:

00000 . . . 11111

11111 . . . 00000

Such a pair can be in one of three states. Either we have more 0’s than 1’s, or
more 1’s than 0’s, or an equal number of 0’s and 1’s. Column-sorting each pair
will give us at least one clean row (and two clean rows if “|0| = |1|”). Then
move the cleaned rows north/south and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar column sorter. How-
ever, any column sorter sorts the columns in exactly the same way (we are very
grateful to have Lemma 4.3!).

All in all we need 2 logm = log n phases to remain only with 1 dirty row in
the middle which will be sorted (not cleaned) with the last row-sort.

34 CHAPTER 4. DISTRIBUTED SORTING

Remarks:

• There are algorithms that sort in 3m + o(m) time on an m by m mesh
(by diving the mesh into smaller blocks). This is asymptotically optimal,
since a value might need to move 2m times.

• Such a
√
n-sorter is cute, but we are more ambitious. There are non-

distributed sorting algorithms such as quicksort, heapsort, or mergesort
that sort n values in (expected) O(n log n) time. Using our n-fold paral-
lelism effectively we might therefore hope for a distributed sorting algo-
rithm that sorts in time O(log n)!

4.2 Sorting Networks

In this section we construct a graph topology which is carefully manufactured
for sorting. This is a deviation from previous chapters where we always had to
work with the topology that was given to us. In many application areas (e.g.
peer-to-peer networks, communication switches, systolic hardware) it is indeed
possible (in fact, crucial!) that an engineer can build the topology best suited
for her application.

Definition 4.6 (Sorting Networks). A comparator is a device with two inputs
x, y and two outputs x′, y′ such that x′ = min(x, y) and y′ = max(x, y). We
construct so-called comparison networks that consist of wires that connect com-
parators (the output port of a comparator is sent to an input port of another
comparator). Some wires are not connected to comparator outputs, and some
are not connected to comparator inputs. The first are called input wires of the
comparison network, the second output wires. Given n values on the input wires,
a sorting network ensures that the values are sorted on the output wires. We will
also use the term width to indicate the number of wires in the sorting network.

Remarks:

• The odd/even sorter explained in Algorithm 16 can be described as a
sorting network.

• Often we will draw all the wires on n horizontal lines (n being the “width”
of the network). Comparators are then vertically connecting two of these
lines.

• Note that a sorting network is an oblivious comparison-exchange network.
Consequently we can apply Lemma 4.3 throughout this section. An ex-
ample sorting network is depicted in Figure 4.1.

Definition 4.7 (Depth). The depth of an input wire is 0. The depth of a
comparator is the maximum depth of its input wires plus one. The depth of
an output wire of a comparator is the depth of the comparator. The depth of a
comparison network is the maximum depth (of an output wire).

Definition 4.8 (Bitonic Sequence). A bitonic sequence is a sequence of numbers
that first monotonically increases, and then monotonically decreases, or vice
versa.

4.2. SORTING NETWORKS 35

Figure 4.1: A sorting network.

Remarks:

• < 1, 4, 6, 8, 3, 2 > or < 5, 3, 2, 1, 4, 8 > are bitonic sequences.

• < 9, 6, 2, 3, 5, 4 > or < 7, 4, 2, 5, 9, 8 > are not bitonic.

• Since we restrict ourselves to 0’s and 1’s (Lemma 4.3), bitonic sequences
have the form 0i1j0k or 1i0j1k for i, j, k ≥ 0.

Algorithm 18 Half Cleaner

1: A half cleaner is a comparison network of depth 1, where we compare wire
i with wire i + n/2 for i = 1, . . . , n/2 (we assume n to be even).

Lemma 4.9. Feeding a bitonic sequence into a half cleaner (Algorithm 18), the
half cleaner cleans (makes all-0 or all-1) either the upper or the lower half of
the n wires. The other half is bitonic.

Proof. Assume that the input is of the form 0i1j0k for i, j, k ≥ 0. If the midpoint
falls into the 0’s, the input is already clean/bitonic and will stay so. If the
midpoint falls into the 1’s the half cleaner acts as Shearsort with two adjacent
rows, exactly as in the proof of Theorem 4.5. The case 1i0j1k is symmetric.

