

On the Complexity of Universal Leader Election

Paper by S. Kutten, G. Pandurangan, D. Peleg, P. Robinson and A. Trehan

Presentation by Adrian-Philipp Leuenberger

Overview

- Introduction and definitions
- Proofing the complexities
- Example algorithm

Leader Election - What is it?

Leader Election - What is it?

- Network nodes elect unique leader among themselves
- Implicit: Only leader knows that he is the leader
- Explicit: All nodes know the leader
- Not focus of paper
- Important for resource-constrained networks
- Peer-to-peer networks
- Ad-hoc networks
- Sensor networks

Definitions

Monte Carlo algorithm

- Randomized algorithm

Delivers correct result with probability $P=1-\varepsilon$, $\varepsilon>0$

Universal leader election algorithm

Take any n and m

- Algorithm succeeds on any graph with n nodes and m edges
- With success probability $1-\varepsilon$

Definitions

Network Diameter D

- Longest shortest path between any two nodes

- Here, D = 3

So what's the paper about?

- Focus on universal LE algorithms
- Worst case analysis for message and time complexity
, Lower bounds:
- Time complexity $\Omega(D)$
- Network diameter D
- Message complexity $\Omega(m)$
- medges

Algorithms that meet the lower bounds

But why those lower bounds?

- Time complexity $\Omega(D)$:
- Worst case: Send message on longest shortest path
- Message complexity $\Omega(m)$:
- Network topology unknown in general
- Must send message to all neighbors

F

Dumbbell graphs

- Take a 2-connected graph G
- n nodes, m edges
- m edges $\rightarrow 2 m^{2}$ possible dumbbell graphs
- I: collection of all dumbbell graphs for G

Bridge crossing

- Algorithm B solves BC iff a message is sent over a bridge

Proving $\Omega(m)$ for LE - Proof idea

- Reduce Bridge Crossing to Leader Election
- Show $\Omega(m)$ lower bound for Bridge Crossing \rightarrow Imply $\Omega(m)$ lower bound for Leader Election
- Proof lower bound $\Omega(m)$ for message complexity for Bridge Crossing
- Use Dumbbel/ graphs for the proof

Proving $\Omega(m)$ for BC - High level proof idea

- Take any deterministic BC algorithm B
- $T(e)$: First round a message passes edge e in disconnected graph
- After T rounds:
- At least T messages
- Two cases:

$$
\begin{aligned}
\therefore T(e) & =T\left(e^{\prime}\right) \\
\therefore T(e) & =T\left(e^{\prime \prime}\right)
\end{aligned}
$$

Proving $\Omega(m)$ for LE - Step 1

Assumption:

- Universal LE algorithm R
- Success probability $1-\beta$
- Deterministic LE algorithm A
- Solves LE on at least a $1-2 \beta$ fraction of \boldsymbol{I}
- Lemma 1 :
- ε and $\delta \geq 1 / 4$ positive constants with $7 \varepsilon+\delta \leq 1$
- A solves LE on at least a $1-\varepsilon$ fraction of I
$\rightarrow A$ solves BC on at least a δ fraction of I
Therefore, with $\varepsilon=2 \beta$:
LE algorithm A achieves BC on $\delta \geq 1 / 4$ of all graphs in I.

Proving $\Omega(m)$ for LE - Step 2

- Assumption:

- Universal LE algorithm R
- Success probability $1-\beta$
- Deterministic LE algorithm A
- Solves LE on at leasta $1-2 \beta$ fraction of \boldsymbol{I}
- We know:
- A achieves BC on at least $1 / 4$ of all graphs in I.
- Lemma 2:
- If A solves BC on at least $1 / 4$ of all graphs in I
- Then expected message complexity is $\Omega(m)$
- Therefore:
- Algorithm A has an expected message complexity of $\Omega(m)$.

Proving $\Omega(m)$ for LE - Step 3

- Assumption:
- Universal LE algorithm R
- Success probability $1-\beta$
- Deterministic LE algorithm A
- Solves LE on at least a $1-2 \beta$ fraction of \boldsymbol{I}
- We know:
- A achieves BC on at least $1 / 4$ of all graphs in I.
- A has an expected message complexity of $\Omega(m)$.
- Lemma 3 (Yao’s Minmax Principle):
- If A has cost X and success rate at least $1-2 \beta$ on \boldsymbol{I}
- Then R has worst case cost of at least $X / 2$ and success probability $1-\beta$ on \boldsymbol{I}
- Therefore:
- If A succeeds on at least $1-2 \beta$ fraction of \boldsymbol{I} with $\Omega(m)$ messages Then R must succeed with probability $1-\beta$ and $\Omega(m / 2)=\Omega(m)$ messages.

Proving $\Omega(m)$ - What just happened

1. Deterministic LE algorithm A likely solves bridge crossing
2. Bridge crossing: $\Omega(m)$ messages in expectation
3. LE algorithm A must have expected message complexity $\Omega(m)$
4. Cost of A implies lower bound for randomized algorithm $R \rightarrow \Omega(m)$ messages expected for any R

Proving $\Omega(\mathrm{D})$ - The idea

- Take any n and D
- $D^{\prime}=4\left\lceil^{D} / 4\right]$ cliques
- $\gamma(n) * D^{\prime} \geq n$ nodes per clique
- 4 neighborhoods or arcs
- Execution time T
- Two cases:
- $T \in o(D)$ with $p=\delta$
- $T \in \Omega(D)$ with $p=1-\delta$

Example algorithm: The basic Least Element algorithm

- Each node n keeps track of its local state
- Rank $\rho(n) \epsilon\left[1, n^{4}\right]$
- List of all least ranks of its neighbors
- Nodes choose their rank $\rho(n)$ randomly
- Succeeds if there is only one node with least rank

The basic Least Element algorithm

The basic Least Element algorithm

- Observations
- In each round
- Node n forwards at most one message to neighbors
- At most $2 m$ rank messages in total
- Time complexity is $O(D)$
- At most D time units to forward on longest shortest path
- Expected message complexity is $O(m \log n)$
- $O(m)$ messages sent per round
- $O(\log n)$ messages stored and forwarded per node

The improved Least Element algorithm

- Try to achieve $O(m)$ message complexity instead of $O(m \log n)$
- Take any function $f(n) \leq n$
- A nodes becomes candidates with probability ${ }^{f(n)} / n$
- Candidates
- Choose rank rank from [1, $\left.n^{4}\right]$
- Forward own rank
, Non-candidates
- Choose rank $n^{4}+1$
- Only update list and forward received ranks
- Algorithm succeeds if
- At least one node chooses to be a candidate
- There is only one node with least rank

The improved Least Element algorithm (cont'd)

- Time complexity of improved version is still $O(D)$
- Message complexity is $O(m * \min (\log f(n), D))$
- Success probability is $1-1 / e^{\otimes(f(n))}$
- Choose $f(n)=4 \log (1 / \varepsilon)$ for some constant $\varepsilon>0$, then
- Success probability at least $1-\varepsilon^{\theta(1)}$
- Message complexity is $O(m * \min (\log \log (1 / \varepsilon), D))=O(m)$

What was shown

- Worst case lower bounds for universal LE algorithms:
- $\Omega(D)$ time complexity
- $\Omega(m)$ messages
- Algorithm that also matches the bounds

References

On the Complexity of Universal Leader Election

- Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson and Amitabh Trehan, PODC ' 13
- Efficient Distributed Approximation Algorithms via Probabilistic Tree Embeddings
- Maleq Khan et. al., PODC '08

Any questions?

