
Downloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.org

Simple, Fast and Deterministic Gossip and Rumor Spreading

Bernhard Haeupler∗

Abstract

We study gossip algorithms for the rumor spreading
problem which asks each node to deliver a rumor to
all nodes in an unknown network. Gossip algorithms
allow nodes only to call one neighbor per round and have
recently attracted attention as message efficient, simple
and robust solutions to the rumor spreading problem.

A long series of papers analyzed the performance of
uniform random gossip in which nodes repeatedly call a
random neighbor to exchange all rumors with. A main
result of this investigation was that uniform gossip com-
pletes in O(logn

Φ) rounds where Φ is the conductance
of the network. More recently, non-uniform random
gossip schemes were devised to allow efficient rumor
spreading in networks with bottlenecks. In particular,
[Censor-Hillel et al., STOC’12] gave an O(log3 n) algo-
rithm to solve the 1-local broadcast problem in which
each node wants to exchange rumors locally with its
1-neighborhood. By repeatedly applying this protocol
one can solve the global rumor spreading quickly for
all networks with small diameter, independently of the
conductance.

All these algorithms are inherently randomized in
their design and analysis. A parallel research direction
has been to reduce and determine the amount of ran-
domness needed for efficient rumor spreading. This has
been done via lower bounds for restricted models and by
designing gossip algorithms with a reduced need for ran-
domness, e.g., by using pseudorandom generators with
short random seeds. The general intuition and consen-
sus of these results has been that randomization plays a
important role in effectively spreading rumors and that
at least a polylogarithmic number of random bit are
crucially needed.

In this paper we improves over this state of the
art in several ways by presenting a deterministic gossip
algorithm that solves the the k-local broadcast problem
in 2(k + log n) log n rounds1. Besides being the first
efficient deterministic solution to the rumor spreading
problem this algorithm is interesting in many aspects:
It is simpler, more natural, more robust and faster than

∗MIT,haeupler@mit.edu
1Throughout this paper log x denotes dlog2 xe, that is, the

rounded up binary logarithm.

its randomized pendant and guarantees success with
certainty instead of with high probability. Its analysis
is furthermore simple, self-contained and fundamentally
different from prior works.

1 Introduction

Broadcasting, that is, disseminating information
present initially at different nodes in an unknown net-
work to every node, is a fundamental network commu-
nication primitive with many applications. It has been
studied under different names such as gossip, rumor
spreading, information dissemination, (all-to-all) mul-
ticast or (global) broadcast.

Gossip algorithms during which nodes contact or
call only one neighbor at a time have been proposed
as a powerful time and message efficient alternatives
to flooding, i.e., repeatedly forwarding information to
all neighbors, or structured broadcast protocols which
often require a stable network with known topology.

The simplest and most widely studied form of gossip
is uniform (random) gossip in which nodes repeatedly
call a random neighbor to exchange information. A
series of results showed that this algorithm performs
well on well-connected graphs with no bottleneck(s) [5,
6, 11, 12, 19]. More precisely, the main result is a tight
bound of O(logn

Φ) rounds, where Φ is the conductance of
the network. More recently, non-uniform random gossip
schemes were devised to allow efficient rumor spreading
in arbitrary networks [3,4]. The local broadcast problem,
that asks each node to exchange rumors locally with
all its neighbors, has been a crucial abstraction to
obtain results independent from any conductance-type
measure. In particular, building on the results on
uniform gossip it was shown in [3] how to solve the local
broadcast problem in O(log3 n) rounds. Repeatedly
applying this solution leads to an O(D log3 n) global
broadcast in any network with diameter D and thus to
a polylogarithmic time gossip solution for any network
with polylogarithmic diameter. Using connections to
spanners one can furthermore get a O(D + logO(1))
solution.

All these algorithms are inherently randomized in
both their design and analysis in that they crucially
rely on the effect that choosing neighbors randomly for

705 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

forwarding disperses information quickly in expanders
or expanding subgraphs. A parallel research direction
to finding faster and more general gossip algorithms
has been to study the necessity for this randomization.
In particular, there are both lower bounds quantifying
how much randomness is inherently needed for efficient
gossip algorithms [7, 14, 16] and newly designed gossip
protocols that work with reduced amounts of random-
ness [8–10, 13]. The general intuition and also the con-
sensus of these works has been that (some) randomiza-
tion plays a crucial role in effectively spreading rumors.

1.1 Our Results In this paper we contribute to both
of these research directions by presenting a fast, simple,
natural, robust and deterministic gossip algorithm for
the local broadcast problem:

Theorem 1.1. For any k there is a simple determin-
istic gossip algorithm that runs for 2(k log n + log2 n)
rounds on any n-node network and solves the k-local
broadcast problem, that is, allows each node to exchange
a rumor with each node at distance at most k.

The next corollary shows that this directly implies
a fast and simple algorithm for the global broadcast
problem as well. We remark that using the connection
to spanners from [3] one can also obtain a (significantly
less simple) deterministic gossip algorithm solving the

global broadcast problem in O(D + logO(1) n) rounds,
given that there exists a deterministic variant of the
spanner construction from [17].

Corollary 1.1. There is a simple deterministic gos-
sip algorithm that runs for 2(D log n + log2 n) rounds
on any n-node network with diameter D and solves the
global broadcast problem.

Certainly, the most striking aspect of Theorem 1.1
is that it constitutes the first deterministic gossip al-
gorithm for the broadcast setting studied here and
in [3, 4]. We feel that this is a very interesting and
surprising result given the general intuition and the re-
sults from [7, 13, 14, 16] that at least some randomness
is needed to enable an efficient gossip algorithm. We
emphasize that our result does not stem from unusual
model assumptions. Exactly as in, e.g., [3, 4] we only
assume that (1) each node only knows the IDs of its
neighbors and (2) two nodes involved in a call can ex-
change all rumors known to them.

Our algorithm has several other advantages. For
one it is faster than previous randomized algorithms:
For k = 1 our algorithm is logarithmically faster
than [3] while for k = log n its 4 log2 n running time
is a Θ(log2 n)-factor and therefore even quadratically

faster. Even when compared to the performance of
uniform gossip it is at most a log n-factor slower on
expanders while continuing to be near optimal on any
other topology. Furthermore, any faster (randomized)
algorithm with running time O(log2−ε n) for k = log n
would imply the existence of spanners with better
than known quality (see also conclusion). Lastly, its
deterministic nature brings with it the advantage that
these running time guarantees (and the correctness
property) hold with certainty instead of with high
probability.

