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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H,W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P

2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0

L
) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L
. The classification head is implemented by a MLP with one hidden layer at pre-training

time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).
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• Good accuracy

• Simple

• Cost of simplicity:

• Inefficient use of parameters

• Constant resolution and channel capacity
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Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
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Zheng Zhang Stephen Lin Baining Guo
Microsoft Research Asia

{v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

Abstract

This paper presents a new vision Transformer, called

Swin Transformer, that capably serves as a general-purpose

backbone for computer vision. Challenges in adapting

Transformer from language to vision arise from differences

between the two domains, such as large variations in the

scale of visual entities and the high resolution of pixels

in images compared to words in text. To address these

differences, we propose a hierarchical Transformer whose

representation is computed with Shifted windows. The

shifted windowing scheme brings greater efficiency by lim-

iting self-attention computation to non-overlapping local

windows while also allowing for cross-window connection.

This hierarchical architecture has the flexibility to model

at various scales and has linear computational complexity

with respect to image size. These qualities of Swin Trans-

former make it compatible with a broad range of vision

tasks, including image classification (87.3 top-1 accuracy

on ImageNet-1K) and dense prediction tasks such as object

detection (58.7 box AP and 51.1 mask AP on COCO test-

dev) and semantic segmentation (53.5 mIoU on ADE20K

val). Its performance surpasses the previous state-of-the-

art by a large margin of +2.7 box AP and +2.6 mask AP on

COCO, and +3.2 mIoU on ADE20K, demonstrating the po-

tential of Transformer-based models as vision backbones.

The hierarchical design and the shifted window approach

also prove beneficial for all-MLP architectures. The code

and models are publicly available at https://github.
com/microsoft/Swin-Transformer.

1. Introduction
Modeling in computer vision has long been dominated

by convolutional neural networks (CNNs). Beginning with
AlexNet [39] and its revolutionary performance on the
ImageNet image classification challenge, CNN architec-
tures have evolved to become increasingly powerful through

*Equal contribution. †Interns at MSRA. ‡Contact person.

Figure 1. (a) The proposed Swin Transformer builds hierarchical
feature maps by merging image patches (shown in gray) in deeper
layers and has linear computation complexity to input image size
due to computation of self-attention only within each local win-
dow (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks.
(b) In contrast, previous vision Transformers [20] produce fea-
ture maps of a single low resolution and have quadratic compu-
tation complexity to input image size due to computation of self-
attention globally.

greater scale [30, 76], more extensive connections [34], and
more sophisticated forms of convolution [70, 18, 84]. With
CNNs serving as backbone networks for a variety of vision
tasks, these architectural advances have led to performance
improvements that have broadly lifted the entire field.

On the other hand, the evolution of network architectures
in natural language processing (NLP) has taken a different
path, where the prevalent architecture today is instead the
Transformer [64]. Designed for sequence modeling and
transduction tasks, the Transformer is notable for its use
of attention to model long-range dependencies in the data.
Its tremendous success in the language domain has led re-
searchers to investigate its adaptation to computer vision,
where it has recently demonstrated promising results on cer-
tain tasks, specifically image classification [20] and joint
vision-language modeling [47].

In this paper, we seek to expand the applicability of
Transformer such that it can serve as a general-purpose
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backbone for computer vision, as it does for NLP and
as CNNs do in vision. We observe that significant chal-
lenges in transferring its high performance in the language
domain to the visual domain can be explained by differ-
ences between the two modalities. One of these differ-
ences involves scale. Unlike the word tokens that serve
as the basic elements of processing in language Trans-
formers, visual elements can vary substantially in scale, a
problem that receives attention in tasks such as object de-
tection [42, 53, 54]. In existing Transformer-based mod-
els [64, 20], tokens are all of a fixed scale, a property un-
suitable for these vision applications. Another difference
is the much higher resolution of pixels in images com-
pared to words in passages of text. There exist many vi-
sion tasks such as semantic segmentation that require dense
prediction at the pixel level, and this would be intractable
for Transformer on high-resolution images, as the compu-
tational complexity of its self-attention is quadratic to im-
age size. To overcome these issues, we propose a general-
purpose Transformer backbone, called Swin Transformer,
which constructs hierarchical feature maps and has linear
computational complexity to image size. As illustrated in
Figure 1(a), Swin Transformer constructs a hierarchical rep-
resentation by starting from small-sized patches (outlined in
gray) and gradually merging neighboring patches in deeper
Transformer layers. With these hierarchical feature maps,
the Swin Transformer model can conveniently leverage ad-
vanced techniques for dense prediction such as feature pyra-
mid networks (FPN) [42] or U-Net [51]. The linear compu-
tational complexity is achieved by computing self-attention
locally within non-overlapping windows that partition an
image (outlined in red). The number of patches in each
window is fixed, and thus the complexity becomes linear
to image size. These merits make Swin Transformer suit-
able as a general-purpose backbone for various vision tasks,
in contrast to previous Transformer based architectures [20]
which produce feature maps of a single resolution and have
quadratic complexity.

A key design element of Swin Transformer is its shift

of the window partition between consecutive self-attention
layers, as illustrated in Figure 2. The shifted windows
bridge the windows of the preceding layer, providing con-
nections among them that significantly enhance modeling
power (see Table 4). This strategy is also efficient in re-
gards to real-world latency: all query patches within a win-
dow share the same key set1, which facilitates memory ac-
cess in hardware. In contrast, earlier sliding window based
self-attention approaches [33, 50] suffer from low latency
on general hardware due to different key sets for different
query pixels2. Our experiments show that the proposed

1The query and key are projection vectors in a self-attention layer.
2While there are efficient methods to implement a sliding-window

based convolution layer on general hardware, thanks to its shared kernel

Figure 2. An illustration of the shifted window approach for com-
puting self-attention in the proposed Swin Transformer architec-
ture. In layer l (left), a regular window partitioning scheme is
adopted, and self-attention is computed within each window. In
the next layer l + 1 (right), the window partitioning is shifted, re-
sulting in new windows. The self-attention computation in the new
windows crosses the boundaries of the previous windows in layer
l, providing connections among them.

shifted window approach has much lower latency than the
sliding window method, yet is similar in modeling power
(see Tables 5 and 6). The shifted window approach also
proves beneficial for all-MLP architectures [61].

The proposed Swin Transformer achieves strong perfor-
mance on the recognition tasks of image classification, ob-
ject detection and semantic segmentation. It outperforms
the ViT / DeiT [20, 63] and ResNe(X)t models [30, 70] sig-
nificantly with similar latency on the three tasks. Its 58.7
box AP and 51.1 mask AP on the COCO test-dev set sur-
pass the previous state-of-the-art results by +2.7 box AP
(Copy-paste [26] without external data) and +2.6 mask AP
(DetectoRS [46]). On ADE20K semantic segmentation, it
obtains 53.5 mIoU on the val set, an improvement of +3.2
mIoU over the previous state-of-the-art (SETR [81]). It also
achieves a top-1 accuracy of 87.3% on ImageNet-1K image
classification.

It is our belief that a unified architecture across com-
puter vision and natural language processing could benefit
both fields, since it would facilitate joint modeling of vi-
sual and textual signals and the modeling knowledge from
both domains can be more deeply shared. We hope that
Swin Transformer’s strong performance on various vision
problems can drive this belief deeper in the community and
encourage unified modeling of vision and language signals.

2. Related Work
CNN and variants CNNs serve as the standard network
model throughout computer vision. While the CNN has ex-
isted for several decades [40], it was not until the introduc-
tion of AlexNet [39] that the CNN took off and became
mainstream. Since then, deeper and more effective con-
volutional neural architectures have been proposed to fur-
ther propel the deep learning wave in computer vision, e.g.,
VGG [52], GoogleNet [57], ResNet [30], DenseNet [34],

weights across a feature map, it is difficult for a sliding-window based
self-attention layer to have efficient memory access in practice.

2
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Figure 1. (a) The proposed Swin Transformer builds hierarchical
feature maps by merging image patches (shown in gray) in deeper
layers and has linear computation complexity to input image size
due to computation of self-attention only within each local win-
dow (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks.
(b) In contrast, previous vision Transformers [20] produce fea-
ture maps of a single low resolution and have quadratic compu-
tation complexity to input image size due to computation of self-
attention globally.

greater scale [30, 76], more extensive connections [34], and
more sophisticated forms of convolution [70, 18, 84]. With
CNNs serving as backbone networks for a variety of vision
tasks, these architectural advances have led to performance
improvements that have broadly lifted the entire field.

On the other hand, the evolution of network architectures
in natural language processing (NLP) has taken a different
path, where the prevalent architecture today is instead the
Transformer [64]. Designed for sequence modeling and
transduction tasks, the Transformer is notable for its use
of attention to model long-range dependencies in the data.
Its tremendous success in the language domain has led re-
searchers to investigate its adaptation to computer vision,
where it has recently demonstrated promising results on cer-
tain tasks, specifically image classification [20] and joint
vision-language modeling [47].

In this paper, we seek to expand the applicability of
Transformer such that it can serve as a general-purpose
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Figure 1. Illustration of different self-attention mechanisms, our CSWin is fundamentally different from two aspects. First, we split
multi-heads ({h1, . . . , hK}) into two groups and perform self-attention in horizontal and vertical stripes simultaneously. Second, we adjust
the stripe width according to the depth network, which can achieve better trade-off between computation cost and capability

achieves better network capacity with a small increase in
computation cost. We will provide a mathematical analysis
of how the stripe width affects the modeling capability and
computation cost.

It is worthwhile to note that with CSWin self-attention
mechanism, the self-attention in horizontal and vertical
stripes are calculated in parallel. We split the multi-heads
into parallel groups and apply different self-attention op-
erations onto different groups. This parallel strategy intro-
duces no extra computation cost while enlarging the area
for computing self-attention within each Transformer block.
This strategy is fundamentally different from existing self-
attention mechanisms [25, 38, 56, 69] that apply the same
attention operation across multi-heads((Figure 1 b,c,d,e), and
perform different attention operations sequentially(Figure 1
c,e). We will show through ablation analysis that this differ-
ence makes CSWin self-attention much more effective for
general vision tasks.

Based on the CSWin self-attention mechanism, we fol-
low the hierarchical design and propose a new vision
Transformer architecture named “CSWin Transformer” for
general-purpose vision tasks. This architecture provides
significantly stronger modeling power while limiting compu-
tation cost. To further enhance this vision Transformer, we
introduce an effective positional encoding, Locally-enhanced

Positional Encoding (LePE), which is especially effective
and friendly for input varying downstream tasks such as ob-
ject detection and segmentation. Compared with previous
positional encoding methods [12, 46, 56], our LePE imposes
the positional information within each Transformer block
and directly operates on the attention results instead of the
attention calculation. The LePE makes CSWin Transformer
more effective and friendly for the downstream tasks.

As a general vision Transformer backbone, the CSWin
Transformer demonstrates strong performance on image clas-
sification, object detection and semantic segmentation tasks.
Under the similar FLOPs and model size, CSWin Trans-

former variants significantly outperforms previous state-
of-the-art (SOTA) vision Transformers. For example, our
base variant CSWin-B achieves 85.4% Top-1 accuracy on
ImageNet-1K without any extra training data or label, 53.9
box AP and 46.4 mask AP on the COCO detection task, 51.7
mIOU on the ADE20K semantic segmentation task, surpass-
ing previous state-of-the-art Swin Transformer counterpart
by +1.2, +2.0, 1.4 and +2.0 respectively. Under a smaller
FLOPs setting, our tiny variant CSWin-T even shows larger
performance gains, i.e.,, +1.4 point on ImageNet classifica-
tion, +3.0 box AP, +2.0 mask AP on COCO detection and
+4.6 on ADE20K segmentation. Furthermore, when pretrain-
ing CSWin Transformer on the larger dataset ImageNet-21K,
we achieve 87.5% Top-1 accuracy on ImageNet-1K and high
segmentation performance on ADE20K with 55.7 mIoU.