Algorithm 19 Bitonic Sequence Sorter

1: A bitonic sequence sorter of width n (n being a power of 2) consists of a
half cleaner of width n, and then two bitonic sequence sorters of width n/2
each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma 4.10. A bitonic sequence sorter (Algorithm 19) of width n sorts bitonic
sequences. It has depth log n.

36 CHAPTER 4. DISTRIBUTED SORTING

Proof. The proof follows directly from the Algorithm 19 and Lemma 4.9.

Remarks:

• Clearly we want to sort arbitrary and not only bitonic sequences! To do
this we need one more concept, merging networks.

Algorithm 20 Merging Network

1: A merging network of width n is a merger of width n followed by two bitonic
sequence sorters of width n/2. A merger is a depth-one network where we
compare wire i with wire n− i + 1, for i = 1, . . . , n/2.

Remarks:

• Note that a merging network is a bitonic sequence sorter where we replace
the (first) half-cleaner by a merger.

Lemma 4.11. A merging network of width n (Algorithm 20) merges two sorted
input sequences of length n/2 each into one sorted sequence of length n.

Proof. We have two sorted input sequences. Essentially, a merger does to two
sorted sequences what a half cleaner does to a bitonic sequence, since the lower
part of the input is reversed. In other words, we can use same argument as
in Theorem 4.5 and Lemma 4.9: Again, after the merger step either the upper
or the lower half is clean, the other is bitonic. The bitonic sequence sorters
complete sorting.

Remarks:

• How do you sort n values when you are able to merge two sorted sequences
of size n/2? Piece of cake, just apply the merger recursively.

Algorithm 21 Batcher’s “Bitonic” Sorting Network

1: A batcher sorting network of width n consists of two batcher sorting net-
works of width n/2 followed by a merging network of width n. (See Figure
4.2.)

2: A batcher sorting network of width 1 is empty.

Theorem 4.12. A sorting network (Algorithm 21) sorts an arbitrary sequence
of n values. It has depth O(log2 n).

Proof. Correctness is immediate: at recursive stage k (k = 1, 2, 3, . . . , log n) we
merge 2k) sorted sequences into 2k−1 sorted sequences. The depth d(n) of the
sorting network of level n is the depth of a sorting network of level n/2 plus
the depth m(n) of a merging network with width n. The depth of a sorter of
level 1 is 0 since the sorter is empty. Since a merging network of width n has
the same depth as a bitonic sequence sorter of width n, we know by Lemma
4.10 that m(n) = log n. This gives a recursive formula for d(n) which solves to
d(n) = 1

2 log2 n + 1
2 log n.

4.3. COUNTING NETWORKS 37

..
. B
[w

/2
]

B
[w

/2
]

B
[w

/2
]

M
[w

]

B[w]

..
.

..
.

..
.

..
.

..
.

Figure 4.2: A batcher sorting network

Remarks:

• Simulating Batcher’s sorting network on an ordinary sequential computer
takes time O(n log2 n). As said, there are sequential sorting algorithms
that sort in asymptotically optimal time O(n log n). So a natural question
is whether there is a sorting network with depth O(log n). Such a network
would have some remarkable advantages over sequential asymptotically
optimal sorting algorithms such as heapsort. Apart from being highly
parallel, it would be completely oblivious, and as such perfectly suited for
a fast hardware solution. In 1983, Ajtai, Komlos, and Szemeredi presented
a celebrated O(log n) depth sorting network. (Unlike Batcher’s sorting
network the constant hidden in the big-O of the “AKS” sorting network
is too large to be practical, however.)

• It can be shown that Batcher’s sorting network and similarly others can
be simulated by a Butterfly network and other hypercubic networks, see
next chapter.

• What if a sorting network is asynchronous?!? Clearly, using a synchronizer
we can still sort, but it is also possible to use it for something else. Check
out the next section!

4.3 Counting Networks

In this section we address distributed counting, a distributed service which can
for instance be used for load balancing.

Definition 4.13 (Distributed Counting). A distributed counter is a variable
that is common to all processors in a system and that supports an atomic test-
and-increment operation. The operation delivers the system’s counter value to
the requesting processor and increments it.

38 Counting Networks

Remarks:

• A naive distributed counter stores the system’s counter value with a dis-
tinguished central node. When other nodes initiate the test-and-increment
operation, they send a request message to the central node and in turn
receive a reply message with the current counter value. However, with a
large number of nodes operating on the distributed counter, the central
processor will become a bottleneck. There will be a congestion of request
messages at the central processor, in other words, the system will not
scale.