Our algorithm is also simpler, more natural and
more robust. In fact, one of our algorithms is a
simplification of [3] in which furthermore all randomized
choices are replaced by arbitrary ones. While our
analysis is powerful enough to work in this more general
setting it remains simple, short and self-contained. It
also extends nicely to analyzing a wide variety of related
natural processes demonstrating the robustness of both
algorithm and analysis.

1.2 Related Work Gossip and rumor spreading has
been intensely studied both for the setting of a single
rumor being spread and for a rumor being spread from
each node in the network. A difference between the
two settings becomes mostly apparent when the amount
of information exchanged between nodes in a round is
limited. In such a scenario very different techniques like
algebraic gossip [15] become interesting. In this paper
we assume large packet sizes that allow two nodes to
exchange potentially all rumors in one packet. In this
setting it typically does not matter whether one or more
rumors are to be spread.

The spreading of a rumor according to the uniform
gossip process was first considered by Frieze and Gim-
met [11] and subsequently Pittel [19] which proved that
only (1 + ln 2) log n + O(1) rounds are needed on the
complete graph. Lower bounds and non-uniform algo-
rithms for the complete graph were investigated by [16].
Going to more general topologies [6] showed that uni-
form gossip works well in any expander. More precisely

an O(log4 n
Φ6) spreading time was proven for any graph

with conductance Φ. This bound was then improved to

O(log2 Φ−1 logn
Φ) [5] and finally O(logn

Φ) [12]. This bound
is tight since for any Φ = Ω(1/n) there are graphs
with conductance Φ on which uniform gossip requires
Θ(logn

Φ) rounds. More generally, uniform gossip can be
easily seen to perform as good or bad as the worst bot-
tleneck in the network.

Several papers have showed improvements over the
uniform gossip protocol that cope better with bottle-
necks. In [4] a rumor spreading algorithm was pro-

706 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

vided for any graph with good weak expansion which
includes some graphs with (few) bottlenecks. The first
algorithm to work efficiently on any topology was [3]. As
already summarized in the introduction this paper gives
a O(log3 n) algorithm for the local broadcast problem as
a crucial step to achieve a polylogarithmic running time
on any network with polylogarithmic diameter. For all
algorithms up to then there existed networks with di-
ameter O(log n) on which gossip took Ω(n) time.

The other research direction that is relevant for
this paper aimed at determining and reducing the
amount of randomness required by efficient gossip algo-
rithms. A very interesting and successful way to reduce
the amount of randomness is the quasirandom rumor
spreading process of [8]. This protocol assumes an arbi-
trary cyclic ordering of neighbors at each nodes but ran-
domizes it by picking a random random starting point.
It was shown that this simple algorithm achieves a sim-
ilar performance as the fully random uniform gossip for
many topologies like the complete graph [1,10], random
graphs, hypercubes or expanders [9]. The quasirandom
rumor spreading process only requires O(log n) bits of
randomness per node to pick the starting position. In [7]
it was shown that one cannot further reduce this amount
without a severe loss of efficiency. In particular if one
uses o(log n) random bits to choose uniformly at random
between a subset of equidistant starting points then the
number of rounds becomes almost linear instead of log-
arithmic [7]. The question how much randomness suf-
fices for gossip to be efficient was also addressed in [14].
This paper presents an algorithm that uses a total of
n log log n bits of randomness, gives a non-constructive
argument for the existence of a gossip algorithm with
roughly 2 log n bits of randomness and shows that no
algorithm from a natural class of gossip algorithms can
use less than logarithmic amount of randomness without
taking roughly linear time. Algorithms that use pseudo-
random generators or hashing schemes require only one
random seed of polylogarithmic length [13] and thus al-
most achieve this low total amount of randomness.

Organization The rest of the paper is organized as
follows: In Section 2 we first formally define the network
model and the (local) broadcast problem. In Section 3
we give a randomized local broadcast algorithm that
simplifies the algorithm from [3]. In Section 4 we
further simplify this algorithm and give a novel, and
more powerful analysis that shows that this algorithm
remains correct and efficient when all random choices
are replaced by arbitrary deterministic choices. In
Section 5 we show how to achieve further speed ups
and obtain Theorem 1.1. Lastly, in Section 6 we show
that our algorithm can be seen as a very natural process
with many desirable robustness properties.

2 Gossip Algorithms and the Local Broadcast
Problem

In this section we define gossip protocols, the class of
communication algorithms we are interested in, and the
global and local broadcast problems.

2.1 Gossip Algorithms We study gossip proto-
cols, that is, synchronous communication algorithms in
which in each round each node calls (at most) one neigh-
bor for a bidirectional information exchange. This type
of algorithm fits the uniform PUSH-PULL gossip pro-
tocols that have been widely studied and matches algo-
rithms allowed in the GOSSIP model that was defined
in [3] as a restriction of the standard LOCAL model for
distributed computing. The setting is given as follows:

Network:
A network is specified by an undirected graph G =

(V,E) with node set V and edge set E. We denote the
number of nodes with n = |V |, the number or edges
with m = |E| and the diameter of G with D. For every
node v ∈ V we define the neighborhood ΓG(v) to be
the set of nodes whose distance to v is at most one
(including itself). Similarly, we define ΓkG(v) to be all
nodes of distance at most k from v and call this the
k-neighborhood. We omit the subscript if the graph is
clear from the context.

Communication:
Nodes communicate in synchronous rounds t ∈

{0, 1, . . .}. In each round t each node chooses a message
and an incident edge. We denote the union of the
selected edges in a round t with Et and the resulting
graph with Gt = (V,Et). After this selection process
for any node v the message of v is delivered to all
nodes w ∈ ΓGt

(v), that is, all nodes that contacted v or
were contacted by v. In short, we allow every nodes to
initialize one call or bidirectional message exchange per
round.

We assume that the cost of communication is com-
pletely covered by the caller, i.e., the node that initial-
izes a contact. This leads to merely a constant cost for
communication per node and round.