2. Related Work
Vision Transformers. Convolutional neural networks
(CNN) have dominated the computer vision field for many
years and achieved tremendous successes [7, 22, 26–28, 35,
45, 47, 49–51]. Recently, the pioneering work ViT [17]
demonstrates that pure Transformer-based architectures can
also achieve very competitive results, indicating the potential
of handling the vision tasks and natural language processing
(NLP) tasks under a unified framework. Built upon the suc-
cess of ViT, many efforts have been devoted to designing bet-
ter Transformer based architectures for various vision tasks,
including low-level image processing [5, 57], image classifi-
cation [11,11, 13, 18, 20, 23, 31, 53,54, 58,60, 64–66], object
detection [3, 73] and semantic segmentation [48, 59, 70].
Rather than concentrating on one special task, some recent
works [38, 58, 69] try to design a general vision Transformer
backbone for general-purpose vision tasks. They all follow
the hierarchical Transformer architecture but adopt differ-
ent self-attention mechanisms. The main benefit of the hi-
erarchical design is to utilize the multi-scale features and
reduce the computation complexity by progressively decreas-

Dong et al. (2022)
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• ViT lacks inductive bias

• Possible to learn spatial bias instead of manually adding it back

• Use Masked Autoencoding (MAE) as pretraining task

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction†

(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
†As no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.

Figure 3. Example results on COCO validation images, using an MAE trained on ImageNet (the same model weights as in Figure 2).
Observe the reconstructions on the two right-most examples, which, although different from the ground truth, are semantically plausible.

derstanding of parts, objects, and scenes. To overcome this
difference and encourage learning useful features, we show
that a simple strategy works well in computer vision: mask-
ing a very high portion of random patches. This strategy
largely reduces redundancy and creates a challenging self-
supervisory task that requires holistic understanding beyond
low-level image statistics. To get a qualitative sense of our
reconstruction task, see Figures 2 – 4.

(iii) The autoencoder’s decoder, which maps the latent
representation back to the input, plays a different role be-
tween reconstructing text and images. In vision, the decoder
reconstructs pixels, hence its output is of a lower semantic
level than common recognition tasks. This is in contrast
to language, where the decoder predicts missing words that
contain rich semantic information. While in BERT the de-
coder can be trivial (an MLP) [14], we found that for im-
ages, the decoder design plays a key role in determining the
semantic level of the learned latent representations.

Driven by this analysis, we present a simple, effective,
and scalable form of a masked autoencoder (MAE) for
visual representation learning. Our MAE masks random
patches from the input image and reconstructs the missing
patches in the pixel space. It has an asymmetric encoder-
decoder design. Our encoder operates only on the visible
subset of patches (without mask tokens), and our decoder is

lightweight and reconstructs the input from the latent rep-
resentation along with mask tokens (Figure 1). Shifting
the mask tokens to the small decoder in our asymmetric
encoder-decoder results in a large reduction in computation.
Under this design, a very high masking ratio (e.g., 75%) can
achieve a win-win scenario: it optimizes accuracy while al-
lowing the encoder to process only a small portion (e.g.,
25%) of patches. This can reduce overall pre-training time
by 3⇥ or more and likewise reduce memory consumption,
enabling us to easily scale our MAE to large models.

Our MAE learns very high-capacity models that gen-
eralize well. With MAE pre-training, we can train data-
hungry models like ViT-Large/-Huge [16] on ImageNet-1K
with improved generalization performance. With a vanilla
ViT-Huge model, we achieve 87.8% accuracy when fine-
tuned on ImageNet-1K. This outperforms all previous re-
sults that use only ImageNet-1K data. We also evaluate
transfer learning on object detection, instance segmentation,
and semantic segmentation. In these tasks, our pre-training
achieves better results than its supervised pre-training coun-
terparts, and more importantly, we observe significant gains
by scaling up models. These observations are aligned
with those witnessed in self-supervised pre-training in NLP
[14, 47, 48, 4] and we hope that they will enable our field to
explore a similar trajectory.
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Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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MAE on Video

Feichtenhofer et al. (2022)
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Figure 1: Masked Autoencoders as spatiotemporal learners. We mask a large subset (e.g., 90%)
of random patches in spacetime. An encoder operates on the set of visible patches. A small decoder
then processes the full set of encoded patches and mask tokens to reconstruct the input. Except for
patch and positional embeddings, neither the encoder, the decoder, nor the masking strategy, has any

spatiotemporal inductive bias.

To the extreme, if a video has T identical static frames, randomly sampling 1/T of all spacetime
patches would reveal most of the static frame. Because slow motion is more likely than fast motion
in natural videos, the masking ratio can be very high as we observe empirically.

The higher masking ratio leads to a more efficient solution in practice. Following the MAE in [31]
that applies the encoder only on visible tokens, a masking ratio of 90% reduces the encoder time and
memory complexity to <1/10. Put together with a small decoder [31], the MAE pre-training can
achieve a theoretically 7.7⇥ reduction in computation vs. encoding all tokens. In fact, the computation
reduction is so large that the data loading time becomes a new bottleneck; even so, we record a 4.1⇥
wall-clock speedup. Such a significant speedup is of great importance for video research that is
large-scale and time-consuming.

We report strong results on a variety of video recognition datasets. Our MAE pre-training greatly
improves generalization performance: on Kinetics-400 [35], it increases the accuracy of ViT-Large
[18] by absolute 13% vs. training from scratch, while it takes less wall-clock training time overall
(pre-training plus fine-tuning). Our MAE pre-training can outperform its supervised pre-training
counterpart by big margins. Using vanilla ViT [18], our method achieves competitive results with
previous state-of-the-art methods that incorporate more domain knowledge. We also report encourag-
ing results using MAE pre-trained on 1 million random, uncurated Instagram videos. These results
suggest that self-supervised learning on videos can be tackled in a way similar to its counterparts on
language [15] and images [31], under a unified framework.

2 Related Work

Denoising autoencoders. Denoising autoencoders (DAE) [68, 69] present a general methodology
for learning representations by reconstructing clean signals from corrupted inputs. Masking as a type
of noise dates back to at least a decade ago [69]. One of its most successful developments is BERT
[15], which is conceptually masked autoencoding on language tokens.

Denoising/masked autoencoding methods for computer vision have been making continuous progress
[50, 9, 18, 31]. A series of recent methods are based on Transformer architectures [67] and are
towards a unified solution between vision and language. iGPT [9] pioneers this direction by training
Transformers on pixels as tokens. The ViT paper [18] makes a revolutionary step forward by using
patches as tokens. It not only establishes strong Transformer architectures for vision tasks, but also
explores masked prediction with patches. MAE [31] returns to the basics of the autoencoding concept
[68] and draws attention to the decoding aspect. The presence of a meaningful decoder provides
more flexibility, e.g., enabling the encoder to operate only on visible patches and leading to a more
efficient solution. It empirically shows that a high masking ratio is essential for image tasks [31]. Our
study follows this line of research.
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Abstract
We present Multiscale Vision Transformers (MViT) for

video and image recognition, by connecting the seminal idea
of multiscale feature hierarchies with transformer models.
Multiscale Transformers have several channel-resolution
scale stages. Starting from the input resolution and a small
channel dimension, the stages hierarchically expand the
channel capacity while reducing the spatial resolution. This
creates a multiscale pyramid of features with early lay-
ers operating at high spatial resolution to model simple
low-level visual information, and deeper layers at spatially
coarse, but complex, high-dimensional features. We eval-
uate this fundamental architectural prior for modeling the
dense nature of visual signals for a variety of video recog-
nition tasks where it outperforms concurrent vision trans-
formers that rely on large scale external pre-training and
are 5-10⇥ more costly in computation and parameters. We
further remove the temporal dimension and apply our model
for image classification where it outperforms prior work
on vision transformers. Code is available at: https:
//github.com/facebookresearch/SlowFast.

1. Introduction
We begin with the intellectual history of neural network

models for computer vision. Based on their studies of cat
and monkey visual cortex, Hubel and Wiesel [55] developed
a hierarchical model of the visual pathway with neurons
in lower areas such as V1 responding to features such as
oriented edges and bars, and in higher areas to more spe-
cific stimuli. Fukushima proposed the Neocognitron [32], a
neural network architecture for pattern recognition explic-
itly motivated by Hubel and Wiesel’s hierarchy. His model
had alternating layers of simple cells and complex cells, thus
incorporating downsampling, and shift invariance, thus incor-
porating convolutional structure. LeCun et al. [65] took the
additional step of using backpropagation to train the weights
of this network. But already the main aspects of hierarchy of
visual processing had been established: (i) Reduction in spa-
tial resolution as one goes up the processing hierarchy and
(ii) Increase in the number of different “channels”, with each

*Equal technical contribution.
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Input scale1 scale2 scale3

Figure 1. Multiscale Vision Transformers learn a hierarchy from
dense (in space) and simple (in channels) to coarse and complex
features. Several resolution-channel scale stages progressively
increase the channel capacity of the intermediate latent sequence
while reducing its length and thereby spatial resolution.

channel corresponding to ever more specialized features.
In a parallel development, the computer vision com-

munity developed multiscale processing, sometimes called
“pyramid” strategies, with Rosenfeld and Thurston [85], Burt
and Adelson [8], Koenderink [61], among the key papers.
There were two motivations (i) To decrease the computing re-
quirements by working at lower resolutions and (ii) A better
sense of “context” at the lower resolutions, which could then
guide the processing at higher resolutions (this is a precursor
to the benefit of “depth” in today’s neural networks.)

The Transformer [98] architecture allows learning ar-
bitrary functions defined over sets and has been scalably
successful in sequence tasks such as language comprehen-
sion [26] and machine translation [7]. Fundamentally, a
transformer uses blocks with two basic operations. First,
is an attention operation [4] for modeling inter-element re-
lations. Second, is a multi-layer perceptron (MLP), which
models relations within an element. Intertwining these oper-
ations with normalization [2] and residual connections [44]
allows transformers to generalize to a wide variety of tasks.

Recently, transformers have been applied to key com-
puter vision tasks such as image classification. In the spirit
of architectural universalism, vision transformers [25, 95]
approach performance of convolutional models across a va-
riety of data and compute regimes. By only having a first
layer that ‘patchifies’ the input in spirit of a 2D convolu-
tion, followed by a stack of transformer blocks, the vision
transformer aims to showcase the power of the transformer
architecture using little inductive bias.
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Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:

Attn(Q,K, V ) = Softmax
⇣
(QK

> + E
(rel))/

p

d

⌘
V,

where E
(rel)
ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:

Rp(i),p(j) = R
h
h(i),h(j) +R

w
w(i),w(j) +R

t
t(i),t(j), (4)

where R
h
, R

w
, R

t are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,

Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:

Attn(Q,K, V ) = Softmax
⇣
(QK

> + E
(rel))/

p

d

⌘
V,

where E
(rel)
ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:

Rp(i),p(j) = R
h
h(i),h(j) +R

w
w(i),w(j) +R

t
t(i),t(j), (4)

where R
h
, R

w
, R

t are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,
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Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:
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⇣
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> + E
(rel))/

p

d

⌘
V,
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(rel)
ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:
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w
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t are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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Abstract
We present Multiscale Vision Transformers (MViT) for

video and image recognition, by connecting the seminal idea
of multiscale feature hierarchies with transformer models.
Multiscale Transformers have several channel-resolution
scale stages. Starting from the input resolution and a small
channel dimension, the stages hierarchically expand the
channel capacity while reducing the spatial resolution. This
creates a multiscale pyramid of features with early lay-
ers operating at high spatial resolution to model simple
low-level visual information, and deeper layers at spatially
coarse, but complex, high-dimensional features. We eval-
uate this fundamental architectural prior for modeling the
dense nature of visual signals for a variety of video recog-
nition tasks where it outperforms concurrent vision trans-
formers that rely on large scale external pre-training and
are 5-10⇥ more costly in computation and parameters. We
further remove the temporal dimension and apply our model
for image classification where it outperforms prior work
on vision transformers. Code is available at: https:
//github.com/facebookresearch/SlowFast.

