
Chapter 27

Routing

27.1 Array

(Routing is important for any distributed system. This chapter is only an
introduction into routing; we will see other facets of routing in a next chapter.)

Definition 27.1 (Routing). We are given a graph and a set of routing requests,
each defined by a source and a destination node.

Definition 27.2 (One-to-one, Permutation). In a one-to-one routing problem,
each node is the source of at most one packet and each node is the destination of
at most one packet. In a permutation routing problem, each node is the source
of exactly one packet and each node is the destination of exactly one packet.

Remarks:

• Permutation routing is a special case of one-to-one routing.

Definition 27.3 (Store and Forward Routing). The network is synchronous.
In each step, at most two packets (one in each direction) can be sent over each
link.

Remarks:

• If two packets want to follow the same link, then one is queued (stored)
at the sending node. This is known as contention.

Algorithm 27.4 Greedy on Array

An array is a linked list of n nodes; that is, node i is connected with nodes
i − 1 and i + 1, for i = 2, . . . , n − 1. With the greedy algorithm, each node
injects its packet at time 0. At each step, each packet that still needs to move
rightward or leftward does so.

Theorem 27.5 (Analysis). The greedy algorithm terminates in n− 1 steps.

303

304 CHAPTER 27. ROUTING

Proof. By induction two packets will never contend for the same link. Then
each packet arrives at its destination in d steps, where d is the distance between
source and destination.

Remarks:

• Unfortunately, only the array (or the ring) allows such a simple
contention-free analysis. Already in a tree (with nodes of degree 3
or more) there might be two packets arriving at the same step at the
same node, both want to leave on the same link, and one needs to be
queued. In a “Mercedes-Benz” graph Ω(n) packets might need to be
queued. We will study this problem in the next section.

• There are many strategies for scheduling packets contending for the
same edge (e.g. “farthest goes first”); these queuing strategies have a
substantial impact on the performance of the algorithm.

27.2 Mesh

Algorithm 27.6 Greedy on Mesh

A mesh (a.k.a. grid, matrix) is a two-dimensional array with m columns and
m rows (n = m2). Packets are routed to their correct column (on the row in
greedy array style), and then to their correct row. The farthest packet will
be given priority.

Theorem 27.7 (Analysis). In one-to-one routing, the greedy algorithm termi-
nates in 2m− 2 steps.

Proof. First note that packets in the first phase of the algorithm do not interfere
with packets in the second phase of the algorithm. With Theorem 27.5 each
packet arrives at its correct column in m − 1 steps. (Some packets may arrive
at their turning node earlier, and already start the second phase; we will not
need this in the analysis.) We need the following Lemma for the second phase
of the algorithm.

Lemma 27.8 (Many-to-One on Array, Lemma 1.5 in Leighton Section 1.7).
We are given an array with n nodes. Each node is a destination for at most
one packet (but may be the source of many). If edge contention is resolved by
farthest-to-go (FTG), the algorithm terminates in n− 1 steps.

Leighton Section 1.7 Lemma 1.5. Leftward moving packets and rightward mov-
ing packets never interfere; so we can restrict ourselves to rightward moving
packets. We name the packets with their destination node. Since the queu-
ing strategy is FTG, packet i can only be stopped by packets j > i. Note
that a packet i may be contending with the same packet j several times. How-
ever, packet i will either find its destination “among” the higher packets, or
directly after the last of the higher packets. More formally, after k steps, pack-
ets j, j + 1, . . . , n do not need links 1, . . . , l anymore, with k = n− j + l. Proof
by induction: Packet n has the highest priority: After k steps it has escaped

27.3. ROUTING IN THE MESH WITH SMALL QUEUES 305

the first k links. Packet n − 1 can therefore use link l in step l + 1, and so on.
Packet i not needing link i in step k = n means that packet i has arrived at its
destination node i in step n− 1 or earlier.

Lemma 27.8 completes the proof.

Remarks:

• A 2m− 2 time bound is the best we can hope for, since the distance
between the two farthest nodes in the mesh is exactly 2m− 2.

• One thing still bugs us: The greedy algorithm might need queues in
the order of m. And queues are expensive! In the next section, we try
to bring the queue size down!

27.3 Routing in the Mesh with Small Queues

(First we look at a slightly simpler problem.)

Definition 27.9 (Random Destination Routing). In a random destination rout-
ing problem, each node is the source of at most one packet with destination
chosen uniformly at random.

