
Chapter 26

Dominating Set

In this chapter we present another randomized algorithm that demonstrates the
power of randomization to break symmetries. We study the problem of finding
a small dominating set of the network graph. As it is the case for the MIS, an
efficient dominating set algorithm can be used as a basic building block to solve
a number of problems in distributed computing. For example, whenever we need
to partition the network into a small number of local clusters, the computation
of a small dominating set usually occurs in some way. A particularly important
application of dominating sets is the construction of an efficient backbone for
routing.

Definition 26.1 (Dominating Set). Given an undirected graph G = (V,E), a
dominating set is a subset S ⊆ V of its nodes such that for all nodes v ∈ V ,
either v ∈ S or a neighbor u of v is in S.

Remarks:

• It is well-known that computing a dominating set of minimal size is
NP-hard. We therefore look for approximation algorithms, that is,
algorithms which produce solutions which are optimal up to a certain
factor.

• Note that every MIS (cf. Chapter 7) is a dominating set. In general,
the size of every MIS can however be larger than the size of an optimal
minimum dominating set by a factor of Ω(n). As an example, connect
the centers of two stars by an edge. Every MIS contains all the leaves
of at least one of the two stars whereas there is a dominating set of
size 2.

All the dominating set algorithms that we study throughout this chapter
operate in the following way. We start with S = ∅ and add nodes to S until
S is a dominating set. To simplify presentation, we color nodes according to
their state during the execution of an algorithm. We call nodes in S black, nodes
which are covered (neighbors of nodes in S) gray, and all uncovered nodes white.
By W (v), we denote the set of white nodes among the direct neighbors of v,
including v itself. We call w(v) = |W (v)| the span of v.
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26.1 Sequential Greedy Algorithm

Intuitively, to end up with a small dominating set S, nodes in S need to cover
as many neighbors as possible. It is therefore natural to add nodes v with a
large span w(v) to S. This idea leads to a simple greedy algorithm:

Algorithm 26.2 Greedy Algorithm

1: S := ∅;
2: while there are white nodes do
3: v :=

{
v
∣∣ w(v) = maxu{w(u)}

}
;

4: S := S ∪ v;
5: end while

Theorem 26.3. The Greedy Algorithm computes a ln ∆-approximation, that
is, for the computed dominating set S and an optimal dominating set S∗, we
have

|S|
|S∗| ≤ ln ∆.

Proof. Each time, we choose a new node of the dominating set (each greedy
step), we have cost 1. Instead of letting this node pay the whole cost, we
distribute the cost equally among all newly covered nodes. Assume that node
v, chosen in line 3 of the algorithm, is white itself and that its white neighbors
are v1, v2, v3, and v4. In this case each of the 5 nodes v and v1, . . . , v4 get
charged 1/5. If v is chosen as a gray node, only the nodes v1, . . . , v4 get charged
(they all get 1/4).

Now, assume that we know an optimal dominating set S∗. By the definition
of dominating sets, to each node which is not in S∗, we can assign a neighbor
from S∗. By assigning each node to exactly one neighboring node of S∗, the
graph is decomposed into stars, each having a dominator (node in S∗) as center
and non-dominators as leaves. Clearly, the cost of an optimal dominating set
is 1 for each such star. In the following, we show that the amortized cost
(distributed costs) of the greedy algorithm is at most ln ∆ + 2 for each star.
This suffices to prove the theorem.

