

Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

Thomas Kiefer Seminar in Deep Neural Networks (FS 2024) 23 April 2024, ETH Zurich

Architectures for Image Classification

LeNet-5

https://anhreynolds.com/blogs/cnn.html

Input

Convolutions

Introduction

Convolutions

Introduction

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction

Pooling

Introduction

AlexNet

Introduction

Convolutional Neural Networks (CNNs)

Introduction

- Local connectivity
- Parameter efficiency
- Translation invariance

Handling of long-range dependencies

Vision Transformers (ViTs)

Vision Transformers (ViTs)

- Good accuracy
- Simple

- Cost of simplicity:
 - Inefficient use of parameters
 - Constant resolution and channel capacity

Hierarchical Models

- Start from higher resolution and simple features
- End at lower resolution and complex features

Examples:

• Swin (Shifted-Windows)

Hierarchical Models

- Start from higher resolution and simple features
- End at lower resolution and complex features

Examples:

- Swin (Shifted-Windows)
- CSWin (Cross-Shaped Windows)

Dynaic Stripe Window + Parallel Grouing Heads = CSWin

Dong et al. (2022)

Hierarchical Models

Introduction

- More attractive FLOP counts compared to ViTs
- More inductive bias
- Slower

Hypothesis

- ViT lacks inductive bias
- Possible to learn spatial bias instead of manually adding it back
- Use Masked Autoencoding (MAE) as pretraining task

Concepts

Previous Work

Masked Autoencoders (MAE)

Previous Work

Masked Autoencoders (MAE)

MAE on Video

Previous Work

Complex Features

Li et al. (2021), Ryali et al. (2023)

Approach

- Take **existing** hierarchical ViT (MViTv2)
- **Remove** non-essential components
- Supply spatial bias through pretraining with MAE

MAE for Hierarchical Models

- MViTv2 downsamples by 2 × 2 three times
- Token size 4 × 4
- Mask unit size 32 × 32
- 8², 4², 2², 1² tokens in stages 1, 2, 3, 4 respectively

Contribution

(b) Problem: MAE *deletes* mask units.

This **breaks the 2D grid**, causing errors for hierarchical models (e.g., w/ convs).

Contribution

Contribution

Contribution

(e) Hiera: Just set *kernel size* = *stride*. 2x2 2x2 Max Max Sparse, no overhead, simple.

Removing nonessential components

Contribution

Relative Position Embeddings

	Image		Vi	deo
Setting	acc.	im/s	acc.	clip/s
MViTv2-L Supervised	85.3	219.8	80.5	20.5
Hiera-L MAE				
a. replace rel pos with absolute $*$	<u>85.6</u>	253.3	<u>85.3</u>	20.7

Previous Work

- Previously: Conv
- Now: Maxpool

Contribution

Relative Position Embeddings

	Image		Vie	deo
Setting	acc.	im/s	acc.	clip/s
MViTv2-L Supervised	85.3	219.8	80.5	20.5
Hiera-L MAE				
a. replace rel pos with absolute $*$	85.6	253.3	<u>85.3</u>	20.7
b. replace convs with maxpools $*$	84.4	99.9 [†]	84.1	10.4^{\dagger}

Contribution

Remove Convolutions

	Image		Vie	deo
Setting	acc.	im/s	acc.	clip/s
MViTv2-L Supervised	85.3	219.8	80.5	20.5
Hiera-L MAE				
a. replace rel pos with absolute $*$	85.6	253.3	<u>85.3</u>	20.7
b. replace convs with maxpools $*$	84.4	99.9^{+}	84.1	10.4^{+}
c. delete stride=1 maxpools *	85.4	309.2	84.3	26.2

Contribution

Contribution

(e) Hiera: Just set *kernel size* = *stride*. 2x2 2x2 Max Max Sparse, no overhead, simple.