Remarks:

• Random destination routing is not one-to-one routing. In the worst
case, a node can be destination for all n packets, but this case is very
unlikely (with probability 1/nn−1)

• We study algorithm 27.6, but this time in the random destination
model. Studying the random destination model will give us a deeper
understanding of routing... and distributed computing in general!

Theorem 27.10 (Random destination analysis of algorithm 27.6). If desti-
nations are chosen at random the maximum queue size is O(log n/ log log n)
with high probability. (With high probability means with probability at least
1−O(1/n).)

Proof. We can restrict ourselves to column edges because there will not be any
contention at row edges. Let us consider the queue for a north-bound column
edge. In each step, there might be three packets arriving (from south, east,
west). Since each arriving south packet will be forwarded north (or consumed
when the node is the destination), the queue size can only grow from east or
west packets – packets that are “turning” at the node. Hence the queue size
of a node is always bounded by the number of packets turning at the node. A
packet only turns at a node u when it is originated at a node in the same row as
u (there are only m nodes in the row). Packets have random destinations, so the
probability to turn for each of these packets is 1/m only. Thus the probability
P that r or more packets turn in some particular node u is at most

P ≤
(
m

r

)(
1

m

)r

306 CHAPTER 27. ROUTING

(The factor (1− 1/m)m−r is not present because the event “exactly r” includes
the event “more than r” already.) Using

(
x

y

)
<

(
xe

y

)y
, for 0 < y < x

we directly get

P <
(me
r

)r(1

m

)r
=
(e
r

)r

Hence most queues do not grow larger than O(1). Also, when we choose r :=
e logn

log logn we can show P = o(1/n2). The probability that any of the 4n queues

ever exceeds r is less than 1− (1− P)4n = o(1/n).

Remarks:

• OK. We got a bound on the queue size. Now what about time com-
plexity?!? The same analysis as for one-to-one routing applies. The
probability that a node sees “many” packets in phase 2 is small... it
can be shown that the algorithm terminates in O(m) time with high
probability.

• In fact, maximum queue sizes are likely to be a lot less than logarith-
mic. The reason is the following: Though Θ(log n/ log log n) packets
might turn at some node, these turning packets are likely to be spread
in time. Early arriving packets might use gaps and do not conflict with
late arriving packets. With a much more elaborate method (using the
so-called “wide-channel” model) one can show that there will never be
more than four(!) packets in any queue (with high probability only,
of course).

• Unfortunately, the above analysis only works for random destination
problems. Question: Can we devise an algorithm that uses small
queues only but for any one-to-one routing problem? Answer: Yes, we
can! In the simplest form we can use a clever trick invented by Leslie
Valiant: Instead of routing the packets directly on their row-column
path, we route each packet to a randomly chosen intermediate node
(on the row-column path), and from there to the destination (again
on the row-column path). Valiant’s trick routes all packets in O(m)
time (with high probability) and only needs queues of size O(log n).
Instead of choosing a random intermediate node one can choose a
random node that is more or less in the direction of the destination,
solving any one-to-one routing problem in 2m + O(log n) time with
only constant-size queues. You don’t wanna know the details...

• What about no queues at all?!?

27.4 Hot-Potato Routing

Definition 27.11 (Hot-Potato Routing). Like the store-and-forward model the
hot-potato model is synchronous and at most two packets (one in each direction)

27.4. HOT-POTATO ROUTING 307

can be sent over a link. However, contending packets cannot be stored; instead all
but one contending packet must be sent over a “wrong link” (known as deflection)
immediately, since the hot-potato model does not allow queuing.

Remarks:

• Don’t burn your fingers with “hot-potato” packets. If you get one you
better forward it directly!

• A node with degree δ receives up to δ packets at the beginning of
each step – since the node has δ links, it can forward all of them, but
unfortunately not all in the right direction.

• Hot-potato routing is easier to implement, especially on light-based
networks, where you don’t want to convert photons into electrons and
then back again. There are a couple of parallel machines that use the
hot-potato paradigm to simplify and speed up routing.

• How bad does hot-potato routing get (in the random or the one-to-one
model)? How bad can greedy hot-potato routing (greedy: whenever
there is no contention you must send a packet into the right direction)
get in a worst case?