Similar to the LOCAL model the GOSSIP model
of [3] does in principle not limit the complexity of local
computations or the size of the messages. This allows a
node to always exchange all rumors it knows. Indeed,
all messages sent by a node during our protocols will
simply consist the collection of rumors it knows. For
any node v we denote this collection with Rv.

Initial Knowledge:
We assume that each node has a unique identifier

(UID). Each node initially solely knows its UID and the
UIDs of its neighbors. It is important that the network

707 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

topology G is unknown to the nodes and we assume that
no further knowledge about the network is known to the
nodes.

Important Remarks:

• We will assume that in the beginning nodes attach
their UID to their rumor. In this way, each node
can easily tell which of its neighbors’ rumors it has
already (indirectly) received. This also allows us to
identify a node, its rumor and its UID and interpret
the set Rv of rumors known to node v as a set of
neighboring nodes it has (indirectly) heard from.

• While the GOSSIP model allows arbitrary local
computations and message sizes our algorithms do
not exploit this freedom: The local computations
are extremely simple and while the set of rumors
sent in a message can reach a size of Θ(n) in the
worst-case, this is optimal up to a small polyloga-
rithmic factor considering that in dense graphs the
total amount of information learned by nodes dur-
ing a 1-neighborhood exchange is of order Ω(n2)
while only O(n polylog n) messages are exchanged.

• The UID’s assumed in our model are not used for
symmetry breaking but solely to allow nodes to talk
about other nodes. The only operations that are
used on the UIDs is that they are routed through
the network with their rumor and compared for
equality to decide whether a node has already heard
(indirectly) from one of its neighbors or not.

2.2 The Rumor Spreading and Local Broadcast
Problem The classical problem to be solved by gossip
algorithms is the following global broadcast problem:

Definition 2.1. ((Global) Broadcast Problem)
Each node v starts with one rumor rv and the task is
to inform every node about all rumors.

In this paper we mostly focus on solving the k-local
broadcast problem which is an important refinement of
the global broadcast problem.

Definition 2.2. (k-Local Broadcast Problem)
In the k-local broadcast problem each node v starts with
one rumor rv and the task is for each node v to learn
all rumors ru of nodes u ∈ Γk(v) in its k-neighborhood.

There are several motivations to introduce and study
the k-local broadcast problem:

• It generalizes the global broadcast problem. In
particular the global broadcast problem is equiva-
lent to the n-local broadcast problem or the k-local
broadcast problem for k ≥ D, where D is the di-
ameter of the network.

• As explained before, the local-broadcast problem
has been proven crucial as a subproblem to solve
the global broadcast problem in general topologies
with bottlenecks.

• The local broadcast problem composes nicely. In
particular, any O(T) algorithm for the k-local
broadcast problem also gives an O(l · T) algorithm
for the l ·k-neighborhood exchange problem for any
integer l ≥ 1: Simply repeat the broadcast l times.

• The 1-local broadcast problem and the (logc n)-
local broadcast problem are natural distributed
communication problems in their own right: Es-
pecially in distributed settings with large networks
it is realistic that nodes are only interested in suf-
ficiently local information.

• It was observed in [3] that the 1-local broadcast
problem corresponds to one communication step in
the LOCAL model. Thus with a T -round gossip
algorithm for the k-local broadcast problem any T ′-
round distributed algorithm in the LOCAL model
can be simulated by an

⌈
T
k · T

′⌉ gossip algorithm.
Many distributed problems have O(logc n) LOCAL
algorithms, that is, can be solved by each node
knowing only its O(logc n) neighborhood. This
reinforces the importance of the O(logc n)-local
broadcast problem.

Remark: The GOSSIP model does not initialize nodes
with any non-local knowledge about the network in
particular nodes do not know the network size n. For
the 1-local broadcast this is not a crucial assumption.
Indeed, since it is easy to verify locally whether a 1-local
broadcast completed nodes can simply guess an upper
bound on n and square their guess if the algorithm
does not complete with their guess. For algorithms
with a polylogarithmic running time squaring the guess
increases the running time by a constant factor and
the total running forms geometric sum which is only
a constant factor larger than the final execution with
the fist correct upper bound for n. For randomized
algorithms the same verification/restart strategy can be
used to transform any Monte Carlo algorithm to a Las
Vegas algorithm.

3 A Simpler Randomized 1-Local Broadcast
Gossip Algorithm

In this section we give a simple randomized gossip al-
gorithms for the 1-local broadcast problem. The al-
gorithm can be seen as a simplification of the algo-
rithm given in [3]. To analyze this algorithm we use the
methods of [3] namely a decomposition of any graph

708 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

into expanders and the efficiency of random gossip in
expanders. In Section 4 we will then further strip
down this algorithm and show that replacing its ran-
dom choices by arbitrary deterministic choices does not
affect its correctness or efficiency.

3.1 Round Robin Flooding The gossip algorithm
in this section uses a simple round robin flooding
subroutine which we introduce here first.

Suppose all nodes have established links to at most
∆ neighbors. It is quite straight forward to flood
information along these links in ∆ rounds by each
node exchanging information over its links one by one.
Essentially repeating this d times floods messages for
d-hops along all established links in d∆ steps. For
completeness we add the exact statement and algorithm
for this flooding procedure next:

Lemma 3.1. Suppose each node v knows the rumors Rv
and has selected ∆v links to nodes nv(1), . . . , nv(∆v).
Suppose also, the distance d and an upper bound of ∆
on maxu ∆u is given to every node.

Then, Algorithm 1 spreads each rumor for d hops along
the selected links in ∆d rounds.

That is, each node v knows exactly the rumors in⋃
u∈Γd

G′ (v)Ru after termination where G′ = (V,E′) is

the undirected graph with E′ =
⋃

v,i≤∆v

{{v, nv(i)}}.