Consider a single star with center v∗ ∈ S∗ before choosing a new node u
in the greedy algorithm. The number of nodes that become dominated when
adding u to the dominating set is w(u). Thus, if some white node v in the star of
v∗ becomes gray or black, it gets charged 1/w(u). By the greedy condition, u is a
node with maximal span and therefore w(u) ≥ w(v∗). Thus, v is charged at most
1/w(v∗). After becoming gray, nodes do not get charged any more. Therefore
first node that is covered in the star of v∗ gets charged at most 1/(d(v∗) + 1).
Because w(v∗) ≥ d(v∗) when the second node is covered, the second node gets
charged at most 1/d(v∗). In general, the ith node that is covered in the star of
v∗ gets charged at most 1/(d(v∗) + i− 2). Thus, the total amortized cost in the
star of v∗ is at most

1

d(v∗) + 1
+

1

d(v∗)
+ · · ·+ 1

2
+

1

1
= H(d(v∗) + 1) ≤ H(∆ + 1) < ln(∆) + 2

where ∆ is the maximal degree of G and where H(n) =
∑n
i−1 1/i is the nth

number.
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Remarks:

• One can show that unless NP ⊆ DTIME(nO(log logn)), no polynomial-
time algorithm can approximate the minimum dominating set problem
better than (1− o(1)) · ln ∆. Thus, unless P ≈ NP, the approximation
ratio of the simple greedy algorithm is optimal (up to lower order
terms).

26.2 Distributed Greedy Algorithm

For a distributed algorithm, we use the following observation. The span of a
node can only be reduced if any of the nodes at distance at most 2 is included
in the dominating set. Therefore, if the span of node v is greater than the span
of any other node at distance at most 2 from v, the greedy algorithm chooses
v before any of the nodes at distance at most 2. This leads to a very simple
distributed version of the greedy algorithm. Every node v executes the following
algorithm.

Algorithm 26.4 Distributed Greedy Algorithm (at node v):

1: while v has white neighbors do
2: compute span w(v);
3: send w(v) to nodes at distance at most 2;
4: if w(v) largest within distance 2 (ties are broken by IDs) then
5: join dominating set
6: end if
7: end while

Theorem 26.5. Algorithm 26.4 computes a dominating set of size at most
ln ∆ + 2 times the size of an optimal dominating set in O(n) rounds.

Proof. The approximation quality follows directly from the above observation
and the analysis of the greedy algorithm. The time complexity is at most linear
because in every iteration of the while loop, at least one node is added to the
dominating set and because one iteration of the while loop can be implemented
in a constant number of rounds.

The approximation ratio of the above distributed algorithm is best possi-
ble (unless P ≈ NP or unless we allow local computations to be exponential).
However, the time complexity is very bad. In fact, there really are graphs on
which in each iteration of the while loop, only one node is added to the dom-
inating set. As an example, consider a graph as in Figure 26.6. An optimal
dominating set consists of all nodes on the center axis. The distributed greedy
algorithm computes an optimal dominating set, however, the nodes are chosen
sequentially from left to right. Hence, the running time of the algorithm on
the graph of Figure 26.6 is Ω(

√
n). Below, we will see that there are graphs on

which Algorithm 26.4 even needs Ω(n) rounds.
The problem of the graph of Figure 26.6 is that there is a long path of

descending degrees (spans). Every node has to wait for the neighbor to the
left. Therefore, we want to change the algorithm in such a way that there

296 CHAPTER 26. DOMINATING SET

Figure 26.6: Distributed greedy algorithm: Bad example

Figure 26.7: Distributed greedy algorithm with rounded spans: Bad example

are no long paths of descending spans. Allowing for an additional factor 2 in
the approximation ratio, we can round all spans to the next power of 2 and
let the greedy algorithm take a node with a maximal rounded span. In this
case, a path of strictly descending rounded spans has at most length log n. For
the distributed version, this means that nodes whose rounded span is maximal
within distance 2 are added to the dominating set. Ties are again broken by
unique node IDs. If node IDs are chosen at random, the time complexity for
the graph of Figure 26.6 is reduced from Ω(

√
n) to O(log n).

