

On the Complexity of Universal Leader Election

Paper by S. Kutten, G. Pandurangan, D. Peleg, P. Robinson and A. Trehan

Presentation by Adrian-Philipp Leuenberger

Overview

- Introduction and definitions
- Proofing the complexities
- Example algorithm

Leader Election - What is it?

Leader Election - What is it?

- Network nodes elect unique leader among themselves
- Implicit: Only leader knows that he is the leader
- Explicit: All nodes know the leader
 - Not focus of paper
- Important for resource-constrained networks
 - Peer-to-peer networks
 - Ad-hoc networks
 - Sensor networks

Definitions

Monte Carlo algorithm

- Randomized algorithm
- Delivers correct result with probability $P = 1 \epsilon$, $\epsilon > 0$

Universal leader election algorithm

- ightharpoonup Take any n and m
- Algorithm succeeds on any graph with n nodes and m edges
- With success probability 1 ε

Definitions

Network Diameter D

Longest shortest path between any two nodes

• Here, D = 3

So what's the paper about?

- Focus on universal LE algorithms
- Worst case analysis for message and time complexity
- Lower bounds:
 - Time complexity $\Omega(D)$
 - Network diameter D
 - Message complexity $\Omega(m)$
 - m edges
- Algorithms that meet the lower bounds

But why those lower bounds?

- Time complexity $\Omega(D)$:
 - Worst case: Send message on longest shortest path
- Message complexity $\Omega(m)$: Network topology unknown in general Must send message to all neighbors В

Dumbbell graphs

- ▶ Take a 2-connected graph *G*
 - *n* nodes, *m* edges
- ▶ m edges → $2m^2$ possible dumbbell graphs
- ▶ *I*: collection of all dumbbell graphs for *G*

Bridge crossing

 Algorithm B solves BC iff a message is sent over a bridge

Proving $\Omega(m)$ for LE – Proof idea

- Reduce Bridge Crossing to Leader Election
 - Show $\Omega(m)$ lower bound for *Bridge Crossing*
 - \rightarrow Imply $\Omega(m)$ lower bound for *Leader Election*
- Proof lower bound $\Omega(m)$ for message complexity for *Bridge Crossing*
- Use Dumbbell graphs for the proof

Proving $\Omega(m)$ for BC – High level proof idea

- Take any deterministic BC algorithm B
- ▶ T(e): First round a message passes edge e in disconnected graph
- After T rounds:
 - At least T messages
- Two cases:
 - T(e) = T(e')
 - T(e) = T(e'')

Proving $\Omega(m)$ for LE – Step 1

Assumption:

- Universal LE algorithm R
 - Success probability 1 β
- Deterministic LE algorithm A
 - Solves LE on at least a $1 2\beta$ fraction of *I*

Lemma 1:

- ε and $\delta \geq \frac{1}{4}$ positive constants with $7\varepsilon + \delta \leq 1$
- A solves LE on at least a 1ε fraction of I
- \rightarrow A solves BC on at least a δ fraction of I

• Therefore, with $\varepsilon = 2\beta$:

 $_{\circ}$ LE algorithm A achieves BC on $\delta \geq \frac{1}{4}$ of all graphs in I.

Proving $\Omega(m)$ for LE – Step 2

Assumption:

- Universal LE algorithm R
 - Success probability 1β
- Deterministic LE algorithm A
 - Solves LE on at least a $1 2\beta$ fraction of *I*

We know:

A achieves BC on at least ¼ of all graphs in I.

Lemma 2:

- \circ If A solves BC on at least $rac{1}{4}$ of all graphs in I
- Then expected message complexity is $\Omega(m)$

Therefore:

• Algorithm A has an expected message complexity of $\Omega(m)$.

Proving $\Omega(m)$ for LE – Step 3

Assumption:

- Universal LE algorithm R
 - Success probability 1 β
- Deterministic LE algorithm A
 - Solves LE on at least a $1 2\beta$ fraction of I

We know:

- A achieves BC on at least ¼ of all graphs in I.
- A has an expected message complexity of $\Omega(m)$.

Lemma 3 (Yao's Minmax Principle):

- If A has cost X and success rate at least $1 2\beta$ on I
- Then R has worst case cost of at least X/2 and success probability 1β on I

Therefore:

- If A succeeds on at least $1 2\beta$ fraction of I with $\Omega(m)$ messages
- Then R must succeed with probability 1β and $\Omega(m/2) = \Omega(m)$ messages.

Proving $\Omega(m)$ - What just happened

- Deterministic LE algorithm A likely solves bridge crossing
- 2. Bridge crossing: $\Omega(m)$ messages in expectation
- 3. LE algorithm A must have expected message complexity $\Omega(m)$
- 4. Cost of A implies lower bound for randomized algorithm $R \twoheadrightarrow \Omega(m)$ messages expected for any R

Proving $\Omega(D)$ – The idea

- Take any n and D
 - $D' = 4\lceil D/4 \rceil$ cliques
 - $\gamma(n) * D' \ge n$ nodes per clique
 - 4 neighborhoods or arcs
 - Execution time T
- Two cases:
 - $T \in o(D)$ with $p = \delta$
 - $T \in \Omega(D)$ with $p = 1 \delta$

Example algorithm: The *basic* Least Element algorithm

- Each node n keeps track of its local state
 - Rank $\rho(n) \in [1, n^4]$
 - List of all least ranks of its neighbors
- Nodes choose their rank $\rho(n)$ randomly
- Succeeds if there is only one node with least rank

The basic Least Element algorithm

The basic Least Element algorithm

- Observations
 - In each round
 - Node n forwards at most one message to neighbors
 - At most 2m rank messages in total
- Time complexity is O(D)
 - At most D time units to forward on longest shortest path
- Expected message complexity is $O(m \log n)$
 - O(m) messages sent per round
 - $O(\log n)$ messages stored and forwarded per node

The *improved* Least Element algorithm

- Try to achieve O(m) message complexity instead of $O(m \log n)$
- ▶ Take any function $f(n) \le n$
- A nodes becomes candidates with probability $f^{(n)}/n$
- Candidates
 - Choose rank rank from $[1, n^4]$
 - Forward own rank
- Non-candidates
 - Choose rank $n^4 + 1$
 - Only update list and forward received ranks
- Algorithm succeeds if
 - At least one node chooses to be a candidate
 - There is only one node with least rank

The *improved* Least Element algorithm (cont'd)

- ▶ Time complexity of improved version is still O(D)
- Message complexity is $O(m * \min(\log f(n), D))$
- Success probability is $1 1/e^{\Theta(f(n))}$
- Choose $f(n) = 4 \log(1/\epsilon)$ for some constant $\epsilon > 0$, then
 - Success probability at least $1 \varepsilon^{\Theta(1)}$
 - Message complexity is $O(m * \min(\log \log(1/\epsilon), D)) = O(m)$

What was shown

- Worst case lower bounds for universal LE algorithms:
 - $\Omega(D)$ time complexity
 - $\circ \Omega(m)$ messages
- Algorithm that also matches the bounds

References

- On the Complexity of Universal Leader Election
 - Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson and Amitabh Trehan, PODC 13
- Efficient Distributed Approximation Algorithms via Probabilistic Tree Embeddings
 - Maleq Khan et. al., PODC '08

Any questions?