Algorithm 1: Flood (Round Robin)

(Input: max. deg. ∆, own deg. ∆v, distance d,
neighbors nv(1), . . . , nv(∆v), rumors Rv)

REPEAT d times
R′ = ∅
FOR t = 1 to ∆

IF t ≤ ∆v THEN
exchange rumors in Rv with nv(t)

ELSE wait
add all received rumors to R′

Rv = Rv ∪R′

Proof. [Proof of Lemma 3.1] We denote with Rv(i) the
set of tokens known to node v at the beginning of
iteration i. The rumors collected in R′ during iteration
i by node v are exactly the rumors exchanged with
nodes neighboring v in G′ since for each undirected link
{u, v} ∈ E′ either v or u initializes a bidirectional rumor
exchange. We thus get that for any node v and any
iteration i we have Rv(i + 1) =

⋃
u∈ΓG′ (v)Ru(i). Note

furthermore, that for every v and every k we also have
Γk+1
G′ (v) =

⋃
u∈ΓG′ (v) ΓkG′(u). Now, using induction on

the number of iterations with these two statements we
directly obtain that Rv(d) =

⋃
u∈Γd

G′ (v)Ru as asserted.

3.2 A Simple Randomized 1-Local Broadcast
Gossip Algorithm In this part we present a simple
randomized gossip protocol. The algorithm and even
more its analysis are inspired by [3] but are arguably
simpler and more natural. To further simplify the
presentation we did not optimize the running time of
the algorithm presented here.

The randomized gossip protocol does the following
for each node v ∈ V in parallel:

Algorithm 2: Randomized Gossip

Rv = v
WHILE ΓG(v) \Rv 6= ∅

pick Θ(log2 n) random edges to Γ(v) \Rv
d = Θ(log2 n); E′ = all (newly) picked edges
Flood rumors in Rv along E′-edges for d-hops
add all received rumors to Rv

It is clear by construction that Algorithm 2 cor-
rectly solves the 1-local broadcast problem since a node
continues contacting its neighbors until it has received
the rumors from all of them. The next lemma proves
that with high probability Algorithm 2 is furthermore
very efficient.

Lemma 3.2. With high probability Algorithm 2 takes at
most 4 log n iterations and solves the 1-local broadcast
problem in O(log6 n) rounds (or O(log5 n) rounds if only
newly picked links are used during the flooding).

To proof Lemma 3.2 we need the following two
lemmas about expanders (for the definition of the
expansion used here we refer to [3]):

Lemma 3.3. (Lemma 3.1 in [3]) Every graph can be
partitioned into disjoint node subsets such that:

• Any subset forms a Ω(1/ log n)-expander (when
adding edges leaving the subset as self-loops).

• At least a third of all edges are intra-partition edges,
i.e., both endpoints lie in one subset of the partition.

Lemma 3.4. Let G be an n-node graph and expansion
Φ and let T = Ω(logn

Φ). Suppose for every vertex v
we uniformly sample T neighboring edges (with replace-
ment) and let G′ be the subgraph of G consisting of the
union of all selected edges. With high probability G′ has
diameter at most T .

709 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

Proof. This follows directly from the result of [12] that
uniform gossip solves the global broadcast problem in
G in T steps. To see this we note that G′ can be seen
as the graph of edges initiated during such a run of
the uniform gossip protocol. Furthermore, since each
message travels at most one step in each round and
every node learns about all messages in T steps the
graph G′ has diameter at most T .

The result of [12] which we used to prove
Lemma 3.4 was also used in [3]. Interestingly, it seems
much stronger than Lemma 3.4 and we suspect that
Lemma 3.4 itself can be proved using simpler methods.
One way would be to use sparsification results to show
that under the specified subsampling any Φ-expander
maintains its expansion and thus also its diameter of
O(logn

Φ).
We are now ready to proof Lemma 3.2:

Proof. Note that since flooding for d hops is symmetric
we have at the beginning of any iteration i that u has
not heard from v yet if and only if v has not heard
from u. In this case we say the edge {u, v} ∈ G is
active and we denote the graph of active edges at the
beginning of iteration i with Ki. To prove that log n
iterations are sufficient we will show that with high
probability the number of active edges decreases by a
factor of 2/3 in every iteration. For this, we apply
Lemma 3.3 on Ki to get a partitioning of nodes into
subsets that induce Φ = O(1/ log n) expanders. The
sampling of Θ(log2 n) uniformly random new neighbors
in Algorithm 1 now directly corresponds to subsampling
each of these expanders in the same way as described
in Lemma 3.4. From Lemma 3.4 we thus get that with
high probability the distance between any two nodes in
the same partition along the newly established links is at
most O(log n/Φ) = O(log2 n). With high probability we
thus get that any intra-partition edge becomes inactive
after flooding for Θ(log2 n) hops along the (newly)
selected links. Since Lemma 3.3 guarantees that at
least a third of the active edges are intra-partition edges
we have established that with high probability at most
− log2/3 n

2 < 4 log n many iterations are needed. To
determine the total running time we note that each
node established at most Θ(log2 n) new links in each
iteration. The number of total links established by
a node is thus at most O(log3 n). This means we
can run the flooding protocol, i.e., Algorithm 2, with
d = Θ(log2 n) and ∆ = O(log3 n) (or ∆ = O(log2 n) if
we only use newly established links). The running time
for one iteration is thus O(log5 n) (or O(log4 n)) rounds
according to Lemma 3.1. Over at most 4 log n iterations
this sums up to a total of O(log6 n) (or O(log5 n))
rounds.

4 The New Deterministic 1-Local Broadcast
Gossip Protocol

In this section we give the simplest description of our
deterministic gossip protocol for the 1-local broadcast
problem. It is identical to Algorithm 2 presented in the
last section except for the following three simplifications
(marked in bold in Algorithm 3):

• Instead of Θ(log2 n) new edges per round only one
new edge is added per node.

• Instead of Θ(log2 n) hops messages are only flooded
for 2 log n hops.

• Most importantly, the new edge(s) are not anymore
required to be chosen uniformly at random but can
be chosen in any arbitrary (deterministic) way.

Surprisingly, we will show next that this severely
stripped down algorithm still takes only log n iterations
to solve the 1-local broadcast problem (now determin-
istically and always instead of with high probability).

As already described, our deterministic gossip pro-
tocol does the following for each node v ∈ V in parallel:

Algorithm 3: Deterministic Gossip

Rv = v
WHILE Γ(v) \Rv 6= ∅

arbitrarily pick one new edge to Γ(v) \Rv
d = 2 log n; E′ = all established links
Flood rumors in Rv along E′-edges for d-hops
add all received rumors to Rv

Lemma 4.1. Algorithm 3 takes at most log n iterations
and solves the 1-local broadcast problem in at most
2 log3 n rounds.