1. Introduction
We begin with the intellectual history of neural network

models for computer vision. Based on their studies of cat
and monkey visual cortex, Hubel and Wiesel [55] developed
a hierarchical model of the visual pathway with neurons
in lower areas such as V1 responding to features such as
oriented edges and bars, and in higher areas to more spe-
cific stimuli. Fukushima proposed the Neocognitron [32], a
neural network architecture for pattern recognition explic-
itly motivated by Hubel and Wiesel’s hierarchy. His model
had alternating layers of simple cells and complex cells, thus
incorporating downsampling, and shift invariance, thus incor-
porating convolutional structure. LeCun et al. [65] took the
additional step of using backpropagation to train the weights
of this network. But already the main aspects of hierarchy of
visual processing had been established: (i) Reduction in spa-
tial resolution as one goes up the processing hierarchy and
(ii) Increase in the number of different “channels”, with each

*Equal technical contribution.
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Figure 1. Multiscale Vision Transformers learn a hierarchy from
dense (in space) and simple (in channels) to coarse and complex
features. Several resolution-channel scale stages progressively
increase the channel capacity of the intermediate latent sequence
while reducing its length and thereby spatial resolution.

channel corresponding to ever more specialized features.
In a parallel development, the computer vision com-

munity developed multiscale processing, sometimes called
“pyramid” strategies, with Rosenfeld and Thurston [85], Burt
and Adelson [8], Koenderink [61], among the key papers.
There were two motivations (i) To decrease the computing re-
quirements by working at lower resolutions and (ii) A better
sense of “context” at the lower resolutions, which could then
guide the processing at higher resolutions (this is a precursor
to the benefit of “depth” in today’s neural networks.)

The Transformer [98] architecture allows learning ar-
bitrary functions defined over sets and has been scalably
successful in sequence tasks such as language comprehen-
sion [26] and machine translation [7]. Fundamentally, a
transformer uses blocks with two basic operations. First,
is an attention operation [4] for modeling inter-element re-
lations. Second, is a multi-layer perceptron (MLP), which
models relations within an element. Intertwining these oper-
ations with normalization [2] and residual connections [44]
allows transformers to generalize to a wide variety of tasks.

Recently, transformers have been applied to key com-
puter vision tasks such as image classification. In the spirit
of architectural universalism, vision transformers [25, 95]
approach performance of convolutional models across a va-
riety of data and compute regimes. By only having a first
layer that ‘patchifies’ the input in spirit of a 2D convolu-
tion, followed by a stack of transformer blocks, the vision
transformer aims to showcase the power of the transformer
architecture using little inductive bias.
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et al., 2022). Among previous works, Masked AutoEncoder
(MAE, He et al. (2022)) takes advantage of vanilla ViTs,
which allow any length of input, and thereby derives an effi-
cient training regime using the sparsity of masked images.
This greatly improves the training efficiency of masked pre-
training, but adapting sparse training to hierarchical models
is nontrivial, because the input is no longer laid out in a
rigid 2D grid. There have been several attempts to enable
hierarchical ViTs to use masked pretraining. MaskFeat (Wei
et al., 2022) and SimMIM (Xie et al., 2022) replace masked
patches with [mask] tokens, meaning most computation
is wasted on non-visible tokens and training is incredibly
slow. Huang et al. (2022a) introduce several techniques to
enable sparsity in every component of the network, in the
end creating a much more complicated model that doesn’t
improve much in accuracy. UM-MAE (Li et al., 2022a)
uses a special masking strategy to allow for sparsity, but
this restriction significantly hurts accuracy. MCMAE (Gao
et al., 2022) uses masked convolution in the first couple of
stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
chitecture specifically for sparse MAE pretraining, thereby
creating a powerful yet simple model.

3. Approach
Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
He et al. (2022)), which has been shown effective in teaching
ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling
approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,

Figure 4. MAE for Hierarchical Models. MAE is not compatible
with multi-stage models, but we can apply some simple tricks to
remedy this. While MAE masks individual tokens, tokens in multi-
stage transformers start very small (e.g., 4⇥ 4 pixels), doubling
size in each stage. (a) Thus, we mask coarser “mask units” (32⇥32
pixels) instead of tokens directly. (b) For efficiency, MAE is sparse,
meaning it deletes what it masks (a problem for spatial modules
like convs). (c) Keeping masked tokens fixes this, but gives up the
potential 4 � 10⇥ training speed-up of MAE. (d) As a baseline,
we introduce a trick that treats mask units as a separate entities
for convs, solving the issue but requiring undesirable padding.
(e) In Hiera, we side-step the problem entirely by changing the
architecture so the kernels can’t overlap between mask units.

which are large 16⇥16 patches for ViT, but only small 4⇥4
patches for most hierarchical models (Fig. 4a).

To address both of these issues, we opt to distinguish tokens
from “mask units”. As described in Fig. 4a, mask units
are at the resolution we apply MAE masking, while tokens
are the internal resolution of the model (like in Wei et al.
(2022); Xie et al. (2022)). In our case, we mask 32⇥32 pixel
regions, meaning one mask unit is 8⇥ 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 ⇥ 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
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et al., 2022). Among previous works, Masked AutoEncoder
(MAE, He et al. (2022)) takes advantage of vanilla ViTs,
which allow any length of input, and thereby derives an effi-
cient training regime using the sparsity of masked images.
This greatly improves the training efficiency of masked pre-
training, but adapting sparse training to hierarchical models
is nontrivial, because the input is no longer laid out in a
rigid 2D grid. There have been several attempts to enable
hierarchical ViTs to use masked pretraining. MaskFeat (Wei
et al., 2022) and SimMIM (Xie et al., 2022) replace masked
patches with [mask] tokens, meaning most computation
is wasted on non-visible tokens and training is incredibly
slow. Huang et al. (2022a) introduce several techniques to
enable sparsity in every component of the network, in the
end creating a much more complicated model that doesn’t
improve much in accuracy. UM-MAE (Li et al., 2022a)
uses a special masking strategy to allow for sparsity, but
this restriction significantly hurts accuracy. MCMAE (Gao
et al., 2022) uses masked convolution in the first couple of
stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
chitecture specifically for sparse MAE pretraining, thereby
creating a powerful yet simple model.

3. Approach
Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
He et al. (2022)), which has been shown effective in teaching
ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling
approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,

Figure 4. MAE for Hierarchical Models. MAE is not compatible
with multi-stage models, but we can apply some simple tricks to
remedy this. While MAE masks individual tokens, tokens in multi-
stage transformers start very small (e.g., 4⇥ 4 pixels), doubling
size in each stage. (a) Thus, we mask coarser “mask units” (32⇥32
pixels) instead of tokens directly. (b) For efficiency, MAE is sparse,
meaning it deletes what it masks (a problem for spatial modules
like convs). (c) Keeping masked tokens fixes this, but gives up the
potential 4 � 10⇥ training speed-up of MAE. (d) As a baseline,
we introduce a trick that treats mask units as a separate entities
for convs, solving the issue but requiring undesirable padding.
(e) In Hiera, we side-step the problem entirely by changing the
architecture so the kernels can’t overlap between mask units.

which are large 16⇥16 patches for ViT, but only small 4⇥4
patches for most hierarchical models (Fig. 4a).

To address both of these issues, we opt to distinguish tokens
from “mask units”. As described in Fig. 4a, mask units
are at the resolution we apply MAE masking, while tokens
are the internal resolution of the model (like in Wei et al.
(2022); Xie et al. (2022)). In our case, we mask 32⇥32 pixel
regions, meaning one mask unit is 8⇥ 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 ⇥ 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
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et al., 2022). Among previous works, Masked AutoEncoder
(MAE, He et al. (2022)) takes advantage of vanilla ViTs,
which allow any length of input, and thereby derives an effi-
cient training regime using the sparsity of masked images.
This greatly improves the training efficiency of masked pre-
training, but adapting sparse training to hierarchical models
is nontrivial, because the input is no longer laid out in a
rigid 2D grid. There have been several attempts to enable
hierarchical ViTs to use masked pretraining. MaskFeat (Wei
et al., 2022) and SimMIM (Xie et al., 2022) replace masked
patches with [mask] tokens, meaning most computation
is wasted on non-visible tokens and training is incredibly
slow. Huang et al. (2022a) introduce several techniques to
enable sparsity in every component of the network, in the
end creating a much more complicated model that doesn’t
improve much in accuracy. UM-MAE (Li et al., 2022a)
uses a special masking strategy to allow for sparsity, but
this restriction significantly hurts accuracy. MCMAE (Gao
et al., 2022) uses masked convolution in the first couple of
stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
chitecture specifically for sparse MAE pretraining, thereby
creating a powerful yet simple model.

3. Approach
Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
He et al. (2022)), which has been shown effective in teaching
ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling
approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,

Figure 4. MAE for Hierarchical Models. MAE is not compatible
with multi-stage models, but we can apply some simple tricks to
remedy this. While MAE masks individual tokens, tokens in multi-
stage transformers start very small (e.g., 4⇥ 4 pixels), doubling
size in each stage. (a) Thus, we mask coarser “mask units” (32⇥32
pixels) instead of tokens directly. (b) For efficiency, MAE is sparse,
meaning it deletes what it masks (a problem for spatial modules
like convs). (c) Keeping masked tokens fixes this, but gives up the
potential 4 � 10⇥ training speed-up of MAE. (d) As a baseline,
we introduce a trick that treats mask units as a separate entities
for convs, solving the issue but requiring undesirable padding.
(e) In Hiera, we side-step the problem entirely by changing the
architecture so the kernels can’t overlap between mask units.

which are large 16⇥16 patches for ViT, but only small 4⇥4
patches for most hierarchical models (Fig. 4a).

To address both of these issues, we opt to distinguish tokens
from “mask units”. As described in Fig. 4a, mask units
are at the resolution we apply MAE masking, while tokens
are the internal resolution of the model (like in Wei et al.
(2022); Xie et al. (2022)). In our case, we mask 32⇥32 pixel
regions, meaning one mask unit is 8⇥ 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 ⇥ 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
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et al., 2022). Among previous works, Masked AutoEncoder
(MAE, He et al. (2022)) takes advantage of vanilla ViTs,
which allow any length of input, and thereby derives an effi-
cient training regime using the sparsity of masked images.
This greatly improves the training efficiency of masked pre-
training, but adapting sparse training to hierarchical models
is nontrivial, because the input is no longer laid out in a
rigid 2D grid. There have been several attempts to enable
hierarchical ViTs to use masked pretraining. MaskFeat (Wei
et al., 2022) and SimMIM (Xie et al., 2022) replace masked
patches with [mask] tokens, meaning most computation
is wasted on non-visible tokens and training is incredibly
slow. Huang et al. (2022a) introduce several techniques to
enable sparsity in every component of the network, in the
end creating a much more complicated model that doesn’t
improve much in accuracy. UM-MAE (Li et al., 2022a)
uses a special masking strategy to allow for sparsity, but
this restriction significantly hurts accuracy. MCMAE (Gao
et al., 2022) uses masked convolution in the first couple of
stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
chitecture specifically for sparse MAE pretraining, thereby
creating a powerful yet simple model.