Unfortunately, there still is a problem remaining. To see this, we consider
Figure 26.7. The graph of Figure 26.7 consists of a clique with n/3 nodes
and two leaves per node of the clique. An optimal dominating set consists
of all the n/3 nodes of the clique. Because they all have distance 1 from each
other, the described distributed algorithm only selects one in each while iteration
(the one with the largest ID). Note that as soon as one of the nodes is in the
dominating set, the span of all remaining nodes of the clique is 2. They do not
have common neighbors and therefore there is no reason not to choose all of
them in parallel. However, the time complexity of the simple algorithm is Ω(n).
In order to improve this example, we need an algorithm that can choose many
nodes simultaneously as long as these nodes do not interfere too much, even
if they are neighbors. In Algorithm 26.8, N(v) denotes the set of neighbors of
v (including v itself) and N2(v) =

⋃
u∈N(V )N(u) are the nodes at distance at

most 2 of v. As before, W (v) =
{
u ∈ N(v) : u is white

}
and w(v) = |W (v)|.

It is clear that if Algorithm 26.8 terminates, it computes a valid dominating
set. We will now show that the computed dominating set is small and that the
algorithm terminates quickly.

Theorem 26.9. Algorithm 26.8 computes a dominating set of size at most
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Algorithm 26.8 Fast Distributed Dominating Set Algorithm (at node v):

1: W (v) := N(v); w(v) := |W (v)|;
2: while W (v) 6= ∅ do
3: w̃(v) := 2blog2 w(v)c; // round down to next power of 2
4: ŵ(v) := maxu∈N2(v) w̃(u);
5: if w̃(v) = ŵ(v) then v.active := true else v.active := false end if ;
6: compute support s(v) := |{u ∈ N(v) : u.active = true}|;
7: ŝ(v) := maxu∈W (v) s(u);
8: v.candidate := false;
9: if v.active then

10: v.candidate := true with probability 1/ŝ(v)
11: end if ;
12: compute c(v) := |{u ∈W (v) : u.candidate = true}|;
13: if v.candidate and

∑
u∈W (v) c(u) ≤ 3w(v) then

14: node v joins dominating set
15: end if
16: W (v) := {u ∈ N(v) : u is white}; w(v) := |W (v)|;
17: end while

(6 · ln ∆ + 12) · |S∗|, where S∗ is an optimal dominating set.

Proof. The proof is a bit more involved but analogous to the analysis of the
approximation ratio of the greedy algorithm. Every time, we add a new node v
to the dominating set, we distribute the cost among v (if it is still white) and its
white neighbors. Consider an optimal dominating set S∗. As in the analysis of
the greedy algorithm, we partition the graph into stars by assigning every node
u not in S∗ to a neighbor v∗ in S∗. We want to show that the total distributed
cost in the star of every v∗ ∈ S∗ is at most 6H(∆ + 1).

Consider a node v that is added to the dominating set by Algorithm 26.8.
Let W (v) be the set of white nodes in N(v) when v becomes a dominator. For
a node u ∈W (v) let c(u) be the number of candidate nodes in N(u). We define
C(v) =

∑
u∈W (v) c(u). Observe that C(v) ≤ 3w(v) because otherwise v would

not join the dominating set in line 15. When adding v to the dominating set,
every newly covered node u ∈W (v) is charged 3/(c(u)w(v)). This compensates
the cost 1 for adding v to the dominating set because

∑

u∈W (v)

3

c(u)w(v)
≥ w(v) · 3

w(v) ·∑u∈W (v) c(u)/w(v)
=

3

C(v)/w(v)
≥ 1.

The first inequality follows because it can be shown that for αi > 0,
∑k
i=1 1/αi ≥

k/ᾱ where ᾱ =
∑k
i=1 αi/k.

Now consider a node v∗ ∈ S∗ and assume that a white node u ∈W (v∗) turns
gray or black in iteration t of the while loop. We have seen that u is charged
3/(c(u)w(v)) for every node v ∈ N(u) that joins the dominating set in iteration
t. Since a node can only join the dominating set if its span is largest up to a
factor of two within two hops, we have w(v) ≥ w(v∗)/2 for every node v ∈ N(u)
that joins the dominating set in iteration t. Because there are at most c(u) such
nodes, the charge of u is at most 6/w(v∗). Analogously to the sequential greedy
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algorithm, we now get that the total cost in the star of a node v∗ ∈ S∗ is at
most

|N(v∗)|∑

i=1

6

i
≤ 6 ·H(|N(v∗)|) ≤ 6 ·H(∆ + 1) = 6 · ln ∆ + 12.