We first need to define binomial trees for our
analysis:

Definition 4.1. A binomial tree of order 2i or short i-
tree is a rooted depth i tree on 2i nodes that is inductively
defined as follows: A 0-tree consists of a single node.
For any i ≥ 0 a i + 1-tree is formed by taking two i-
trees, connecting their roots and declaring one of the
roots as the new root.

To prove Algorithm 3 efficient we will use a short
and simple inductive argument that for any node that
has not terminated at iteration i it is possible to find a
i-tree rooted at it in G. Since i-trees grow exponentially
in i this limits the number of iterations to log n.

710 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

0-tree 1-tree 2-tree

3-tree

Figure 1: i-trees for i ∈ {0, 1, 2, 3}.

Lemma 4.2. Consider the beginning of any iteration
0 ≤ i ≤ log n in Algorithm 3 and Hi be the graph of all
edges used until then. Suppose there is a node v0 with
k missing rumors, that is, ΓG(v0) \Rv0 = {v1, . . . , vk}.
Then there are k+1 many i-trees τ0, . . . , τk as subgraphs
in Hi rooted at v0, v1, . . . , vk respectively such that τ0 is
vertex disjoint from τj for any 0 < j ≤ k.

Proof. We proof the lemma by induction on t. The base
case for i = 0 follows directly from the fact that each
node forms its own 0-tree. For the inductive step we
assume a vertex v0 which at the beginning of iteration
i + 1 ≤ log n is still active. Let u0 be the vertex
contacted by v0 in iteration i. By induction hypotheses
in the beginning of iteration i there was an i-tree rooted
at v0 and a vertex disjoint i-tree rooted at u0. These
two trees together with the new edge {v0, u0} form the
new i+ 1-tree τ0 in Hi+1.

Next we note that the symmetry of flooding for d
hops ensures that whenever an ID a gets added to Rb the
ID b also gets added to Ra. Therefore if ΓG(v0) \Rv0 =
{v1, . . . , vk} at the beginning of iteration i + 1 it must
be that all vj ∈ ΓG(v0)\R0 also have v0 ∈ ΓG(vj)\Rvj .
Every node vj ∈ ΓG(v0) \ R0 was therefore also active
at the beginning of round i and must have chosen an
edge to a node uj . Similarly as done for v0 we can find
an i + 1-tree τj that consists of the i-trees rooted at
vj and uj at iteration i and the edge {vj , uj}. It only

remains to show that τ0 and τj are node disjoint for all
j. Assume for sake of a contradiction that there is a j
such that τ0 and τj share a node. In this case there is a
path in Hi+1 from v0 to vj of length at most 2 log n as
the depths of both τ0 and τj is at most log n. But Hi+1

is the graph along which IDs and rumors are flooded for
2 log n hops during iteration i. Thus vj would be in Rv0
at the beginning of iteration i + 1 – this is the desired
contradiction that completes the proof.

Proof. [Proof of Lemma 4.1] Algorithm 3 correctly
solves the 1-local broadcast problem by construction
since it keeps contacting new neighbors until it has
received the rumors from all of them. Lemma 4.2
furthermore proves that if the protocol is not done after
the iteration log n at the beginning of the next iteration
we can find two neighbors that do not know of each
other and two node-disjoint (log n)-trees as subgraphs
of G. Since the number of nodes is n this is impossible
and shows that Algorithm 3 performs at most log n
iterations. In each iteration at most one new link
is established per node for a total of at most log n
links. Flooding for d = 2 log n hops in the graph of
all established links using Algorithm 2 with ∆ = log n
thus takes 2 log2 n rounds. Over log n iteration this
accumulates to 2 log3 n rounds in total.

5 More Efficient Broadcast Protocols

In this section we show how to tweak the deterministic
gossip protocol from Section 4 to achieve faster k-local
broadcast protocols. In particular in this section we
prove Theorem 1.1 by showing how to solve the k-local
broadcast problem deterministically in 2(k+log n) log n
rounds.

5.1 Faster 1-Local Broadcast via Deterministic
Tree Gossip First we speed-up our solution for the 1-
local broadcast problem by replacing the flooding step
in Algorithm 3. We use two key observations:

• The flooding steps in Algorithm 3 are only per-
formed to ensure that in every iteration i any node
v0 picks a new neighbor whose i-tree does not in-
tersect with its own i-tree.

• The structure of these i-trees allows for spreading
rumors within the trees faster than using the round
robin flooding procedure.

To better understand the structure of the i-trees
constructed in the proof of Lemma 4.2 we will give an
alternative construction. For any node v0 that has not
terminated until iteration i we construct its i-tree τ0 as
follows:

711 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

The root of τ0 is v0 and its children are the nodes
u1, . . . , ui−1 contacted by v0 in the iterations up to i.
For each of these child nodes ui′ we then attach as
children all nodes w1, . . . , wi′−1 contacted by node ui′

in the iteration up to i′. We continue inductively for
each of these nodes wi′′ .

It is easy to see that this produces the same i-tree
as the one constructed in the proof of Lemma 4.2. In
addition to being helpful for our proofs this construction
has a nice interpretation. The i-tree τ0 in Lemma 4.2
can be seen as a witness structure that certifies and
explains why node v0 was active until iteration i,
namely:

Node v0 did not terminate until iteration i because
there were the neighbors u1, . . . , ui−1 that were active
and unknown to v0 at time 1 to i − 1 respectively
resulting in v0 contacting them. Each of these nodes
ui′ on the other hand was still active and did not
contact v0 itself until iteration i′ because of its neighbors
w1, . . . , wi′−1 that were active and unknown to ui′ at
time 1 to i′ − 1 respectively resulting in ui′ contacting
them, and so on.

With this interpretation the proof of Lemma 4.1
essentially says that Algorithm 3 cannot have an node
v0 that is still active after log n iterations since any
explanation τ0 for why it is still active would have to
blame more nodes than exist in the network.