3. Approach
Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
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ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling
approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,
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architecture so the kernels can’t overlap between mask units.
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are at the resolution we apply MAE masking, while tokens
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regions, meaning one mask unit is 8⇥ 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 ⇥ 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
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stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
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creating a powerful yet simple model.
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Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
He et al. (2022)), which has been shown effective in teaching
ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling
approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,
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remedy this. While MAE masks individual tokens, tokens in multi-
stage transformers start very small (e.g., 4⇥ 4 pixels), doubling
size in each stage. (a) Thus, we mask coarser “mask units” (32⇥32
pixels) instead of tokens directly. (b) For efficiency, MAE is sparse,
meaning it deletes what it masks (a problem for spatial modules
like convs). (c) Keeping masked tokens fixes this, but gives up the
potential 4 � 10⇥ training speed-up of MAE. (d) As a baseline,
we introduce a trick that treats mask units as a separate entities
for convs, solving the issue but requiring undesirable padding.
(e) In Hiera, we side-step the problem entirely by changing the
architecture so the kernels can’t overlap between mask units.

which are large 16⇥16 patches for ViT, but only small 4⇥4
patches for most hierarchical models (Fig. 4a).

To address both of these issues, we opt to distinguish tokens
from “mask units”. As described in Fig. 4a, mask units
are at the resolution we apply MAE masking, while tokens
are the internal resolution of the model (like in Wei et al.
(2022); Xie et al. (2022)). In our case, we mask 32⇥32 pixel
regions, meaning one mask unit is 8⇥ 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 ⇥ 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
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Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:

Attn(Q,K, V ) = Softmax
⇣
(QK

> + E
(rel))/

p

d

⌘
V,

where E
(rel)
ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:

Rp(i),p(j) = R
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where R
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t are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:
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denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,

Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:

Attn(Q,K, V ) = Softmax
⇣
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⌘
V,

where E
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ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:

Rp(i),p(j) = R
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h(i),h(j) +R
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w(i),w(j) +R
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t(i),t(j), (4)

where R
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t are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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et al., 2022). Among previous works, Masked AutoEncoder
(MAE, He et al. (2022)) takes advantage of vanilla ViTs,
which allow any length of input, and thereby derives an effi-
cient training regime using the sparsity of masked images.
This greatly improves the training efficiency of masked pre-
training, but adapting sparse training to hierarchical models
is nontrivial, because the input is no longer laid out in a
rigid 2D grid. There have been several attempts to enable
hierarchical ViTs to use masked pretraining. MaskFeat (Wei
et al., 2022) and SimMIM (Xie et al., 2022) replace masked
patches with [mask] tokens, meaning most computation
is wasted on non-visible tokens and training is incredibly
slow. Huang et al. (2022a) introduce several techniques to
enable sparsity in every component of the network, in the
end creating a much more complicated model that doesn’t
improve much in accuracy. UM-MAE (Li et al., 2022a)
uses a special masking strategy to allow for sparsity, but
this restriction significantly hurts accuracy. MCMAE (Gao
et al., 2022) uses masked convolution in the first couple of
stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
chitecture specifically for sparse MAE pretraining, thereby
creating a powerful yet simple model.

3. Approach
Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
He et al. (2022)), which has been shown effective in teaching
ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling
approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,

Figure 4. MAE for Hierarchical Models. MAE is not compatible
with multi-stage models, but we can apply some simple tricks to
remedy this. While MAE masks individual tokens, tokens in multi-
stage transformers start very small (e.g., 4⇥ 4 pixels), doubling
size in each stage. (a) Thus, we mask coarser “mask units” (32⇥32
pixels) instead of tokens directly. (b) For efficiency, MAE is sparse,
meaning it deletes what it masks (a problem for spatial modules
like convs). (c) Keeping masked tokens fixes this, but gives up the
potential 4 � 10⇥ training speed-up of MAE. (d) As a baseline,
we introduce a trick that treats mask units as a separate entities
for convs, solving the issue but requiring undesirable padding.
(e) In Hiera, we side-step the problem entirely by changing the
architecture so the kernels can’t overlap between mask units.

which are large 16⇥16 patches for ViT, but only small 4⇥4
patches for most hierarchical models (Fig. 4a).

To address both of these issues, we opt to distinguish tokens
from “mask units”. As described in Fig. 4a, mask units
are at the resolution we apply MAE masking, while tokens
are the internal resolution of the model (like in Wei et al.
(2022); Xie et al. (2022)). In our case, we mask 32⇥32 pixel
regions, meaning one mask unit is 8⇥ 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 ⇥ 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
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et al., 2022). Among previous works, Masked AutoEncoder
(MAE, He et al. (2022)) takes advantage of vanilla ViTs,
which allow any length of input, and thereby derives an effi-
cient training regime using the sparsity of masked images.
This greatly improves the training efficiency of masked pre-
training, but adapting sparse training to hierarchical models
is nontrivial, because the input is no longer laid out in a
rigid 2D grid. There have been several attempts to enable
hierarchical ViTs to use masked pretraining. MaskFeat (Wei
et al., 2022) and SimMIM (Xie et al., 2022) replace masked
patches with [mask] tokens, meaning most computation
is wasted on non-visible tokens and training is incredibly
slow. Huang et al. (2022a) introduce several techniques to
enable sparsity in every component of the network, in the
end creating a much more complicated model that doesn’t
improve much in accuracy. UM-MAE (Li et al., 2022a)
uses a special masking strategy to allow for sparsity, but
this restriction significantly hurts accuracy. MCMAE (Gao
et al., 2022) uses masked convolution in the first couple of
stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
chitecture specifically for sparse MAE pretraining, thereby
creating a powerful yet simple model.

3. Approach
Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
He et al. (2022)), which has been shown effective in teaching
ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling
approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,

Figure 4. MAE for Hierarchical Models. MAE is not compatible
with multi-stage models, but we can apply some simple tricks to
remedy this. While MAE masks individual tokens, tokens in multi-
stage transformers start very small (e.g., 4⇥ 4 pixels), doubling
size in each stage. (a) Thus, we mask coarser “mask units” (32⇥32
pixels) instead of tokens directly. (b) For efficiency, MAE is sparse,
meaning it deletes what it masks (a problem for spatial modules
like convs). (c) Keeping masked tokens fixes this, but gives up the
potential 4 � 10⇥ training speed-up of MAE. (d) As a baseline,
we introduce a trick that treats mask units as a separate entities
for convs, solving the issue but requiring undesirable padding.
(e) In Hiera, we side-step the problem entirely by changing the
architecture so the kernels can’t overlap between mask units.

which are large 16⇥16 patches for ViT, but only small 4⇥4
patches for most hierarchical models (Fig. 4a).

To address both of these issues, we opt to distinguish tokens
from “mask units”. As described in Fig. 4a, mask units
are at the resolution we apply MAE masking, while tokens
are the internal resolution of the model (like in Wei et al.
(2022); Xie et al. (2022)). In our case, we mask 32⇥32 pixel
regions, meaning one mask unit is 8⇥ 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 ⇥ 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:

Attn(Q,K, V ) = Softmax
⇣
(QK

> + E
(rel))/

p

d

⌘
V,

where E
(rel)
ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:

Rp(i),p(j) = R
h
h(i),h(j) +R

w
w(i),w(j) +R

t
t(i),t(j), (4)

where R
h
, R

w
, R

t are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,

Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.
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The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:
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token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:

Attn(Q,K, V ) = Softmax
⇣
(QK

> + E
(rel))/

p

d

⌘
V,

where E
(rel)
ij = Qi ·Rp(i),p(j). (3)

However, the number of possible embeddings Rp(i),p(j)

scale in O(TWH), which can be expensive to compute. To
reduce complexity, we decompose the distance computation
between element i and j along the spatiotemporal axes:

Rp(i),p(j) = R
h
h(i),h(j) +R

w
w(i),w(j) +R

t
t(i),t(j), (4)

where R
h
, R

w
, R

t are the positional embeddings along the
height, width and temporal axes, and h(i), w(i), and t(i)

3Note that Q and (K, V ) can reside in different scales due to potentially
different pooling. p maps the index of all of them into a shared scale.

denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,

Figure 2. The improved Pooling Attention mechanism that incor-
porating decomposed relative position embedding, Rp(i),p(j), and
residual pooling connection modules in the attention block.

Decomposed relative position embedding. While MViT
has shown promises in their power to model interactions
between tokens, they focus on content, rather than structure.
The space-time structure modeling relies solely on the “ab-
solute” positional embedding to offer location information.
This ignores the fundamental principle of shift-invariance
in vision [47]. Namely, the way MViT models the interac-
tion between two patches will change depending on their
absolute position in images even if their relative positions
stay unchanged. To address this issue, we incorporate rela-
tive positional embeddings [65], which only depend on the
relative location distance between tokens into the pooled
self-attention computation.

We encode the relative position between the two input el-
ements, i and j, into positional embedding Rp(i),p(j) 2 Rd,
where p(i) and p(j) denote the spatial (or spatiotemporal)
position of element i and j.3 The pairwise encoding repre-
sentation is then embedded into the self-attention module:
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denote the vertical, horizontal, and temporal position of
token i, respectively. Note that Rt is optional and only
required to support temporal dimension in the video case. In
comparison, our decomposed embeddings reduce the number
of learned embeddings to O(T +W +H), which can have
a large effect for early-stage, high-resolution feature maps.
Residual pooling connection. As demonstrated [21], pool-
ing attention is very effective to reduce the computation
complexity and memory requirements in attention blocks.
MViTv1 has larger strides on K and V tensors than the
stride of the Q tensors which is only downsampled if the res-
olution of the output sequence changes across stages. This
motivates us to add the residual pooling connection with the
(pooled) Q tensor to increase information flow and facilitate
the training of pooling attention blocks in MViT.

We introduce a new residual pooling connection inside
the attention blocks as shown in Fig. 2. Specifically, we add
the pooled query tensor to the output sequence Z. So Eq. (2)
is reformulated as:

Z := Attn (Q,K, V ) +Q. (5)

Note that the output sequence Z has the same length as the
pooled query tensor Q.

The ablations in §6.2 and §5.3 shows that both the pooling
operator (PQ) for query Q and the residual path are neces-
sary for the proposed residual pooling connection. This
change still enjoys the low-complexity attention computa-
tion with large strides in key and value pooling as adding the
pooled query sequence in Eq. (5) comes at a low cost.

4.2. MViT for Object Detection
In this section, we describe how to apply the MViT back-

bone for object detection and instance segmentation tasks.
FPN integration. The hierarchical structure of MViT pro-
duces multiscale feature maps in four stages, and there-
fore naturally integrates into Feature Pyramid Networks
(FPN) [53] for object detection tasks, as shown in Fig. 3.
The top-down pyramid with lateral connections in FPN con-
structs semantically strong feature maps for MViT at all
scales. By using FPN with the MViT backbone, we apply it
to different detection architectures (e.g. Mask R-CNN [36]).
Hybrid window attention. The self-attention in Transform-
ers has quadratic complexity w.r.t. the number of tokens.
This issue is more exacerbated for object detection as it
typically requires high-resolution inputs and feature maps.
In this paper, we study two ways to significantly reduce
this compute and memory complexity: First, the pooling
attention designed in attention blocks of MViT. Second, win-
dow attention used as a technique to reduce computation for
object detection in Swin [55].

Pooling attention and window attention both control the
complexity of self-attention by reducing the size of query,
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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Figure 6. Mask Unit Attn vs. Window Attn. Window attention
(a) performs local attention within a fixed size window. Doing so
would potentially overlap with deleted tokens during sparse MAE
pretraining. In contrast, Mask Unit attention (b) performs local
attention within individual mask units, no matter their size.

so far we’ve minimized the number of layers, making atten-
tion easier to learn. Thus, we can safely remove it (Tab. 1e).

Mask Unit Attention. At this point, the only specialized
module left is pooling attention. Pooling Q is necessary
to maintain a hierarchical model, but KV pooling is only
there to reduce the size of the attention matrix in the first
two stages. We can remove this outright, but it would con-
siderably increase the computational cost of the network.
Instead, in Tab. 1f we replace it with an implementationally
trivial alternative: local attention within a mask unit.