Algorithm 27.12 Greedy Hot-Potato Routing on a Mesh

Packets move greedy towards their destination (any good link is fine if there
is more than one). If a packet gets deflected, it gets excited with probability
p (we set p = Θ(1/m)). An excited packet has higher priority. When being
excited, a packet tries to reach the destination on the row-column path. If
two excited packets contend, then the one that wants to exit the opposite link
is given priority. If an excited packet fails to take its desired link it becomes
normal again.

Theorem 27.13 (Analysis). A packet will reach its destination in O(m) ex-
pected time.

Sketch, full proof in Busch et al., SODA 2000. An excited packet can only be
deflected at its start node (after becoming excited), and when trying to turn.
In both cases, the probability to fail is only constant since other excited packets
need to be at the same node at exactly the right instant. Thus the probability
that an excited packets finds to its destination is constant, and therefore a packet
needs to “try” (to become excited) only constantly often. Since a packet tries
every p’th time it gets deflected, in only gets deflected O(1/p) = O(m) times
in expectation. Since each time it does not get deflected, it gets closer to its
destination, it will arrive at the destination in O(m) expected time.

Remarks:

• It seems that at least in expectation having no memory at all does
not harm the time bounds much.

• It is conjectured that one-to-one routing can be shown to have time
complexity O(m) for this greedy hot-potato routing algorithm. How-
ever, the best known bound needs an additional logarithmic factor.

308 CHAPTER 27. ROUTING

27.5 More Models

Routing comes in many flavors. We mention some of them in this section for
the sake of completeness.

Store-and-forward and hot-potato routing are variants of packet-switching.
In the circuit-switching model, the entire path from source to destination must
be locked such that a stream of packets can be transmitted.

A packet-switching variant where more than one packet needs to be sent
from source to destination in a stream is known as wormhole routing.

Static routing is when all the packets to be routed are injected at time 0.
Instead, in dynamic routing, nodes may inject new packets constantly (at a
certain rate). Not much is known for dynamic routing.

Instead of having a single source and a single destination for each packet
as in one-to-one routing, researchers have studied many-to-one routing, where a
node may be destination for many sources. The problem of many-to-one routing
is that there might be congested areas in the network (areas with nodes that
are destinations of many packets). Packets that can be routed around such a
congested area should do that, or they increase the congestion even more. Such
an algorithm was studied by Busch et al. at STOC 2000.

Also one-to-many routing (multicasting) was considered, where a source
needs to send the same packet to many destinations. In one-to-many routing,
packets can be duplicated whenever needed.

Nobody knows the topology of the Internet (and it is certainly not an array
or a mesh!). The problem is to find short paths without storing huge routing
tables at each node. There are several forms of routing (e.g. compact routing,
interval routing) that study the trade-off between routing table size and quality
of routing.

Also, researchers started studying the effects of mixing various queuing
strategies in one network. This area of research is known as adversarial queuing
theory.

And last not least there are several special networks. A mobile ad-hoc net-
work, for example, consists of mobile nodes equipped with a wireless communi-
cation device. In such a networks nodes can only communicate when they are
within transmission range. Since the network is mobile (dynamic), and since
the nodes are considered to be simple, a variety of new problems arise.

Chapter Notes

See [BHW00a, BHW00b, RT92, Lei90, VB81].

Bibliography

[BHW00a] Costas Busch, Maurice Herlihy, and Roger Wattenhofer. Hard-
Potato Routing. In 32nd Annual ACM Symposium on Theory of
Computing (STOC), Portland, Oregon, May 2000.

[BHW00b] Costas Busch, Maurice Herlihy, and Roger Wattenhofer. Random-
ized Greedy Hot-Potato Routing. In 11th Annual ACM-SIAM Sym-

BIBLIOGRAPHY 309

posium on Discrete Algorithms (SODA), pp. 458-466, San Fran-
cisco, California, USA, January 2000.

[Lei90] Frank Thomson Leighton. Average Case Analysis of Greedy Routing
algorithms on Arrays. In SPAA, pages 2–10, 1990.

[RT92] Sanguthevar Rajasekaran and Thanasis Tsantilas. Optimal Routing
Algorithms for Mesh-Connected Processor Arrays. Algorithmica,
8(1):21–38, 1992.

[VB81] Leslie G. Valiant and Gordon J. Brebner. Universal Schemes for
Parallel Communication. In STOC, pages 263–277. ACM, 1981.

