# Principles of Distributed Computing Exercise 9 

## 1 Scale Free Networks

Different studies of the structures of social networks have reported that the degree distribution of the underlying connectivity graphs asymptotically follow a power law, i.e., the probability of a node in a social network to have degree $k$ is given by:

$$
\operatorname{Pr}[k]=c k^{-\alpha} \quad \text { where } c \text { is a normalization constant }
$$

a) Is the diameter of two graphs with the same node-degree distribution equal (not necessarily power law graphs)?
b) Remember the the rumor game from the lecture: Two players choose a node on the graph, where they start their rumor. The player that is closer to a node in the graph can spread its rumor to the node. Winner is the player who can spread his rumor to more nodes. In a power law network, is it the optimal strategy to always choose the node with the highest degree?

For the following problems you may use the Chernoff bound: ${ }^{1}$
Theorem 1 (Chernoff Bound)
Let $X:=\sum_{i=1}^{n} X_{i}$ be the sum of $n$ independent $0-1$ random variables $X_{i}$. Then the following holds:

$$
\operatorname{Pr}[X \leq(1-\delta) \mathbb{E}[X]] \leq e^{-\mathbb{E}[X] \delta^{2} / 2} \quad \text { for all } 0<\delta \leq 1
$$

## 2 Greedy Routing in the Augmented Grid

Recall the network from the lecture where nodes were arranged in a grid and each node had an additional directed link to a randomly chosen node. Consider the case where $\alpha=2$, i.e., the random link of node $u$ connects it to node $w$ with probability $d(u, w)^{-2} / \sum_{v \in V \backslash\{u\}} d(u, v)^{-2}$. In the lecture, we saw that for this $\alpha$, with probability $\Omega(1 / \log n)$, in each step we get to the next phase when we employ greedy routing. Hence, the expected number of steps is in $O\left(\log ^{2} n\right)$. Prove that the same bound on the number of steps holds w.h.p.!

[^0]
## 3 Diameter of the Augmented Grid

Now consider $\alpha=0$, i.e., the targets of the random links are chosen completely uniformly at random. In the lecture, a proof of the fact that such a network has diameter $O(\log n)$ w.h.p. was sketched. We will now fill in the details.
a) Show that $\Theta(n / \log n)$ many nodes are enough to guarantee with high probability that at least one of their random links connects to a given set of $\Omega\left(\log ^{2} n\right)$ nodes. Prove this $(i)$ by direct calculation and (ii) using the Chernoff bound.
Hint: For (i), use that $1-p \leq e^{-p}$ for any $p$.
Hint: Use that you can choose the constant in the $O$-notation for the $O(n / \log n)$ many nodes!
b) Suppose for some node set $S$ we have that $|S| \in \Omega\left(\log ^{2} n\right) \cap o(n)$ and denote by $H$ the set of nodes hit by their random links. Prove that $H$ together with its grid neighbors contains w.h.p. $(5-o(1))|S|$ nodes!

Hint: Observe that independently of all previous random choices, each new link has at least a certain probability $p$ of connecting to a node whose complete neighborhood has not been reached yet. Then use the Chernoff bound on the sum of $|S|$ many variables.
c) Infer from b) that starting from $\Omega\left(\log ^{2} n\right)$ nodes, with each hop the number of reached nodes w.h.p. more than doubles, as long as we have still $O(n / \log n)$ nodes (regardless of the constants in the $O$-notation).
Hint: Play with the constant $c$ in the definition of w.h.p. and use the union bound $(\operatorname{Pr}[a \wedge b] \leq \operatorname{Pr}[a]+\operatorname{Pr}[b])$.
d) Conclude that the diameter of the network is w.h.p. in $O(\log n)$.


[^0]:    ${ }^{1}$ Chernoff-type and similar probability bounds are very powerful tools that allowed to design a plethora of randomized algorithms that almost guarantee success. Frequently this "almost" makes a huge difference in e.g., running time and/or approximation quality.