During MAE pretraining, we already have to separate out
mask units at the start of the network (see Fig. 2). Thus the
tokens are already neatly grouped by units once they arrive
at attention. We can then simply perform local attention
within these units with no overhead. While this “Mask Unit
attention” is local instead of global like pooling attention
(Fig. 5), K and V were only pooled in the first two stages,
where global attention isn’t as useful. Thus, as shown in
Tab. 1, this change has no impact on accuracy but increases
throughput by quite a lot—up to 32% on video.

Note that mask unit attention is distinct from window atten-
tion because it adapts the window size to the size of mask
units at the current resolution. Window attention would
have a fixed size throughout the network, which would leak
into deleted tokens after a downsample (see Fig. 6).

Hiera. The result of these changes is an extremely simple
and efficient model, which we denote “Hiera”. Hiera is 2.4⇥
faster on images and 5.1⇥ faster on video than the MViTv2
we started with and is actually more accurate because of
MAE. Furthermore, because Hiera supports sparse pretrain-
ing, the results in Tab. 1 are extremely fast to obtain. In fact,
to obtain superior accuracy on images, Hiera-L is 3⇥ faster
to train than a supervised MViTv2-L (Fig. 7). For video,
Wei et al. (2022) report 80.5% using a cut down version
of MViTv2 with double the KV stride in the first 3 stages.
Compared to this model, our Hiera-L obtains 85.5% in 800
pretrain epochs while being 2.1⇥ faster to train (Fig. 7). All
benchmarks in this paper are on an A100 with fp16 (as this
setting is most useful in practice) unless noted otherwise.

Figure 7. Training time. Measured in half precision A100 days.
Our Hiera is significantly faster to train than MViTv2 due to being
more efficient and benefiting from sparse pretraining (as opposed
to MaskFeat). Here, supervised uses 300 epochs for ImageNet-1K
and 200 for Kinetics-400, while MaskFeat and MAE use 400 for
pretraining on images and 800 on video followed by 50 epochs of
finetuning for both. Note that Hiera-L at 200 epochs of pretraining
(81.8) already outperforms MViTv2-L supervised (80.5) on video,
making it 5.6⇥ faster to obtain higher accuracy.

While we used Hiera-L for the experiments in this section,
we can of course instantiate it in different sizes, e.g. Tab. 2.

model #Channels #Blocks #Heads FLOPs Param
Hiera-T [96-192-384-768] [1-2-7-2] [1-2-4-8] 5G 28M
Hiera-S [96-192-384-768] [1-2-11-2] [1-2-4-8] 6G 35M
Hiera-B [96-192-384-768] [2-3-16-3] [1-2-4-8] 9G 52M
Hiera-B+ [112-224-448-896] [2-3-16-3] [2-4-8-16] 13G 70M
Hiera-L [144-288-576-1152] [2-6-36-4] [2-4-8-16] 40G 214M
Hiera-H [256-512-1024-2048] [2-6-36-4] [4-8-16-32] 125G 673M

Table 2. Configuration for Hiera variants. #Channels, #Blocks
and #Heads specify the channel width, number of Hierablocks and
heads in each block for the four stages, respectively. FLOPs are
measured for image classification with 224 ⇥ 224 input. The stage
resolutions are [562, 282, 142, 72]. We introduce B+ for more
direct comparison against prior work with slower B models.

4. MAE Ablations
In this section, we ablate MAE pretraining settings in Hiera
for both images and video, using ImageNet-1K (IN1K, Deng
et al. (2009)) and Kinetics-400 (K400, Kay et al. (2017)).
Like in He et al. (2022); Feichtenhofer et al. (2022), we
ablate using our large model, Hiera-L, to ensure that our
method works at scale. We evaluate performance by finetun-
ing. All metrics are top-1 accuracies using standard evalua-
tion protocols—a single (resized) center crop on IN1K and
3 spatial ⇥ 5 temporal views on K400.

Multi-Scale decoder. While He et al. (2022); Feichtenhofer
et al. (2022) use the tokens from the last block of the encoder
as the input to the decoder, Hiera being hierarchical permits
more flexibility: as in Gao et al. (2022), we can use multi-
scale information by fusing representations from all stages,
which brings large gains in both modalities (Tab. 3a).
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Figure 6. Mask Unit Attn vs. Window Attn. Window attention
(a) performs local attention within a fixed size window. Doing so
would potentially overlap with deleted tokens during sparse MAE
pretraining. In contrast, Mask Unit attention (b) performs local
attention within individual mask units, no matter their size.

so far we’ve minimized the number of layers, making atten-
tion easier to learn. Thus, we can safely remove it (Tab. 1e).

Mask Unit Attention. At this point, the only specialized
module left is pooling attention. Pooling Q is necessary
to maintain a hierarchical model, but KV pooling is only
there to reduce the size of the attention matrix in the first
two stages. We can remove this outright, but it would con-
siderably increase the computational cost of the network.
Instead, in Tab. 1f we replace it with an implementationally
trivial alternative: local attention within a mask unit.

During MAE pretraining, we already have to separate out
mask units at the start of the network (see Fig. 2). Thus the
tokens are already neatly grouped by units once they arrive
at attention. We can then simply perform local attention
within these units with no overhead. While this “Mask Unit
attention” is local instead of global like pooling attention
(Fig. 5), K and V were only pooled in the first two stages,
where global attention isn’t as useful. Thus, as shown in
Tab. 1, this change has no impact on accuracy but increases
throughput by quite a lot—up to 32% on video.

Note that mask unit attention is distinct from window atten-
tion because it adapts the window size to the size of mask
units at the current resolution. Window attention would
have a fixed size throughout the network, which would leak
into deleted tokens after a downsample (see Fig. 6).

Hiera. The result of these changes is an extremely simple
and efficient model, which we denote “Hiera”. Hiera is 2.4⇥
faster on images and 5.1⇥ faster on video than the MViTv2
we started with and is actually more accurate because of
MAE. Furthermore, because Hiera supports sparse pretrain-
ing, the results in Tab. 1 are extremely fast to obtain. In fact,
to obtain superior accuracy on images, Hiera-L is 3⇥ faster
to train than a supervised MViTv2-L (Fig. 7). For video,
Wei et al. (2022) report 80.5% using a cut down version
of MViTv2 with double the KV stride in the first 3 stages.
Compared to this model, our Hiera-L obtains 85.5% in 800
pretrain epochs while being 2.1⇥ faster to train (Fig. 7). All
benchmarks in this paper are on an A100 with fp16 (as this
setting is most useful in practice) unless noted otherwise.

Figure 7. Training time. Measured in half precision A100 days.
Our Hiera is significantly faster to train than MViTv2 due to being
more efficient and benefiting from sparse pretraining (as opposed
to MaskFeat). Here, supervised uses 300 epochs for ImageNet-1K
and 200 for Kinetics-400, while MaskFeat and MAE use 400 for
pretraining on images and 800 on video followed by 50 epochs of
finetuning for both. Note that Hiera-L at 200 epochs of pretraining
(81.8) already outperforms MViTv2-L supervised (80.5) on video,
making it 5.6⇥ faster to obtain higher accuracy.

While we used Hiera-L for the experiments in this section,
we can of course instantiate it in different sizes, e.g. Tab. 2.

model #Channels #Blocks #Heads FLOPs Param
Hiera-T [96-192-384-768] [1-2-7-2] [1-2-4-8] 5G 28M
Hiera-S [96-192-384-768] [1-2-11-2] [1-2-4-8] 6G 35M
Hiera-B [96-192-384-768] [2-3-16-3] [1-2-4-8] 9G 52M
Hiera-B+ [112-224-448-896] [2-3-16-3] [2-4-8-16] 13G 70M
Hiera-L [144-288-576-1152] [2-6-36-4] [2-4-8-16] 40G 214M
Hiera-H [256-512-1024-2048] [2-6-36-4] [4-8-16-32] 125G 673M

Table 2. Configuration for Hiera variants. #Channels, #Blocks
and #Heads specify the channel width, number of Hierablocks and
heads in each block for the four stages, respectively. FLOPs are
measured for image classification with 224 ⇥ 224 input. The stage
resolutions are [562, 282, 142, 72]. We introduce B+ for more
direct comparison against prior work with slower B models.

4. MAE Ablations
In this section, we ablate MAE pretraining settings in Hiera
for both images and video, using ImageNet-1K (IN1K, Deng
et al. (2009)) and Kinetics-400 (K400, Kay et al. (2017)).
Like in He et al. (2022); Feichtenhofer et al. (2022), we
ablate using our large model, Hiera-L, to ensure that our
method works at scale. We evaluate performance by finetun-
ing. All metrics are top-1 accuracies using standard evalua-
tion protocols—a single (resized) center crop on IN1K and
3 spatial ⇥ 5 temporal views on K400.

Multi-Scale decoder. While He et al. (2022); Feichtenhofer
et al. (2022) use the tokens from the last block of the encoder
as the input to the decoder, Hiera being hierarchical permits
more flexibility: as in Gao et al. (2022), we can use multi-
scale information by fusing representations from all stages,
which brings large gains in both modalities (Tab. 3a).

Ryali et al. (2023)



Mask Unit Attention Contribution

Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3⇥ 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 ⇥ 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 ⇥ 4 pixels, we employ a mask unit of size 32 ⇥ 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-
lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ⇤ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ⇤ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ⇤ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ⇤Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 ⇥ 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
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Figure 2. Hiera Setup. Modern hierarchical transformers like Swin (Liu et al., 2021) or MViT (Li et al., 2022c) are more parameter
efficient than vanilla ViTs (Dosovitskiy et al., 2021), but end up slower due to overhead from adding spatial bias through vision-specific
modules like shifted windows or convs. In contrast, we design Hiera to be as simple as possible. To add spatial bias, we opt to teach it to
the model using a strong pretext task like MAE (pictured here) instead. Hiera consists entirely of standard ViT blocks. For efficiency, we
use local attention within “mask units” (Fig. 4, 5) for the first two stages and global attention for the rest. At each stage transition, Q and
the skip connection have their features doubled by a linear layer and spatial dimension pooled by a 2⇥ 2 maxpool. Hiera-B is shown here
(see Tab. 2 for other configs).

We test this hypothesis with a simple strategy: using some
implementation tricks (Fig. 4), take an existing hierarchical
ViT (e.g., MViTv2) and carefully remove non-essential com-
ponents while training with MAE (Tab. 1). After tuning the
MAE task to this new architecture (Tab. 3), we find that we
can actually simplify or remove all of the non-transformer
components, while increasing in accuracy. The result is an
extremely efficient model with no bells-and-whistles: no
convolutions, no shifted or cross-shaped windows, no de-
composed relative position embeddings. Just a pure, simple
hierarchical ViT that is both faster and more accurate than
prior work across several model sizes, domains, and tasks.

Our Simple Hierarchical Vision Transformer (Hiera) outper-
forms the SotA on images and far exceeds prior work on
video while being much faster (Fig. 1) at every model scale
(Fig. 3) and across extensive datasets and tasks (Sec. 5, 6).

2. Related Work
Vision transformers (ViTs) have attracted attention be-
cause of their massive success on several vision tasks in-
cluding image classification (Dosovitskiy et al., 2021), video
classification (Fan et al., 2021; Arnab et al., 2021; Bertasius
et al., 2021), semantic segmentation (Ranftl et al., 2021),
object detection (Carion et al., 2020; Li et al., 2022b), video
object segmentation (Duke et al., 2021), 3D object detec-
tion (Misra et al., 2021) and 3D reconstruction (Bozic et al.,
2021). The key difference between vanilla ViT (Dosovit-
skiy et al., 2021) and prior convolutional neural networks
(CNNs) (LeCun et al., 1998) is that ViT partitions images
into, e.g., 16×16 pixel, non-overlapping patches and flattens
the spatial grid into a 1D sequence, whereas CNNs maintain
this grid over multiple stages of the model, reducing the
resolution in each stage and introducing inductive biases
such as shift equivariance. Recently, the field has shown
an increased interest in hybrid methods (Fan et al., 2021;

Figure 3. Performance vs. prior work. Hiera compared to B, L,
and H variants of SotA models that use MAE-like pretraining. On
images, Hiera is faster and more accurate than even the most recent
SotA (He et al., 2022; Gao et al., 2022; Woo et al., 2023), offering
30-40% speed-up compared to the best model at every scale. On
video, Hiera represents a new class of performance, significantly
improving accuracy, while being over 2⇥ faster than popular ViT
models. Marker size is proportional to FLOP count.