• Is a scalable implementation (without any kind of bottleneck) of such a
distributed counter possible, or is distributed counting a problem which
is inherently centralized?!?

• Distributed counting could for instance be used to implement a load bal-
ancing infrastructure, i.e. by sending the job with counter value i (modulo
n) to server i (out of n possible servers).

Definition 4.14 (Balancer). A balancer is an asynchronous flip-flop which
forwards messages that arrive on the left side to the wires on the right, the first
to the upper, the second to the lower, the third to the upper, and so on.

Algorithm 22 Bitonic Counting Network.

1: Take Batcher’s bitonic sorting network of width w and replace all the com-
parators with balancers.

2: When a node wants to count, it sends a message to an arbitrary input wire.
3: The message is then routed through the network, following the rules of the

asynchronous balancers.
4: Each output wire is completed with a “mini-counter.”
5: The mini-counter of wire k replies the value “k + i · w” to the initiator of

the ith message it receives.

Definition 4.15 (Step Property). A sequence y0, y1, . . . , yw−1 is said to have
the step property, if 0 ≤ yi − yj ≤ 1, for any i < j.

Remarks:

• If the output wires have the step property, then with r requests, exactly
the values 1, . . . , r will be assigned by the mini-counters. All we need to
show is that the counting network has the step property. For that we need
some additional facts...

Facts 4.16. For a balancer, we denote the number of consumed messages on the
ith input wire with xi, i = 0, 1. Similarly, we denote the number of sent messages
on the ith output wire with yi, i = 0, 1. A balancer has these properties:

(1) A balancer does not generate output-messages; that is, x0 + x1 ≥ y0 + y1
in any state.

(2) Every incoming message is eventually forwarded. In other words, if we
are in a quiescent state (no message in transit), then x0 + x1 = y0 + y1.

39

(3) The number of messages sent to the upper output wire is at most one
higher than the number of messages sent to the lower output wire: in any
state y0 = d(y0 + y1)/2e (thus y1 = b(y0 + y1)/2c).

Facts 4.17. If a sequence y0, y1, . . . , yw−1 has the step property,

(1) then all its subsequences have the step property.

(2) then its even and odd subsequences satisfy

w/2−1∑

i=0

y2i =

⌈
1

2

w−1∑

i=0

yi

⌉
and

w/2−1∑

i=0

y2i+1 =

⌊
1

2

w−1∑

i=0

yi

⌋
.

Facts 4.18. If two sequences x0, x1, . . . , xw−1 and y0, y1, . . . , yw−1 have the step
property,

(1) and
∑w−1

i=0 xi =
∑w−1

i=0 yi, then xi = yi for i = 0, . . . , w − 1.

(2) and
∑w−1

i=0 xi =
∑w−1

i=0 yi+1, then there exists a unique j (j = 0, 1, . . . , w−
1) such that xj = yj + 1, and xi = yi for i = 0, . . . , w − 1, i 6= j.

Remarks:

• An alternative representation of Batcher’s network has been introduced
in [AHS94]. It is isomorphic to Batcher’s network, and relies on a Merger
Network M [w] which is defined inductively: M [w] consists of two M [w/2]
networks (an upper and a lower one) whose output is fed to w/2 balancers.
The upper balancer merges the even subsequence x0, x2, . . . , xw−2, while
the lower balancer merges the odd subsequence x1, x3, . . . , xw−1. Call the
outputs of these two M [w/2], z and z′ respectively. The final stage of the
network combines z and z′ by sending each pair of wires zi and z′i into a
balancer whose outputs yield y2i and y2i+1.

• It is enough to prove that a merger network M [w] preserves the step
property.

Lemma 4.19. Let M [w] be a merger network of width w. In a quiescent state
(no message in transit), if the inputs x0, x1, . . . , xw/2−1 resp. xw/2, xw/2+1, . . . , xw−1
have the step property, then the output y0, y1, . . . , yw−1 has the step property.