Next we will show how to exploit the structure of
these i-trees. The deterministic gossip protocol that
does this performs the following for each node v ∈ V in
parallel:

Algorithm 4: Deterministic Tree Gossip

R = v
FOR i = 1 UNTIL Γ(v) \R = ∅

link to any new neighbor ut ∈ Γ(v) \N
R′ = v
PUSH: For j = i downto 1:

exchange rumors in R′ with uj
add all received rumors to R′

PULL: For j = 1 to i:
exchange rumors in R′ with uj
add all received rumors to R′

R′′ = v
perform PULL, PUSH with R′′

R = R′ ∪R′′

Remark:
Note that Algorithm 4 does not require knowledge of the
network size n. This can also be achieved in Algorithm
3 if one instead of flooding for 2 log n hops in each

iteration only floods for 2i hops in the ith iteration.
This also speeds up the running time by a factor of two
and avoids the guess-and-double strategy remarked in
Section 2.1 for the case that n is unknown.

Theorem 5.1. Algorithm 4 solves the 1-local broadcast
problem in log n iterations and less than 2(log n + 1)2

rounds.

The proof is essentially the same as for Lemma 4.1
except for the use of the following lemma:

Lemma 5.1. Suppose u and v are two nodes that are
active at the beginning of iteration i and that τu and
τv are their ordered i-trees respectively. Then, after
the PUSH exchanges in iteration i all nodes in τu have
learned about u (and all nodes in τv have learned about
v). Furthermore, if τu and τv are not node disjoint then
after the PUSH-PULL exchanges in iteration i the node
u has learned about v (and vice versa).

Proof. We note that by construction all paths from the
root u to a any other node in τu follow tree edges
in decreasing order. During the first PUSH sequence
edges are activated in decreasing order which thus
pipelines the rumor of u from the root to all nodes
in τu. Similarly, rumors known to any nodes in τu
gets pipelined towards the root u during the first PULL
sequence. The same is true by symmetry for v and τv.
Now, if τu and τv share a node y then y will learn about
u and v during the first PUSH sequence of iteration i
and then forward this information to u and v during the
first PULL sequence – informing both nodes about each
other.

Proof. [Theorem 5.1] We use the exact statement as
in Lemma 4.2 to show that only log n iterations are
performed by Algorithm 4. The first thing to check is
that Algorithm 4 still maintains symmetry with regards
to which nodes knows which. This is achieved by the
the fact that the PULL-PUSH sequence of the second
part is exactly the reversal of the PUSH-PULL sequence
of the first part of any iteration. As such, if a node v
learns about a node u in the PUSH-PULL sequence of
exchanges then u will learn about v during the PULL-
PUSH exchanges and vice versa. By taking R to be
the union of R′ and R′′ it is clear that we indeed get
u ∈ Rv if and only if v ∈ Ru. The rest of the proof of
Lemma 4.2 goes exactly the same except that we relay
on Lemma 5.1 for the fact that if v0 and vi do not know
about each other then their i-trees must be disjoint.
This completes the proof that at most log n iterations
are performed. To determine the total number of rounds
needed we note that in the ith iteration exactly 4i

712 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

1

1
1

1

1

1
1

1

2

2

2

2
3

3

4

5

1

1
1

1

1

1
1

1

2

2

2

2
3

3

4

Figure 2: A 5-tree. The labels on the edges denote at
what time they were added. These edges are activated
from low to high during a PUSH exchange and activated
from high to low in a PULL exchange. Note that
the path from the root to any node follows edges in
decreasing order.

exchanges are performed. This leads to a total round
complexity of

∑logn
i=1 4i = 2 log n(log n+ 1).

5.2 Speeding up the k-Local Broadcast for k > 1
What remains to show for Theorem 1.1 is how to use our
algorithms for the k-local broadcast problem for k > 1.
As remarked in Section 2.2 a straight forward way to
use Algorithm 2 – 4 for the k-local broadcast problem
is simply applying them k times. Using our Algorithm
4 this leads to a 4k log2 n solution. We can improve
upon this by realizing that in all algorithms the 1-local
broadcast problem is actually solved completely during
the flooding or tree-broadcast in the last iteration. All
prior iterations are only needed to guarantee that the
links chosen are going to new neighbors. To exploit this,
we only use the full blown algorithms for the first 1-
local broadcast and then reuse the established links by
simply repeating the flooding or tree-broadcast of the
last iteration for the remaining local broadcasts. When
using Algorithm 4 for this we need 2 log n(log n + 1)
round for the first local broadcast and only 2 log n
rounds for each of the k− 1 remaining ones. This leads
to the running time claimed in Theorem 1.1.

6 Natural Gossip Processes and Robustness

In addition to their message and time efficiency gossip
algorithm have also been studied because of their natu-
ralness and robustness.

Unfortunately, while the algorithms in [3, 4] deal
much better with bottlenecks in the topology than the
uniform gossip protocol they are also much less natural
and robust. This holds in particular for the local
broadcast algorithm of [3] which crucially relies on a
very unnatural reversal step to guarantee correctness.
This algorithm can furthermore fail completely if only
one link is temporarily down in one round or if due
to a slight asynchrony the order of two exchanges gets
switched.

In this section we show that the algorithms and
analysis presented in this paper are robust and can be
seen and phrased as a natural process. The latter is
best demonstrated by considering as an example the
following surprisingly accurate/realistic social setting:

Interpret nodes as curious but somewhat shy per-
sons that want to know (everything) about their neigh-
bors but only rarely have the courage to approach a per-
son they know nothing about; instead they prefer to talk
to neighbors they have already approached before and ex-
change rumors/information about others.

We will show that our analysis is flexible enough to
not just show fast rumor propagation for our specifically
designed algorithms but broadly covers a wide variety
of high level processes including the one above. In par-
ticular for this setting our analysis implies the follow-
ing: Rumors spread rapidly in such a social setting as
long as a person talks (by a factor of log2 n) more fre-
quently to a person approached before compared to ap-
proaching a new neighbor (whose rumor is not known).
Interestingly, our result is flexible enough to allow the
(social) process according to which nodes choose which
new person they find most approachable at any time to
be arbitrarily dependent and complex.

To show the flexibility of our analysis we consider
the template given as Algoithm 5. It is coined in terms
of iterations each consisting of a linking step and a
propagation step.

Algorithm 5: Gossip Template

REPEAT
link to any neighbor whose rumor is not known
propagate rumors among established links

UNTIL all rumors are known

To analyze this template we introduce some nota-

713 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

tion: Let Rv(t) ⊆ Γ(v) be the neighbors of node v it
knows the IDs and rumors of at the beginning of iter-
ation t. Furthermore let Gt be the undirected graph
that consists of all edges added in the linking proce-
dure. With this we first show a strong but admittedly
relatively technically phrased lemma.