Liu et al., 2021; Li et al., 2022c; Dong et al., 2022; Wang
et al., 2021) that combine transformers with convolution-
like operations and the hierarchical stage structure of prior
CNNs. This direction has shown success and has achieved
state-of-the-art on various vision tasks. However, in practice
these models are actually slower than their vanilla ViT coun-
terparts and convs are not easily compatible with popular
self-supervised tasks such as masked image modeling. We
address both of these issues in the creation of Hiera.

Masked pretraining has emerged as a powerful self-
supervised learning pretext task for learning visual represen-
tations (Vincent et al., 2010; Pathak et al., 2016; Chen et al.,
2020; He et al., 2022; Bao et al., 2022; Xie et al., 2022; Hou
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Figure 6. Mask Unit Attn vs. Window Attn. Window attention
(a) performs local attention within a fixed size window. Doing so
would potentially overlap with deleted tokens during sparse MAE
pretraining. In contrast, Mask Unit attention (b) performs local
attention within individual mask units, no matter their size.

so far we’ve minimized the number of layers, making atten-
tion easier to learn. Thus, we can safely remove it (Tab. 1e).

Mask Unit Attention. At this point, the only specialized
module left is pooling attention. Pooling Q is necessary
to maintain a hierarchical model, but KV pooling is only
there to reduce the size of the attention matrix in the first
two stages. We can remove this outright, but it would con-
siderably increase the computational cost of the network.
Instead, in Tab. 1f we replace it with an implementationally
trivial alternative: local attention within a mask unit.

During MAE pretraining, we already have to separate out
mask units at the start of the network (see Fig. 2). Thus the
tokens are already neatly grouped by units once they arrive
at attention. We can then simply perform local attention
within these units with no overhead. While this “Mask Unit
attention” is local instead of global like pooling attention
(Fig. 5), K and V were only pooled in the first two stages,
where global attention isn’t as useful. Thus, as shown in
Tab. 1, this change has no impact on accuracy but increases
throughput by quite a lot—up to 32% on video.

Note that mask unit attention is distinct from window atten-
tion because it adapts the window size to the size of mask
units at the current resolution. Window attention would
have a fixed size throughout the network, which would leak
into deleted tokens after a downsample (see Fig. 6).

Hiera. The result of these changes is an extremely simple
and efficient model, which we denote “Hiera”. Hiera is 2.4⇥
faster on images and 5.1⇥ faster on video than the MViTv2
we started with and is actually more accurate because of
MAE. Furthermore, because Hiera supports sparse pretrain-
ing, the results in Tab. 1 are extremely fast to obtain. In fact,
to obtain superior accuracy on images, Hiera-L is 3⇥ faster
to train than a supervised MViTv2-L (Fig. 7). For video,
Wei et al. (2022) report 80.5% using a cut down version
of MViTv2 with double the KV stride in the first 3 stages.
Compared to this model, our Hiera-L obtains 85.5% in 800
pretrain epochs while being 2.1⇥ faster to train (Fig. 7). All
benchmarks in this paper are on an A100 with fp16 (as this
setting is most useful in practice) unless noted otherwise.

Figure 7. Training time. Measured in half precision A100 days.
Our Hiera is significantly faster to train than MViTv2 due to being
more efficient and benefiting from sparse pretraining (as opposed
to MaskFeat). Here, supervised uses 300 epochs for ImageNet-1K
and 200 for Kinetics-400, while MaskFeat and MAE use 400 for
pretraining on images and 800 on video followed by 50 epochs of
finetuning for both. Note that Hiera-L at 200 epochs of pretraining
(81.8) already outperforms MViTv2-L supervised (80.5) on video,
making it 5.6⇥ faster to obtain higher accuracy.

While we used Hiera-L for the experiments in this section,
we can of course instantiate it in different sizes, e.g. Tab. 2.

model #Channels #Blocks #Heads FLOPs Param
Hiera-T [96-192-384-768] [1-2-7-2] [1-2-4-8] 5G 28M
Hiera-S [96-192-384-768] [1-2-11-2] [1-2-4-8] 6G 35M
Hiera-B [96-192-384-768] [2-3-16-3] [1-2-4-8] 9G 52M
Hiera-B+ [112-224-448-896] [2-3-16-3] [2-4-8-16] 13G 70M
Hiera-L [144-288-576-1152] [2-6-36-4] [2-4-8-16] 40G 214M
Hiera-H [256-512-1024-2048] [2-6-36-4] [4-8-16-32] 125G 673M

Table 2. Configuration for Hiera variants. #Channels, #Blocks
and #Heads specify the channel width, number of Hierablocks and
heads in each block for the four stages, respectively. FLOPs are
measured for image classification with 224 ⇥ 224 input. The stage
resolutions are [562, 282, 142, 72]. We introduce B+ for more
direct comparison against prior work with slower B models.

4. MAE Ablations
In this section, we ablate MAE pretraining settings in Hiera
for both images and video, using ImageNet-1K (IN1K, Deng
et al. (2009)) and Kinetics-400 (K400, Kay et al. (2017)).
Like in He et al. (2022); Feichtenhofer et al. (2022), we
ablate using our large model, Hiera-L, to ensure that our
method works at scale. We evaluate performance by finetun-
ing. All metrics are top-1 accuracies using standard evalua-
tion protocols—a single (resized) center crop on IN1K and
3 spatial ⇥ 5 temporal views on K400.

Multi-Scale decoder. While He et al. (2022); Feichtenhofer
et al. (2022) use the tokens from the last block of the encoder
as the input to the decoder, Hiera being hierarchical permits
more flexibility: as in Gao et al. (2022), we can use multi-
scale information by fusing representations from all stages,
which brings large gains in both modalities (Tab. 3a).



MAE Ablations



Multi-Scale Decoder

Ryali et al. (2023) [8]

Contribution

Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles

multi-scale image video
7 85.0 83.8
4 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 ⇥ 32 mask unit instead of 16 ⇥ 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without

drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2⇥ 32⇥ 32 px (i.e., 1⇥ 8⇥ 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
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Figure 2. Hiera Setup. Modern hierarchical transformers like Swin (Liu et al., 2021) or MViT (Li et al., 2022c) are more parameter
efficient than vanilla ViTs (Dosovitskiy et al., 2021), but end up slower due to overhead from adding spatial bias through vision-specific
modules like shifted windows or convs. In contrast, we design Hiera to be as simple as possible. To add spatial bias, we opt to teach it to
the model using a strong pretext task like MAE (pictured here) instead. Hiera consists entirely of standard ViT blocks. For efficiency, we
use local attention within “mask units” (Fig. 4, 5) for the first two stages and global attention for the rest. At each stage transition, Q and
the skip connection have their features doubled by a linear layer and spatial dimension pooled by a 2⇥ 2 maxpool. Hiera-B is shown here
(see Tab. 2 for other configs).

We test this hypothesis with a simple strategy: using some
implementation tricks (Fig. 4), take an existing hierarchical
ViT (e.g., MViTv2) and carefully remove non-essential com-
ponents while training with MAE (Tab. 1). After tuning the
MAE task to this new architecture (Tab. 3), we find that we
can actually simplify or remove all of the non-transformer
components, while increasing in accuracy. The result is an
extremely efficient model with no bells-and-whistles: no
convolutions, no shifted or cross-shaped windows, no de-
composed relative position embeddings. Just a pure, simple
hierarchical ViT that is both faster and more accurate than
prior work across several model sizes, domains, and tasks.

Our Simple Hierarchical Vision Transformer (Hiera) outper-
forms the SotA on images and far exceeds prior work on
video while being much faster (Fig. 1) at every model scale
(Fig. 3) and across extensive datasets and tasks (Sec. 5, 6).

2. Related Work
Vision transformers (ViTs) have attracted attention be-
cause of their massive success on several vision tasks in-
cluding image classification (Dosovitskiy et al., 2021), video
classification (Fan et al., 2021; Arnab et al., 2021; Bertasius
et al., 2021), semantic segmentation (Ranftl et al., 2021),
object detection (Carion et al., 2020; Li et al., 2022b), video
object segmentation (Duke et al., 2021), 3D object detec-
tion (Misra et al., 2021) and 3D reconstruction (Bozic et al.,
2021). The key difference between vanilla ViT (Dosovit-
skiy et al., 2021) and prior convolutional neural networks
(CNNs) (LeCun et al., 1998) is that ViT partitions images
into, e.g., 16×16 pixel, non-overlapping patches and flattens
the spatial grid into a 1D sequence, whereas CNNs maintain
this grid over multiple stages of the model, reducing the
resolution in each stage and introducing inductive biases
such as shift equivariance. Recently, the field has shown
an increased interest in hybrid methods (Fan et al., 2021;

Figure 3. Performance vs. prior work. Hiera compared to B, L,
and H variants of SotA models that use MAE-like pretraining. On
images, Hiera is faster and more accurate than even the most recent
SotA (He et al., 2022; Gao et al., 2022; Woo et al., 2023), offering
30-40% speed-up compared to the best model at every scale. On
video, Hiera represents a new class of performance, significantly
improving accuracy, while being over 2⇥ faster than popular ViT
models. Marker size is proportional to FLOP count.

Liu et al., 2021; Li et al., 2022c; Dong et al., 2022; Wang
et al., 2021) that combine transformers with convolution-
like operations and the hierarchical stage structure of prior
CNNs. This direction has shown success and has achieved
state-of-the-art on various vision tasks. However, in practice
these models are actually slower than their vanilla ViT coun-
terparts and convs are not easily compatible with popular
self-supervised tasks such as masked image modeling. We
address both of these issues in the creation of Hiera.

Masked pretraining has emerged as a powerful self-
supervised learning pretext task for learning visual represen-
tations (Vincent et al., 2010; Pathak et al., 2016; Chen et al.,
2020; He et al., 2022; Bao et al., 2022; Xie et al., 2022; Hou

Ryali et al. (2023)
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multi-scale image video
7 85.0 83.8
4 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 ⇥ 32 mask unit instead of 16 ⇥ 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without

drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2⇥ 32⇥ 32 px (i.e., 1⇥ 8⇥ 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
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multi-scale image video
7 85.0 83.8
4 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 ⇥ 32 mask unit instead of 16 ⇥ 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without

drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2⇥ 32⇥ 32 px (i.e., 1⇥ 8⇥ 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
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multi-scale image video
7 85.0 83.8
4 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 ⇥ 32 mask unit instead of 16 ⇥ 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without

drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2⇥ 32⇥ 32 px (i.e., 1⇥ 8⇥ 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
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Abstract
Modern hierarchical vision transformers have
added several vision-specific components in the
pursuit of supervised classification performance.
While these components lead to effective accura-
cies and attractive FLOP counts, the added com-
plexity actually makes these transformers slower
than their vanilla ViT counterparts. In this paper,
we argue that this additional bulk is unnecessary.
By pretraining with a strong visual pretext task
(MAE), we can strip out all the bells-and-whistles
from a state-of-the-art multi-stage vision trans-
former without losing accuracy. In the process,
we create Hiera, an extremely simple hierarchi-
cal vision transformer that is more accurate than
previous models while being significantly faster
both at inference and during training. We evaluate
Hiera on a variety of tasks for image and video
recognition. Our code and models are available at
https://github.com/facebookresearch/hiera.