To bound the time complexity of the algorithm, we first need to prove the
following lemma.

Lemma 26.10. Consider an iteration of the while loop. Assume that a node u is
white and that 2s(u) ≥ maxv∈C(u) ŝ(v) where C(u) = {v ∈ N(u) : v.candidate =
true}. Then, the probability that u becomes dominated (turns gray or black) in
the considered while loop iteration is larger than 1/9.

Proof. Let D(u) be the event that u becomes dominated in the considered while
loop iteration, i.e., D(u) is the event that u changes its color from white to gray
or black. Thus, we need to prove that Pr

[
D(u)

]
> 1/9. We can write this

probability as

Pr
[
D(u)

]
= Pr

[
c(u) > 0

]
·Pr
[
D(u)|c(u) > 0

]
+Pr

[
c(u) = 0

]
·Pr
[
D(u)|c(u) = 0

]
︸ ︷︷ ︸

=0

.

It is therefore sufficient to lower bound the probabilities Pr
[
c(u) > 0

]
and

Pr
[
D(u)|c(u) > 0

]
. We have 2s(u) ≥ maxv∈C(u) ŝ(v). Therefore, in line 10, each

of the s(u) active nodes v ∈ N(u) becomes a candidate node with probability
1/ŝ(v) ≥ 1/(2s(u)). The probability that at least one of the s(u) active nodes
in N(u) becomes a candidate therefore is

Pr[c(u) > 0] > 1−
(

1− 1

2s(u)

)s(u)

> 1− 1√
e
>

1

3
.

We used that for x ≥ 1, (1−1/x)x < 1/e. We next want to bound the probability
Pr
[
D(u)|c(u) > 0

]
that at least one of the c(u) candidates in N(u) joins the

dominating set. We have

Pr
[
D(u)|c(u) > 0

]
≥ min

v∈N(u)
Pr
[
v joins dominating set|v.candidate = true

]
.

Consider some node v and let C(v) =
∑
v′∈W (v) c(v

′). If v is a candidate, it joins

the dominating set if C(v) ≤ 3w(v). We are thus interested in the probability
Pr
[
C(v) ≤ 3w(v)

∣∣v.candidate = true
]
. Assume that v is a candidate. Let

c′(v′) = c(v′) − 1 be the number of candidates in N(v′) \ {v}. For a node
v′ ∈ W (v), c′(v′) is upper bounded by a binomial random variable Bin

(
s(v′)−

1, 1/s(v′)
)

with expectation (s(v′)− 1)/s(v′). We therefore have

E
[
c(v′)|v.candidate = true

]
= 1 + E

[
c′(v′)

]
= 1 +

s(v′)− 1

s(v′)
< 2.

By linearity of expectation, we hence obtain

E
[
C(v)|v.candidate = true

]
=

∑

v′∈W (v)

E
[
c(v′)|v.candidate = true

]

< 2w(v).
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We can now use Markov’s inequality to bound the probability that C(v) becomes
too large:

Pr
[
C(v) > 3w(v)

∣∣v.candidate = true
]
<

2

3
.

Combining everything, we get

Pr
[
v joins dom. set|v.candidate = true

]

= Pr
[
C(v) ≤ 3w(v)

∣∣v.candidate = true
]
>

1

3

and hence

Pr
[
D(u)

]
= Pr

[
c(u) > 0] · Pr

[
D(u)|c(u) > 0

]
>

1

3
· 1

3
=

1

9
.

Theorem 26.11. In expectation, Algorithm 26.8 terminates in O(log2∆ · log n)
rounds.