Proof. By induction on the width w.
For w = 2: M [2] is a balancer and a balancer’s output has the step property

(Fact 4.16.3).
For w > 2: Let z resp. z′ be the output of the upper respectively lower

M [w/2] subnetwork. Since x0, x1, . . . , xw/2−1 and xw/2, xw/2+1, . . . , xw−1 both
have the step property by assumption, their even and odd subsequences also
have the step property (Fact 4.17.1). By induction hypothesis, the output of

both M [w/2] subnetworks have the step property. Let Z :=
∑w/2−1

i=0 zi and

Z ′ :=
∑w/2−1

i=0 z′i. From Fact 4.17.2 we conclude that Z = d 12
∑w/2−1

i=0 xie +

b 12
∑w−1

i=w/2 xic and Z ′ = b 12
∑w/2−1

i=0 xic + d 12
∑w−1

i=w/2 xie. Since dae + bbc and

bac+ dbe differ by at most 1 we know that Z and Z ′ differ by at most 1.

40 Counting Networks

If Z = Z ′, Fact 4.18.1 implies that zi = z′i for i = 0, . . . , w/2− 1. Therefore,
the output of M [w] is yi = zbi/2c for i = 0, . . . , w − 1. Since z0, . . . , zw/2−1 has
the step property, so does the output of M [w] and the lemma follows.

If Z and Z ′ differ by 1, Fact 4.18.2 implies that zi = z′i for i = 0, . . . , w/2−1,
except a unique j such that zj and z′j differ by only 1, for j = 0, . . . , w/2 − 1.
Let l := min(zj , z

′
j). Then, the output yi (with i < 2j) is l + 1. The output

yi (with i > 2j + 1) is l. The output y2j and y2j+1 are balanced by the final
balancer resulting in y2j = l + 1 and y2j+1 = l. Therefore M [w] preserves the
step property.

A bitonic counting network is constructed to fulfill Lemma 4.19, i.e., the
final output comes from a Merger whose upper and lower inputs are recursively
merged. Therefore, the following theorem follows immediately.

Theorem 4.20 (Correctness). In a quiescent state, the w output wires of a
bitonic counting network of width w have the step property.

Remarks:

• Is every sorting network also a counting network? No. But surprisingly,
the other direction is true!

Theorem 4.21 (Counting vs. Sorting). If a network is a counting network
then it is also a sorting network, but not vice versa.

Proof. There are sorting networks that are not counting networks (e.g. odd/even
sort, or insertion sort). For the other direction, let C be a counting network
and I(C) be the isomorphic network, where every balancer is replaced by a
comparator. Let I(C) have an arbitrary input of 0’s and 1’s; that is, some of
the input wires have a 0, all others have a 1. There is a message at C’s ith

input wire if and only if I(C)’s i input wire is 0. Since C is a counting network,
all messages are routed to the upper output wires. I(C) is isomorphic to C,
therefore a comparator in I(C) will receive a 0 on its upper (lower) wire if
and only if the corresponding balancer receives a message on its upper (lower)
wire. Using an inductive argument, the 0’s and 1’s will be routed through I(C)
such that all 0’s exit the network on the upper wires whereas all 1’s exit the
network on the lower wires. Applying Lemma 4.3 shows that I(C) is a sorting
network.

Remarks:

• We claimed that the counting network is correct. However, it is only
correct in a quiescent state.

Definition 4.22 (Linearizable). A system is linearizable if the order of the
values assigned reflects the real-time order in which they were requested. More
formally, if there is a pair of operations o1, o2, where operation o1 terminates be-
fore operation o2 starts, and the logical order is “o2 before o1”, then a distributed
system is not linearizable.

Lemma 4.23 (Linearizability). The bitonic counting network is not lineariz-
able.

41

Proof. Consider the bitonic counting network with width 4 in Figure 4.3: As-
sume that two inc operations were initiated and the corresponding messages
entered the network on wire 0 and 2 (both in light gray color). After hav-
ing passed the second resp. the first balancer, these traversing messages “fall
asleep”; In other words, both messages take unusually long time before they are
received by the next balancer. Since we are in an asynchronous setting, this
may be the case.

0

zzz

zzz

2

Figure 4.3: Linearizability Counter Example.

In the meantime, another inc operation (medium gray) is initiated and enters
the network on the bottom wire. The message leaves the network on wire 2,
and the inc operation is completed.

Strictly afterwards, another inc operation (dark gray) is initiated and enters
the network on wire 1. After having passed all balancers, the message will leave
the network wire 0. Finally (and not depicted in Figure 4.3), the two light gray
messages reach the next balancer and will eventually leave the network on wires
1 resp. 3. Because the dark gray and the medium gray operation do conflict
with Definition 4.22, the bitonic counting network is not linearizable.