1. Introduction
Since their introduction by Dosovitskiy et al. (2021) a few
years ago, Vision Transformers (ViTs) have dominated sev-
eral tasks in computer vision. While architecturally simple,
their accuracy (Touvron et al., 2022) and ability to scale
(Zhai et al., 2021) make them still a popular choice today.
Moreover, their simplicity unlocks the use of powerful pre-
training strategies such as MAE (He et al., 2022), which
make ViTs computationally and data efficient to train.

However, this simplicity comes at a cost: by using the same
spatial resolution and number of channels throughout the
network, ViTs make inefficient use of their parameters. This
is in contrast to prior “hierarchical” or “multi-scale” models
(e.g., Krizhevsky et al. (2012); He et al. (2016)), which use
fewer channels but higher spatial resolution in early stages
with simpler features, and more channels but lower spatial
resolution later in the model with more complex features.

Several domain specific vision transformers have been in-
*Equal contribution 1Meta AI, FAIR 2Georgia Tech 3Johns

Hopkins University. Correspondence to: Chaitanya Ryali
<chayryali@meta.com>.

Figure 1. Hiera cuts out expensive specialized operations (e.g.,
convs) from hierarchical transformers to create a simple, efficient,
and accurate model that is fast across many image and video tasks.
Above we compare to recent MAE-based works (Woo et al., 2023;
Feichtenhofer et al., 2022). All speeds measured with A100, fp16.

troduced that employ this hierarchical design, such as Swin
(Liu et al., 2021) or MViT (Fan et al., 2021). However, in
the pursuit of state-of-the-art results using fully supervised
training on ImageNet-1K (an area where ViT has histori-
cally struggled), these models have become more and more
complicated as they add specialized modules (e.g., cross-
shaped windows in CSWin (Dong et al., 2022), decomposed
relative position embeddings in MViTv2 (Li et al., 2022c)).
While these changes produce effective models with attrac-
tive floating point operation (FLOP) counts, under the hood
the added complexity makes these models slower overall.

We argue that a lot of this bulk is actually unnecessary. Be-
cause ViTs lack inductive bias after their initial patchify
operation, many of the changes proposed by subsequent
vision specific transformers serve to manually add spatial bi-
ases. But why should we slow down our architecture to add
these biases, if we could just train the model to learn them
instead? In particular, MAE pretraining has shown to be a
very effective tool to teach ViTs spatial reasoning, allowing
pure vision transformers to obtain good results on detection
(Li et al., 2022b), which was a task previously dominated
by models like Swin or MViT. Moreover, MAE pretraining
is sparse and can be 4� 10⇥ as fast as normal supervised
training, making it an already desirable alternative across
many domains for more than just accuracy (He et al., 2022;
Feichtenhofer et al., 2022; Huang et al., 2022b).
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Figure 2. Hiera Setup. Modern hierarchical transformers like Swin (Liu et al., 2021) or MViT (Li et al., 2022c) are more parameter
efficient than vanilla ViTs (Dosovitskiy et al., 2021), but end up slower due to overhead from adding spatial bias through vision-specific
modules like shifted windows or convs. In contrast, we design Hiera to be as simple as possible. To add spatial bias, we opt to teach it to
the model using a strong pretext task like MAE (pictured here) instead. Hiera consists entirely of standard ViT blocks. For efficiency, we
use local attention within “mask units” (Fig. 4, 5) for the first two stages and global attention for the rest. At each stage transition, Q and
the skip connection have their features doubled by a linear layer and spatial dimension pooled by a 2⇥ 2 maxpool. Hiera-B is shown here
(see Tab. 2 for other configs).

We test this hypothesis with a simple strategy: using some
implementation tricks (Fig. 4), take an existing hierarchical
ViT (e.g., MViTv2) and carefully remove non-essential com-
ponents while training with MAE (Tab. 1). After tuning the
MAE task to this new architecture (Tab. 3), we find that we
can actually simplify or remove all of the non-transformer
components, while increasing in accuracy. The result is an
extremely efficient model with no bells-and-whistles: no
convolutions, no shifted or cross-shaped windows, no de-
composed relative position embeddings. Just a pure, simple
hierarchical ViT that is both faster and more accurate than
prior work across several model sizes, domains, and tasks.

Our Simple Hierarchical Vision Transformer (Hiera) outper-
forms the SotA on images and far exceeds prior work on
video while being much faster (Fig. 1) at every model scale
(Fig. 3) and across extensive datasets and tasks (Sec. 5, 6).

2. Related Work
Vision transformers (ViTs) have attracted attention be-
cause of their massive success on several vision tasks in-
cluding image classification (Dosovitskiy et al., 2021), video
classification (Fan et al., 2021; Arnab et al., 2021; Bertasius
et al., 2021), semantic segmentation (Ranftl et al., 2021),
object detection (Carion et al., 2020; Li et al., 2022b), video
object segmentation (Duke et al., 2021), 3D object detec-
tion (Misra et al., 2021) and 3D reconstruction (Bozic et al.,
2021). The key difference between vanilla ViT (Dosovit-
skiy et al., 2021) and prior convolutional neural networks
(CNNs) (LeCun et al., 1998) is that ViT partitions images
into, e.g., 16×16 pixel, non-overlapping patches and flattens
the spatial grid into a 1D sequence, whereas CNNs maintain
this grid over multiple stages of the model, reducing the
resolution in each stage and introducing inductive biases
such as shift equivariance. Recently, the field has shown
an increased interest in hybrid methods (Fan et al., 2021;

Figure 3. Performance vs. prior work. Hiera compared to B, L,
and H variants of SotA models that use MAE-like pretraining. On
images, Hiera is faster and more accurate than even the most recent
SotA (He et al., 2022; Gao et al., 2022; Woo et al., 2023), offering
30-40% speed-up compared to the best model at every scale. On
video, Hiera represents a new class of performance, significantly
improving accuracy, while being over 2⇥ faster than popular ViT
models. Marker size is proportional to FLOP count.

Liu et al., 2021; Li et al., 2022c; Dong et al., 2022; Wang
et al., 2021) that combine transformers with convolution-
like operations and the hierarchical stage structure of prior
CNNs. This direction has shown success and has achieved
state-of-the-art on various vision tasks. However, in practice
these models are actually slower than their vanilla ViT coun-
terparts and convs are not easily compatible with popular
self-supervised tasks such as masked image modeling. We
address both of these issues in the creation of Hiera.

Masked pretraining has emerged as a powerful self-
supervised learning pretext task for learning visual represen-
tations (Vincent et al., 2010; Pathak et al., 2016; Chen et al.,
2020; He et al., 2022; Bao et al., 2022; Xie et al., 2022; Hou
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• Showed comprehensively that spatial bias can be learned through strong 
pretraining task such as MAE

• Either increased throughput or higher accuracy for similar model size (or 
both)

• Testing on even larger datasets might still be interesting
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Figure 6. Mask Unit Attn vs. Window Attn. Window attention
(a) performs local attention within a fixed size window. Doing so
would potentially overlap with deleted tokens during sparse MAE
pretraining. In contrast, Mask Unit attention (b) performs local
attention within individual mask units, no matter their size.

so far we’ve minimized the number of layers, making atten-
tion easier to learn. Thus, we can safely remove it (Tab. 1e).

Mask Unit Attention. At this point, the only specialized
module left is pooling attention. Pooling Q is necessary
to maintain a hierarchical model, but KV pooling is only
there to reduce the size of the attention matrix in the first
two stages. We can remove this outright, but it would con-
siderably increase the computational cost of the network.
Instead, in Tab. 1f we replace it with an implementationally
trivial alternative: local attention within a mask unit.

During MAE pretraining, we already have to separate out
mask units at the start of the network (see Fig. 2). Thus the
tokens are already neatly grouped by units once they arrive
at attention. We can then simply perform local attention
within these units with no overhead. While this “Mask Unit
attention” is local instead of global like pooling attention
(Fig. 5), K and V were only pooled in the first two stages,
where global attention isn’t as useful. Thus, as shown in
Tab. 1, this change has no impact on accuracy but increases
throughput by quite a lot—up to 32% on video.

Note that mask unit attention is distinct from window atten-
tion because it adapts the window size to the size of mask
units at the current resolution. Window attention would
have a fixed size throughout the network, which would leak
into deleted tokens after a downsample (see Fig. 6).

Hiera. The result of these changes is an extremely simple
and efficient model, which we denote “Hiera”. Hiera is 2.4⇥
faster on images and 5.1⇥ faster on video than the MViTv2
we started with and is actually more accurate because of
MAE. Furthermore, because Hiera supports sparse pretrain-
ing, the results in Tab. 1 are extremely fast to obtain. In fact,
to obtain superior accuracy on images, Hiera-L is 3⇥ faster
to train than a supervised MViTv2-L (Fig. 7). For video,
Wei et al. (2022) report 80.5% using a cut down version
of MViTv2 with double the KV stride in the first 3 stages.
Compared to this model, our Hiera-L obtains 85.5% in 800
pretrain epochs while being 2.1⇥ faster to train (Fig. 7). All
benchmarks in this paper are on an A100 with fp16 (as this
setting is most useful in practice) unless noted otherwise.

Figure 7. Training time. Measured in half precision A100 days.
Our Hiera is significantly faster to train than MViTv2 due to being
more efficient and benefiting from sparse pretraining (as opposed
to MaskFeat). Here, supervised uses 300 epochs for ImageNet-1K
and 200 for Kinetics-400, while MaskFeat and MAE use 400 for
pretraining on images and 800 on video followed by 50 epochs of
finetuning for both. Note that Hiera-L at 200 epochs of pretraining
(81.8) already outperforms MViTv2-L supervised (80.5) on video,
making it 5.6⇥ faster to obtain higher accuracy.

While we used Hiera-L for the experiments in this section,
we can of course instantiate it in different sizes, e.g. Tab. 2.

model #Channels #Blocks #Heads FLOPs Param
Hiera-T [96-192-384-768] [1-2-7-2] [1-2-4-8] 5G 28M
Hiera-S [96-192-384-768] [1-2-11-2] [1-2-4-8] 6G 35M
Hiera-B [96-192-384-768] [2-3-16-3] [1-2-4-8] 9G 52M
Hiera-B+ [112-224-448-896] [2-3-16-3] [2-4-8-16] 13G 70M
Hiera-L [144-288-576-1152] [2-6-36-4] [2-4-8-16] 40G 214M
Hiera-H [256-512-1024-2048] [2-6-36-4] [4-8-16-32] 125G 673M

Table 2. Configuration for Hiera variants. #Channels, #Blocks
and #Heads specify the channel width, number of Hierablocks and
heads in each block for the four stages, respectively. FLOPs are
measured for image classification with 224 ⇥ 224 input. The stage
resolutions are [562, 282, 142, 72]. We introduce B+ for more
direct comparison against prior work with slower B models.

4. MAE Ablations
In this section, we ablate MAE pretraining settings in Hiera
for both images and video, using ImageNet-1K (IN1K, Deng
et al. (2009)) and Kinetics-400 (K400, Kay et al. (2017)).
Like in He et al. (2022); Feichtenhofer et al. (2022), we
ablate using our large model, Hiera-L, to ensure that our
method works at scale. We evaluate performance by finetun-
ing. All metrics are top-1 accuracies using standard evalua-
tion protocols—a single (resized) center crop on IN1K and
3 spatial ⇥ 5 temporal views on K400.

Multi-Scale decoder. While He et al. (2022); Feichtenhofer
et al. (2022) use the tokens from the last block of the encoder
as the input to the decoder, Hiera being hierarchical permits
more flexibility: as in Gao et al. (2022), we can use multi-
scale information by fusing representations from all stages,
which brings large gains in both modalities (Tab. 3a).