Lemma 6.1. Let Tmin be the maximum number of prop-
agation steps it takes for a nodes u to learn about an-
other node v for which there exists a path of estab-
lished links of length at most 2 log n. Furthermore, for
any two nodes u, v let Tdiff be the maximum num-
ber of propagation steps it takes from the time that u
knows v until v also knows u. With these two parame-
ters Algorithm 5 takes at most T log n iterations, where
T = max{Tdiff , Tmin}.

Remark:

The algorithm in [3] and all algorithms presented in
this paper so far keep perfect symmetry of knowledge,
that is, if a node u knows the rumor of v then v
also knows the rumor of u. This is achieved by
flooding for exactly d hops or by carefully reversing the
sequence in which edges where chosen. This symmetry
is used in all proofs so far. If furthermore turns out
to be crucial for the efficiency of the algorithm of
[3]: Indeed, [3] gives an example in which introducing
a slight asymmetry increases the running time from
polylogarithmic to linear. The expander decomposition
proof of [3] seems furthermore unsuitable for extensions
to a more asymmetric setting. While our algorithms
so far also featured perfect symmetry Lemma 6.1 shows
that both algorithms and our analysis are robust enough
to relax this requirement significantly.

While Lemma 6.1 shows robustness it does not read
too natural or close to the informal description given
before. This is remedied by the next two corollaries
which give some examples on how it can be used.

Corollary 6.1. Suppose a rumor dies out / looses
credibility (i.e., is not forwarded anymore) after it has
been passed around for more than λ hops where λ >
log n. Suppose also that nodes establish links at least
every α steps and talk to each established link at least
every β steps. Then the 1-local broadcast completes after
at most αβλ steps.

Or on an even more concrete example:

Corollary 6.2. Suppose a rumor dies out after
Θ(log n) hops. Suppose also that each node indepen-
dently chooses with probability p = 1/ log2 n to talk
to a neighbor it has not heard from yet and otherwise

talks to a random neighbor it has already contacted be-
fore. In this setting the 1-local broadcast stops after
T = O(log4 n) iterations with high probability.

Given the above demonstrated flexibility it comes
as no surprise that our algorithms are also naturally
robust against various kinds of failures. In particular it
is easy to give robust deterministic algorithms for the
k-local broadcast based on Lemma 6.1. For example, a
simple round robin flooding procedure (with or without
distance labels to prevent rumors from spreading too
far) is naturally robust against any random edge failure
rate γ with only the necessary 1/(1−γ)-slowdown. Even
adversarial permanent failures merely slow down the
algorithm slightly as they can not cause more harm then
preventing progress made in the iteration the failed edge
occurred. We defer the formalization and presentation
of these robustness results to the journal version of this
paper and instead point to the very nice work of Keren-
Censor Hillel and Giakkoupis [2]. There, independently,
a robust randomized alternative to [3] is given including
proofs for robustness against random temporary and
random permanent node- and edge-failures.

6.1 Proofs

Proof. [of Lemma 6.1] We will only look at links
established at iteration i′ ≡ 0 mod T . We define Hi

to be subgraph of G consisting of all edges established
in these iterations until iteration iT . We then prove
Lemma 4.2 for Algorithm 5 exactly as before. That is:

Consider the beginning of any iteration iT for
i ≤ log n in Algorithm 5 and any active node v0. If
Γ(v)\R = {v1, . . . , vk} then there are k+1 many t-trees
τ0, . . . , τk as subgraphs in Hi+1 rooted at v0, v1, . . . , vk
respectively such that τ0 is vertex disjoint from τi for
any 0 < i ≤ k.

We proof the lemma by induction on i. The base
case for i = 0 follows directly from the fact that each
node forms its own 0-tree. For the inductive step we
assume a vertex v0 which at the beginning of iteration
(i + 1)T for i + 1 ≤ log n is still active. Let u0 be the
vertex contacted by v0 in iteration iT . By induction
hypotheses in the beginning of iteration iT there was a
i-tree rooted at v0 and a vertex disjoint i-tree rooted at
u0. These two trees together with the new edge {u, v}
form the new i+ 1-tree τ0.

All neighbors vi of v0 that are in Γ(v) \ R at
beginning of iteration (i+1)T can not have know about
v0 at the beginning of iteration iT since otherwise v0

would know about vi at iteration iT +Tdiff ≤ (i+ 1)T .
They were therefore also active at the beginning of

714 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

iteration iT and must have chosen an edge to a node
ui. Similarly as done for v0 we can find an i + 1-tree
τi that consists of the i-trees rooted at vi and ui at
iteration i and the edge {vi, ui}. It is clear that τ0 and
τi are node disjoint since otherwise there is a path from
vi to v0 of length at most sum of the depths of τ0 and
τi in Hi+1. This is at most 2 log n which implies that
in the beginning of iteration iT + Tmin ≤ (i + 1)T the
node v0 would know about vi – a contradiction.

Proof. [of Corollary 6.1] In this case we get that one
iteration corresponds to α steps. We have Tdiff = λβ
since if u is informed about v then there is a path of
length at most λ and it takes at most β rounds per step
until v also knows about u.

Proof. [of Corollary 6.2] First we note that with high
probability every node contacts a new neighbor within
any α = O(log3 n) rounds. Furthermore, with high
probability the number of established neighbors during
O(log4 n) rounds is at most O(log2 n) for every node.
Thus, if a path of established links of lengths at most
Θ(log n) occurs between two node u and v then after
O(log3 n) steps both nodes will have learned from each
other with high probability. According to Lemma 6.1
it takes thus at most max{O(log3 n), O(log3 n)} log n =
O(log4 n) steps to complete the 1-local broadcast.

7 Conclusion

In this paper we presented the first efficient determin-
istic gossip algorithm for the rumor spreading problem
and the k-local broadcast problem. In addition to show-
ing that all random choices of a certain gossip algorithm
can be replaced by arbitrary deterministic choices our
algorithms are also much simpler, more robust, more
natural and with a running time of 2(k log n + log2 n)
faster than previous randomized algorithms.

