Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
FS 2008

Principles of Distributed Computing Exercise 5: Sample Solution

1 Greedy Dominating Set

Our worst-case graph $G_{x}=\left(V_{x}, E_{x}\right)$ for $x \in \mathbb{N}$ is defined as follows. The node set V_{x} consists of a node r, x nodes $u_{1}, \ldots, u_{x}, 2^{x+1}-2$ nodes $v_{k \ell}$ for all $k \in\{1, \ldots, x\}$ and $\ell \in\left\{1, \ldots, 2^{k}\right\}$, and the two nodes w_{1} and w_{2}. There are edges between r and the nodes u_{i} for all $i \in\{1, \ldots, x\}$. Each node u_{i} is further connected to all nodes $v_{k \ell}$ for which $i=k$. Moreover, w_{1} is connected to all nodes $v_{k \ell}$ for which $\ell \leq 2^{k-1}$, and w_{2} is connected to all nodes $v_{k \ell}$ for which $\ell>2^{k-1}$. As an example, the graph G_{3} is given in Figure 1.

Figure 1: The graph G_{3}.
Note that the number of nodes of G_{3} is $3+x+\left(2^{x+1}-2\right)=2^{x+1}+x+1 \leq 2^{x+2}$. The degree $\delta(r)$ of r is exactly x. We further have that $\delta\left(u_{i}\right)=2^{i}+1, \delta\left(v_{k \ell}\right)=2$, and $\delta\left(w_{1}\right)=\delta\left(w_{2}\right)=2^{x}-1$.

In the first round, only u_{x} is chosen, because it has the largest degree. Let $\delta^{(i)}(v)$ denote the number of white (i.e., uncovered) nodes in round 2. After the first round, we have that $\delta^{(2)}\left(u_{i}\right)=2^{i}$ for all $i \in\{1, \ldots, x-1\}$ and $\delta^{(2)}\left(w_{1}\right)=\delta^{(2)}\left(w_{2}\right)=2^{x-1}-1$. This means that only node u_{x-1} is chosen in round 2. Inductively, we get that only node u_{x-i+1} is chosen in round i, as $\delta^{(i)}\left(u_{x-i+1}\right)=2^{x-i+1}>\delta^{(x-i+1)}\left(w_{1}\right)=\delta^{(x-i+1)}\left(w_{2}\right)=2^{x-i+1}-1$ for all $i \in\{2, \ldots, x-1\}$. In round x, we have that $\delta^{(x)}\left(u_{1}\right)=\delta^{(x)}\left(v_{11}\right)=\delta^{(x)}\left(v_{12}\right)=2$, thus identifiers have to be used to decide which nodes join the DS. In the worst case, three nodes, e.g., w_{1}, w_{2}, and u_{1}, are chosen to complete the DS.

Overall, $x+2$ nodes are chosen. The optimal DS consists only of the nodes r, w_{1}, and w_{2}, hence the approximation ratio is

$$
\frac{x+2}{3} \geq \frac{\log n}{3} \in \Omega(\log n)
$$

2 Fast Dominating Set

We describe the messages a node v executing Algorithm 21 sends and receives. Note that the local computation necessary to compute the messages is omitted.

```
Algorithm 1 Fast Distributed Dominating Set Algorithm (at node v):
    send ID to neighbors; receive IDs from neighbors
    no communication
    no communication
    send \(\tilde{w}(v)\) to neighbors; receive \(\tilde{w}(u)\) from neighbors; forward \(\tilde{w}(u)\) to neighbors; receive \(\tilde{w}(u)\)
    from 2-hop neighbors
    no communication
    send \(v\).active to neighbors; receive u.active from neighbors
    send \(s(v)\) to neighbors; receive \(s(u)\) from neighbors
    no communication
    no communication
    no communication
    no communication
    send \(v . c a n d i d a t e\) to neighbors; receive u.candidate from neighbors
    send \(c(v)\) to neighbors; receive \(c(u)\) from neighbors
    no communication
    no communication;
    send \(v\).joined to neighbors; receive \(u\).joined from neighbors; send \(v . w h i t e\) to neighbors; receive
    u.white from neighbors
    no communication;
```

Eight communication rounds are necessary for each phase.

3 Dominating Set on Regular Graphs

a) The number of steps each node has to execute is constant, thus the time complexity of this algorithm is $O(1)$.
b) A node can join the DS either in Step 1 or in Step 5. The probability that a node joins the DS in Step 1 is $\frac{\ln (\delta+1)}{\delta+1}$. The probability that a node joins the DS in Step 5 equals the probability that it neither joined the DS in step 1, nor has any neighbors that joined the DS in Step 1. This probability is $\left(1-\frac{\ln (\delta+1)}{\delta+1}\right)^{\delta+1} \leq \frac{1}{\delta+1}$. The expected size of the DS is hence

$$
n \cdot(\operatorname{Pr}[\text { node joins in Step } 1]+\operatorname{Pr}[\text { node joins in Step } 5]) \leq \frac{n(\ln (\delta+1)+1)}{\delta+1}
$$

c) In an optimal dominating set DS^{*} there is at least one node per $\delta+1$ nodes, since no node can dominate more than $\delta+1$ nodes, i.e., $\left|\mathrm{DS}^{*}\right| \geq\left\lceil\frac{n}{\delta+1}\right\rceil$. Consequently, the expected approximation ratio of this algorithm is

$$
\mathbb{E}\left[\frac{|D S|}{\left|D S^{*}\right|}\right] \leq \frac{n(\ln (\delta+1)+1) /(\delta+1)}{n /(\delta+1)}=\ln (\delta+1)+1 .
$$