Remove Overlap

Contribution

	Image		Vie	deo
Setting	acc.	im/s	acc.	clip/s
MViTv2-L Supervised	85.3	219.8	80.5	20.5
Hiera-L MAE				
a. replace rel pos with absolute $*$	<u>85.6</u>	253.3	<u>85.3</u>	20.7
b. replace convs with maxpools $*$	84.4	99.9 [†]	84.1	10.4^{\dagger}
c. delete stride=1 maxpools *	85.4	309.2	84.3	26.2
d. set kernel size equal to stride	85.7	369.8	85.5	29.4

Contribution

Remove Attention Residual

	Image		Video	
Setting	acc.	im/s	acc.	clip/s
MViTv2-L Supervised	85.3	219.8	80.5	20.5
Hiera-L MAE				
a. replace rel pos with absolute $*$	<u>85.6</u>	253.3	<u>85.3</u>	20.7
b. replace convs with maxpools $*$	84.4	99.9 [†]	84.1	10.4^{+}
c. delete stride=1 maxpools *	85.4	309.2	84.3	26.2
d. set kernel size equal to stride	85.7	369.8	85.5	29.4
e. delete q attention residuals	<u>85.6</u>	374.3	85.5	29.8

Mask Unit Attention

Contribution

(a) Window Attn would leak into deleted units in the next stage.

(b) Mask Unit Attn always attends within visible units.

Next Stage

Mask Unit Attention

Contribution

	Image		Vie	deo
Setting	acc.	im/s	acc.	clip/s
MViTv2-L Supervised	85.3	219.8	80.5	20.5
Hiera-L MAE				
a. replace rel pos with absolute $*$	<u>85.6</u>	253.3	<u>85.3</u>	20.7
b. replace convs with maxpools $*$	84.4	99.9 [†]	84.1	10.4^{\dagger}
c. delete stride=1 maxpools *	85.4	309.2	84.3	26.2
d. set kernel size equal to stride	85.7	369.8	85.5	29.4
e. delete q attention residuals	<u>85.6</u>	374.3	85.5	29.8
f. replace kv pooling with MU attn	<u>85.6</u>	531.4	85.5	40.8

Hiera

Setup

Contribution

Ryali et al. (2023) [8]

Training Time

MAE Ablations

Multi-Scale Decoder

Contribution

multi-scale image video ✗ 85.0 83.8 ✓ 85.6 85.5

Setup

Contribution

Multi-Scale Decoder

Contribution

multi-scale image video ✗ 85.0 83.8 ✓ 85.6 85.5

Mask ratio

Contribution

Contribution

Pretraining schedule

video epochs image 85.6 84.0 40085.8 85.5 8()() 86.1 86.4 1600 86.1 87.3 3200

Results

Results

Contribution

Results

Contribution

Conclusion

Conclusion

- Showed comprehensively that spatial bias can be learned through strong pretraining task such as MAE
- Either increased throughput or higher accuracy for similar model size (or both)
- Testing on even larger datasets might still be interesting

Questions?

Variants

model	#Channels	#Blocks	#Heads	FLOPs I	Param
Hiera-T	[96-192-384-768]	[1-2-7-2]	[1-2-4-8]	5G	28M
Hiera-S	[96-192-384-768]	[1-2-11-2]	[1-2-4-8]	6G	35M
Hiera-B	[96-192-384-768]	[2-3-16-3]	[1-2-4-8]	9G	52M
Hiera-B+	[112-224-448-896]	[2-3-16-3]	[2-4-8-16]	13G	70M
Hiera-L	[144-288-576-1152]	[2-6-36-4]	[2-4-8-16]	40G	214M
Hiera-H	[256-512-1024-2048]	[2-6-36-4]	[4-8-16-32]	125G	673M