One interesting question that remains is whether
the running time of O(log2 n) for the 1-local broadcast
problem (or the log n-local broadcast problem) can be
improved. While we believe that our running time is
optimal at least for deterministic algorithms we could
not prove such a lower bound. One direction for proving
lower bounds even for randomized algorithms would be
to use the connections to spanners given in [3]. In
particular any gossip algorithm solving, e.g., the log n-
local broadcast problem in T = log1+δ n rounds implies
the existence of an (α, β)-spanner with α = Θ(logδ n)
and β = log1+δ n with density n log1+δ n. No spanner
of such quality is known to exist for δ < 1 [17].

The connections to spanners from [3] can also be
used to in the opposite direction to see our gossip
algorithms for the 1-local broadcast problem as an
extremely efficient distributed constructions of a sparse

graph spanner. For example the subgraph of edges used
by Algorithm 3 or 4 both form a spanner with stretch
2 log n and n log n edges. This is almost optimal as
Θ(log n/ log log n) is the best stretch achievable with
this density. While constructions of optimal spanners
are known, the simple distributed construction of a good
quality spanner in the extremely weak gossip model
should be of interest. In particular the total number of
messages used in Algorithm 4 is with n log2 n drastically
less than any distributed algorithm in the literature
since these LOCAL-algorithms send a messages over
each of the potentially Θ(n2) many edges in G in
every round. Similarly, the total amount of information
exchanged by our algorithm is quite low given that
there are no distributed algorithms that use less than
polynomial size messages [18]. Even the 4 log2 n round
construction time is quite fast given the restricted
model. We remark that our construction can also
be seen as a deterministic 2 log n round algorithm in
the LOCAL model since nodes only communicate with
other nodes in their 2 log n neighborhood. All this,
together with the simplicity of our algorithm and its
analysis makes our approach an interesting starting
point for designing new spanner constructions. One
question in this direction would for example be: If
one floods only for k instead of 2 log n hops during
Algorithm 3 then a k-stretch spanner is computed.
What is the density of this spanner when k < log n?

Another question is whether the message size re-
quirement can be reduced. While, as remarked in Sec-
tion 2, this is not reasonable to ask for in the local
broadcast problem itself the trivial information argu-
ment does not apply to the bit complexity for discov-
ering a sparse spanner via a gossip algorithm. Never-
theless, reducing the message size seems like a hard and
quite possibly impossible task. As just mentioned even
for the intensely studied case of constructing spanners
via randomized algorithms in the less restrictive LO-
CAL model no algorithms using a subpolynomial mes-
sage size are known [18].

References

[1] S. Angelopoulos, B. Doerr, A. Huber, and K. Pana-
giotou. Tight bounds for quasirandom rumor
spreading. the electronic journal of combinatorics,
16(1):R102, 2009.

[2] K. Censor-Hillel and G. Giakkoupis. Fast and robust
information spreading. Unpublished manuscript, 2012.

[3] K. Censor-Hillel, B. Haeupler, P. Maymounkov, and
J. Kelner. Global computation in a poorly connected
world: Fast rumor spreading with no dependence on
conductance. In Proceedings of the 44st Annual ACM
Symposium on Theory of Computing (STOC), 2012.

715 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

[4] K. Censor-Hillel and H. Shachnai. Fast information
spreading in graphs with large weak conductance. In
Proceedings of the 22nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 440–448, 2011.

[5] F. Chierichetti, S. Lattanzi, and A. Panconesi. Almost
tight bounds for rumour spreading with conductance.
In Proceedings of the 42nd ACM Symposium on Theory
of Computing (STOC), pages 399–408, 2010.

[6] F. Chierichetti, S. Lattanzi, and A. Panconesi. Ru-
mour spreading and graph conductance. In Proceed-
ings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1657–1663. Society
for Industrial and Applied Mathematics, 2010.

[7] B. Doerr and M. Fouz. A time-randomness tradeoff
for quasi-random rumour spreading. Electronic Notes
in Discrete Mathematics, 34:335–339, 2009.

[8] B. Doerr, T. Friedrich, and T. Sauerwald. Quasir-
andom rumor spreading. In Proceedings of the nine-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 773–781, Philadelphia, PA,
USA, 2008. Society for Industrial and Applied Mathe-
matics.

[9] B. Doerr, T. Friedrich, and T. Sauerwald. Quasir-
andom rumor spreading: Expanders, push vs. pull,
and robustness. In 36th International Colloquium on
Automata, Languages and Programming (ICALP)(1),
pages 366–377, 2009.

[10] N. Fountoulakis and A. Huber. Quasirandom rumor
spreading on the complete graph is as fast as ran-
domized rumor spreading. SIAM Journal on Discrete
Mathematics, 23(4):1964–1991, 2009.

[11] A. Frieze and G. Grimmett. The shortest-path problem
for graphs with random arc-lengths. Discrete Applied
Mathematics, 10(1):57–77, 1985.

[12] G. Giakkoupis. Tight bounds for rumor spreading in
graphs of a given conductance. In 28th International
Symposium on Theoretical Aspects of Computer Sci-
ence (STACS), pages 57–68, Dagstuhl, Germany, 2011.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[13] G. Giakkoupis, T. Sauerwald, H. Sun, and P. Woelfel.
Low randomness rumor spreading via hashing. In
29th International Symposium on Theoretical Aspects
of Computer Science (STACS 2012), volume 14, pages
314–325, 2012.

[14] G. Giakkoupis and P. Woelfel. On the randomness
requirements of rumor spreading. In Proceedings of the
22nd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 449–461, 2011.

[15] B. Haeupler. Analyzing network coding gossip made
easy. In Proceedings of the 43rd annual ACM sympo-
sium on Theory of computing, STOC ’11, pages 293–
302, New York, NY, USA, 2011. ACM.

[16] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking.
Randomized rumor spreading. In Proceedings of the
41st Annual Symposium on Foundations of Computer
Science (FOCS), page 565, Washington, DC, USA,
2000. IEEE Computer Society.

[17] S. Pettie. Low distortion spanners. ACM Transactions

on Algorithms (TALG), 6:7:1–7:22, December 2009.
[18] S. Pettie. Distributed algorithms for ultrasparse span-

ners and linear size skeletons. Distributed Computing,
22(3):147–166, 2010.

[19] B. Pittel. On spreading a rumor. SIAM Journal on
Applied Mathematics, pages 213–223, 1987.

716 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