Proof. First observe that every iteration of the while loop can be executed in
a constant number of rounds. Consider the state after t iterations of the while
loop. Let w̃max(t) = maxv∈V w̃(v) be the maximal span rounded down to the
next power of 2 after t iterations. Further, let smax(t) be the maximal support
s(v) of any node v for which there is a node u ∈ N(v) with w(u) ≥ w̃max(t)
after t while loop iterations. Observe that all nodes v with w(v) ≥ w̃max(t) are
active in iteration t+ 1 and that as long as the maximal rounded span w̃max(t)
does not change, smax(t) can only get smaller with increasing t. Consider the
pair (w̃max, smax) and define a relation ≺ such that (w′, s′) ≺ (w, s) iff w′ < w
or w = w′ and s′ ≤ s/2. From the above observations, it follows that

(w̃max(t), smax(t)) ≺ (w̃max(t′), smax(t′)) =⇒ t > t′. (26.11.1)

For a given time t, let T (t) be the first time for which

(w̃max(T (t)), smax(T (t))) ≺ (w̃max(t), smax(t)).

We first want to show that for all t,

E[T (t)− t] = O(log n). (26.11.2)

Let us look at the state after t while loop iterations. By Lemma 26.10, every
white node u with support s(u) ≥ smax(t)/2 will be dominated after the fol-
lowing while loop iteration with probability larger than 1/9. Consider a node u
that satisfies the following three conditions:

(1) u is white

(2) there is a node v ∈ N(u) : w(v) ≥ w̃max(t)

(3) s(u) ≥ smax(t)/2.
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As long as u satisfies all three conditions, the probability that u becomes domi-
nated is larger than 1/9 in every while loop iteration. Hence, after t+τ iterations
(from the beginning), u is dominated or does not satisfy (2) or (3) with prob-
ability larger than (8/9)τ . Choosing τ = log9/8(2n), this probability becomes
1/(2n). There are at most n nodes u satisfying Conditions (1)− (3). Therefore,
applying union bound, we obtain that with probability more than 1/2, there is
no white node u satisfying Conditions (1)− (3) at time t+ log9/8(2n). Equiva-
lently, with probability more than 1/2, T (t) ≤ t + log9/8(2n). Analogously, we

obtain that with probability more than 1/2k, T (t) ≤ t+ k log9/8(2n). We then
have

E[T (t)− t] =
∞∑

τ=1

Pr[T (t)− t = τ ] · τ

≤
∞∑

k=1

(
1

2k
− 1

2k+1

)
· k log9/8(2n) = log9/8(2n)

and thus Equation (26.11.2) holds.

Let t0 = 0 and ti = T (ti−1) for i = 1, . . . , k. where tk = mint w̃max(t) = 0.
Because w̃max(t) = 0 implies that w(v) = 0 for all v ∈ V and that we therefore
have computed a dominating set, by Equations (26.11.1) and (26.11.2) (and
linearity of expectation), the expected number of rounds until Algorithm 26.8
terminates is O(k · log n). Since w̃max(t) can only have blog ∆c different values
and because for a fixed value of w̃max(t), the number of times smax(t) can be
decreased by a factor of 2 is at most log ∆ times, we have k ≤ log2∆.

Remarks:

• It is not hard to show that Algorithm 26.8 even terminates in
O(log2∆ · log n) rounds with probability 1 − 1/nc for an arbitrary
constant c.

• Using the median of the supports of the neighbors instead of the
maximum in line 8 results in an algorithm with time complexity
O(log ∆ · log n). With another algorithm, this can even be slightly
improved to O(log2∆).

• One can show that Ω(log ∆/ log log ∆) rounds are necessary to obtain
an O(log ∆)-approximation.

• It is not known whether there is a fast deterministic approximation al-
gorithm. This is an interesting and important open problem. The best
deterministic algorithm known to achieve an O(log ∆)-approximation

has time complexity 2O(
√

logn).

Chapter Notes

See [JRS02, KW05].
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