ImageNet-1K

backbone	pretrain	acc.	FLOPs (G)	Param
Swin-T		81.3	5	29M
MViTv2-T		<u>82.3</u>	5	24M
Hiera-T	MAE	82.8	5	<u>28M</u>
Swin-S		83.0	9	<u>50M</u>
MViTv2-S		<u>83.6</u>	<u>7</u>	35M
Hiera-S	MAE	83.8	6	35M
ViT-B		82.3	18	87M
Swin-B		83.3	15	88M
MViTv2-B		84.4	<u>10</u>	52M
ViT-B	BEiT, DALLE	83.2	18	87M
ViT-B	MAE	83.6	18	87M
ViT-B	MaskFeat	84.0	18	87M
Swin-B	SimMIM	83.8	15	88M
MCMAE-B	MCMAE	<u>85.0</u>	28	88M
Hiera-B	MAE	84.5	9	52M
Hiera-B+	MAE	85.2	13	<u>70M</u>
ViT-L		82.6	62	304M
MViTv2-L		85.3	42	218M
ViT-L	BEiT, DALLE	85.2	62	304M
ViT-L	MAE	85.9	62	304M
ViT-L	MaskFeat	85.7	62	304M
Swin-L	SimMIM	85.4	36	197M
MCMAE-L	MCMAE	86.2	94	323M
Hiera-L	MAE	<u>86.1</u>	<u>40</u>	<u>214M</u>
ViT-H		83.1	<u>167</u>	632M
ViT-H	MAE	86.9	<u>167</u>	632M
Hiera-H	MAE	86.9	125	<u>673M</u>

Transfer Learning

backbone	iNat17	iNat18	iNat19	Places365
ViT-B	70.5	75.4	80.5	57.9
Hiera-B	<u>73.3</u>	<u>77.9</u>	<u>83.0</u>	<u>58.9</u>
Hiera-B+	74.7	79.9	83.1	59.2
ViT-L	75.7	80.1	83.4	59.4
Hiera-L	76.8	80.9	84.3	59.6
ViT-H	79.3	83.0	85.7	59.8
Hiera-H	79.6	83.5	85.7	60.0
ViT-H ₄₄₈	83.4	86.8	88.3	60.3
Hiera-H ₄₄₈	83.8	87.3	88.5	60.6

K400

backbone FLOPs (G) Param pretrain acc. ViT-B MAE 81.5 $180 \times 3 \times 5$ 87M MAE $102 \times 3 \times 5$ Hiera-B 84.0 **51M** 85.0 MAE 69M Hiera-B+ $133 \times 3 \times 5$ 80.5 218M MViTv2-L **377**×1×10 -MViTv2-L MaskFeat 84.3 **377**×1×10 218M ViT-L MAE 85.2 $597 \times 3 \times 5$ 305M 87.3 Hiera-L MAE $413 \times 3 \times 5$ **213M** 633M ViT-H MAE 86.6 $1192 \times 3 \times 5$ Hiera-H MAE 87.8 1159×3×5 672M

Transferring to Action Detection (AVA v2.2)

backbone pretrain		mAP	FLOPs (G)	Param
K400 pretrain				
ViT-L	supervised	22.2	598	304M
MViTv2-L _{40,312}	MaskFeat	<u>38.5</u>	2828	<u>218M</u>
ViT-L	MAE	37.0	<u>597</u>	305M
Hiera-L	MAE	39.8	413	213M
ViT-H	MAE	39.5	1192	633M
Hiera-H	MAE	42.5	1158	672M
K600 pretrain				
ViT-L	MAE	38.4	<u>598</u>	304M
MViTv2-L _{40,312}	MaskFeat	<u>39.8</u>	2828	<u>218M</u>
Hiera-L	MAE	40.7	413	213M
ViT-H	MAE	40.3	1193	632M
Hiera-H	MAE	42.8	1158	672M
K700 pretrain				
ViT-L	MAE	39.5	598	304M
Hiera-L	MAE	41.7	413	213M
ViT-H	MAE	40.1	1193	632M
Hiera-H	MAE	43.3	1158	672M

Reconstruction target

Ablations

targetimagevideopixel85.685.5HOG85.786.1

Drop path rate

Ablations

dpr video image 85.2 84.5 0.085.6 85.4 0.1 85.6 85.5 0.2 85.2 85.5 0.3

Decoder depth

Ablations

video depth image 85.5 84.8 85.6 85.5 X 85.5 85.4 12