Remarks:

• Note that the example in Figure 4.3 behaves correctly in the quiescent
state: Finally, exactly the values 0, 1, 2, 3 are allotted.

• It was shown that linearizability comes at a high price (the depth grows
linearly with the width).

Chapter Notes

The technique used for the famous lower bound of comparison-based sequential
sorting first appeared in [FJ59]. Comprehensive introductions to the vast field of
sorting can certainly be found in [Knu73]. Knuth also presents the 0/1 principle
in the context of sorting networks, supposedly as a special case of a theorem
for decision trees of W. G. Bouricius, and includes a historic overview of sorting
network research.

Using a rather complicated proof not based on the 0/1 principle, [Hab72]
first presented and analyzed Odd/Even sort on arrays. Shearsort for grids first
appeared in [SSS86] as a sorting algorithm both easy to implement and to prove

42 Counting Networks

correct. Later it was generalized to meshes with higher dimension in [SS89]. A
bubble sort based algorithm is presented in [SI86]; it takes time O(

√
n log n),

but is fast in practice. Nevertheless, already [TK77] presented an asymptotically
optimal algorithms for grid network which runs in 3n+O(n2/3 log n) rounds for
an n×n grid. A simpler algorithm was later found by [SS86] using 3n+O(n3/4)
rounds.

Batcher presents his famous O(log2 n) depth sorting network in [Bat68]. It
took until [AKS83] to find a sorting network with asymptotically optimal depth
O(log n). Unfortunately, the constants hidden in the big-O-notation render it
rather impractical.

The notion of counting networks was introduced in [AHS91], and shortly
afterward the notion of linearizability was studied by [HSW91]. Follow-up work
in [AHS94] presents bitonic counting networks and studies contention in the
counting network. An overview of research on counting networks can be found
in [BH98].

Bibliography

[AHS91] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks
and multi-processor coordination. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing, STOC ’91, pages
348–358, New York, NY, USA, 1991. ACM.

[AHS94] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks.
J. ACM, 41(5):1020–1048, September 1994.

[AKS83] Miklos Ajtai, Janos Komlós, and Endre Szemerédi. An 0(n log n)
sorting network. In Proceedings of the fifteenth annual ACM sympo-
sium on Theory of computing, STOC ’83, pages 1–9, New York, NY,
USA, 1983. ACM.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer con-
ference, AFIPS ’68 (Spring), pages 307–314, New York, NY, USA,
1968. ACM.

[BH98] Costas Busch and Maurice Herlihy. A Survey on Counting Networks.
In WDAS, pages 13–20, 1998.

[FJ59] Lester R. Ford and Selmer M. Johnson. A Tournament Problem. The
American Mathematical Monthly, 66(5):pp. 387–389, 1959.

[Hab72] Nico Habermann. Parallel neighbor-sort (or the glory of the induc-
tion principle). Paper 2087, Carnegie Mellon University - Computer
Science Departement, 1972.

[HSW91] M. Herlihy, N. Shavit, and O. Waarts. Low contention linearizable
counting. In Foundations of Computer Science, 1991. Proceedings.,
32nd Annual Symposium on, pages 526–535, oct 1991.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

BIBLIOGRAPHY 43

[SI86] Kazuhiro Sado and Yoshihide Igarashi. Some parallel sorts on a mesh-
connected processor array and their time efficiency. Journal of Parallel
and Distributed Computing, 3(3):398–410, 1986.

[SS86] Claus Peter Schnorr and Adi Shamir. An optimal sorting algorithm
for mesh connected computers. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, STOC ’86, pages 255–263,
New York, NY, USA, 1986. ACM.

[SS89] Isaac D. Scherson and Sandeep Sen. Parallel sorting in two-
dimensional VLSI models of computation. Computers, IEEE Trans-
actions on, 38(2):238–249, feb 1989.

[SSS86] Isaac Scherson, Sandeep Sen, and Adi Shamir. Shear sort – A true
two-dimensional sorting technique for VLSI networks. 1986 Interna-
tional Conference on Parallel Processing, 1986.

[TK77] Clark David Thompson and Hsiang Tsung Kung. Sorting on a mesh-
connected parallel computer. Commun. ACM, 20(4):263–271, April
1977.