Ryali et al. (2023)
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backbone pretrain mAP FLOPs (G) Param
K400 pretrain
ViT-L supervised 22.2 598 304M
MViTv2-L40,312 MaskFeat 38.5 2828 218M
ViT-L MAE 37.0 597 305M
Hiera-L MAE 39.8 413 213M
ViT-H MAE 39.5 1192 633M
Hiera-H MAE 42.5 1158 672M

K600 pretrain
ViT-L MAE 38.4 598 304M
MViTv2-L40,312 MaskFeat 39.8 2828 218M
Hiera-L MAE 40.7 413 213M
ViT-H MAE 40.3 1193 632M
Hiera-H MAE 42.8 1158 672M

K700 pretrain
ViT-L MAE 39.5 598 304M
Hiera-L MAE 41.7 413 213M
ViT-H MAE 40.1 1193 632M
Hiera-H MAE 43.3 1158 672M

Table 7. AVA v2.2 results pretrained on Kinetics. Hiera improves
over SotA by a large margin. All inference FLOPs reported with a
center crop strategy following Fan et al. (2021).

pecially at the base model size and lower. Remarkably, even
at this size, Hiera-B without using any bells-and-whistles
(e.g., convs), is able to reach 84.5% (slightly) outperforming
MViTv2-B; MCMAE-B achieves a higher accuracy, but the
model is significantly heavier. Our Hiera-B+ model handily
outperforms it in both speed (Fig. 3) and accuracy. Going
even smaller, Hiera-S, -T demonstrate remarkably strong
performance - in a scale regime where convolutions have
historically dominated, consistent with our core premise
that good spatial biases can be learned.

At our default scale, Hiera-L MAE reaches an accuracy of
86.1%, a significant +0.8% gain over MViTv2-L; it also
(slightly) outperforms ViT-L MAE, which is 42% larger and
has 1.6⇥ the FLOPs, by +0.2%. Note that while we adopted
the MAE pretraining in this work due to its efficient sparse
pretraining, Hiera-L is readily compatible with complemen-
tary, orthogonal approaches, e.g. using an EMA teacher
(El-Nouby et al., 2021; Baevski et al., 2022).

6.2. Transfer learning experiments

Here, we perform transfer learning experiments on down-
stream classification, detection, and segmentation tasks.

Classification on iNaturalists and Places. In Tab. 9 we
evaluate transfer learning performance on downstream iNat-
uralist (Van Horn et al., 2018) and Places (Zhou et al., 2014)
datasets. We finetune the ImageNet-1K pretrained Hiera on
iNaturalist 2017, 2018, and 2019, and Places 365. Hiera con-
sistently outperforms ViT pretrained with MAE (He et al.,
2022), indicating that our Hiera-L and Hiera-H architectures

backbone pretrain acc. FLOPs (G) Param
Swin-T 81.3 5 29M
MViTv2-T 82.3 5 24M
Hiera-T MAE 82.8 5 28M
Swin-S 83.0 9 50M
MViTv2-S 83.6 7 35M
Hiera-S MAE 83.8 6 35M
ViT-B 82.3 18 87M
Swin-B 83.3 15 88M
MViTv2-B 84.4 10 52M
ViT-B BEiT, DALLE 83.2 18 87M
ViT-B MAE 83.6 18 87M
ViT-B MaskFeat 84.0 18 87M
Swin-B SimMIM 83.8 15 88M
MCMAE-B MCMAE 85.0 28 88M
Hiera-B MAE 84.5 9 52M
Hiera-B+ MAE 85.2 13 70M
ViT-L 82.6 62 304M
MViTv2-L 85.3 42 218M
ViT-L BEiT, DALLE 85.2 62 304M
ViT-L MAE 85.9 62 304M
ViT-L MaskFeat 85.7 62 304M
Swin-L SimMIM 85.4 36 197M
MCMAE-L MCMAE 86.2 94 323M
Hiera-L MAE 86.1 40 214M
ViT-H 83.1 167 632M
ViT-H MAE 86.9 167 632M
Hiera-H MAE 86.9 125 673M

Table 8. ImageNet-1K comparison to previous MIM approaches.
We de-emphasize approaches using extra data and indicate the
source of extra data.

are effective outside of just ImageNet.

Object detection and segmentation on COCO. We fine-
tune Mask R-CNN (He et al., 2017) with different pretrained
backbones on the COCO dataset (Lin et al., 2014). We re-
port APbox and APmask for object detection and instance
segmentation. We utilize the training recipe following ViT-
Det (Li et al., 2022b) and incorporate multi-scale features
from Hiera with a Feature Pyramid Network (FPN, Lin et al.
(2017)) as described in the original paper.

In Tab. 10, our Hiera with MAE pretraining demonstrates
a strong scaling behavior when compared models with su-
pervised pretraining such as MViTv2 (Li et al., 2022c),
while being consistently faster. For example, Hiera-L is
+1.8 APbox higher than MViTv2-L (55.0 vs. 53.2) with
a 24% reduction in inference time. Even when compared
to MViTv2 using ImageNet-21K pretraining, Hiera-L still
performs +1.4 APbox better than MViTv2-L.

When compared to the state-of-the-art method, ViTDet, our
Hiera models achieve comparable results while having faster
inference and a lower operation count. For example, Hiera-
B shows +0.6 higher APbox than ViTDet-B with 34% fewer
parameters and 15% lower inference time. Additionally,
Hiera-B+ achieves +1.9 boxAP improvements while having
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backbone iNat17 iNat18 iNat19 Places365
ViT-B 70.5 75.4 80.5 57.9
Hiera-B 73.3 77.9 83.0 58.9
Hiera-B+ 74.7 79.9 83.1 59.2
ViT-L 75.7 80.1 83.4 59.4
Hiera-L 76.8 80.9 84.3 59.6
ViT-H 79.3 83.0 85.7 59.8
Hiera-H 79.6 83.5 85.7 60.0
ViT-H448 83.4 86.8 88.3 60.3
Hiera-H448 83.8 87.3 88.5 60.6

Table 9. Transfer learning on iNaturalists and Places datasets.

backbone pretrain APbox APmask FLOPs params time
Swin-B Sup, 21K 51.4 45.4 0.7T 109M 164ms
MViTv2-B Sup, 21K 53.1 47.4 0.6T 73M 208ms
Swin-B Sup 50.1 44.5 0.7T 109M 164ms
MViTv2-B Sup 52.4 46.7 0.6T 73M 208ms
ViTDet-B MAE 51.6 45.9 0.8T 111M 201ms
Hiera-B MAE 52.2 46.3 0.6T 73M 173ms
Hiera-B+ MAE 53.5 47.3 0.6T 92M 192ms
Swin-L Sup, 21K 52.4 46.2 1.1T 218M 243ms
MViTv2-L Sup, 21K 53.6 47.5 1.3T 239M 447ms
MViTv2-L Sup 53.2 47.1 1.3T 239M 447ms
ViTDet-L MAE 55.6 49.2 1.9T 331M 396ms
Hiera-L MAE 55.0 48.6 1.2T 236M 340ms

Table 10. COCO object detection and segmentation using Mask-
RCNN. All methods are following the training recipe from Li et al.
(2022b) and pretrained on ImageNet-1K by default. Methods
using ImageNet-21K pretraining are de-emphasized. Test time is
measured on a single V100 GPU with full precision.

lower inference time and model complexity vs. ViTDet-
B. For the large model, Hiera-L is consistently faster than
ViTDet-L with only a slightly lower accuracy.

7. Conclusion
In this work, we create a simple hierarchical vision trans-
former by taking an existing one and removing all its bells-
and-whistles while supplying the model with spatial bias
through MAE pretraining. The resulting architecture, Hiera,
is more effective than current work on image recognition
tasks and surpasses the state-of-the-art on video tasks. We
hope Hiera can allow future work to do more, faster.

A. Implementation Details
A mask unit for video corresponds to a block of 2 frames ⇥
32 px ⇥ 32 px (as opposed to images which use 1 ⇥ 32 ⇥
32). Following Feichtenhofer et al. (2022), each token in
Hiera on video corresponds to 2 frames of the input. Since
the mask units also span 2 frames, the window sizes for
Mask Unit Attention do not change for video (i.e., 1⇥ 8⇥ 8
tokens in the first stage, 1 ⇥ 4 ⇥ 4 tokens in the second
stage)—meaning we use exactly the same implementation
for images and video (just the mask unit size is changed).
We use learned spatial (separable spatio-temporal) position

embeddings for images (video). These are all the differences
between Hiera for images and for video. The rest of the
encoder is completely agnostic to spatio-temporal structure.

As in Wei et al. (2022), we remove Q-pooling before the
last stage for MAE pretraining only. This is done so that
MAE settings from prior work using ViT also work for
Hiera with minimal modifications. This introduces little
extra computation as stage 4 is small. If desired, by design,
pretraining with Hiera can also work without removal of
query pooling during pretraining, since a mask unit of 1⇥
8⇥ 8 tokens would correspond to 1 distinct token in the last
stage.

A.1. Video Experiments

Kinetics-400, -600, -700. Our settings mainly follow Fe-
ichtenhofer et al. (2022). We report the pretraining and
finetuning settings for our main results on the Kinetics-400
(Kay et al., 2017), -600 (Carreira et al., 2018) and -700 (Car-
reira et al., 2019) human action datasets in Tab. 11. Epochs
are always reported as effective epochs (Feichtenhofer et al.,
2022), i.e. accounting for repeated sampling. We use 16⇥ 4
sampling as in Feichtenhofer et al. (2022).

Something-Something-v2 (SSv2). We evaluate Hiera-L on
the SSv2 dataset (Goyal et al., 2017b). SSv2 is a dataset
focusing on human-object interaction classification. We
pretrain Hiera-L on either Kinetics 400 or SSv2 and finetune
on SSv2. We report the top-1 classification accuracy in
Tab. 6. We provide further details about the pretraining and
finetuning settings on SSv2 in Tab. 12.

AVA v2.2. We perform transferring experiments on AVA
v2.2 (Gu et al., 2018) for human action localization in video.
We adopt a detection framework following (Feichtenhofer
et al., 2019) for human action localization. We extract ROI
features from the feature map of the last layer in Hiera and
pool the ROI features via spatial max-pooling. We then
use a linear classifier trained with cross entropy loss to
predict the action class. We use the center crop for Hiera
in the evaluation and report the mAP in Tab. 7. We use
Kinetics pretrained and finetuned Hiera in the experiments.
We provide details about the finetuning setting on AVA v2.2
in Tab. 13.

A.2. Image Experiments

ImageNet-1K. Our settings mainly follow He et al. (2022).
We report the pretraining and finetuning settings for our
main results in Tab. 14.

Transfer learning on iNaturalists and Places. We
conduct transfer learning experiments on classification
datasets including iNaturalist2017, iNaturalist2018, iNat-

Appendix
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backbone pretrain acc. FLOPs (G) Param
ViT-B MAE 81.5 180⇥3⇥5 87M
Hiera-B MAE 84.0 102⇥3⇥5 51M
Hiera-B+ MAE 85.0 133⇥3⇥5 69M
MViTv2-L - 80.5 377⇥1⇥10 218M
MViTv2-L MaskFeat 84.3 377⇥1⇥10 218M
ViT-L MAE 85.2 597⇥3⇥5 305M
Hiera-L MAE 87.3 413⇥3⇥5 213M
ViT-H MAE 86.6 1192⇥3⇥5 633M
Hiera-H MAE 87.8 1159⇥3⇥5 672M

Table 4. K400 results. Hiera improves on previous SotA by a
large amount, while being lighter and faster. FLOPs are reported
as inference FLOPs ⇥ spatial crops ⇥ temporal clips.

backbone pretrain acc. FLOPs (G) Param
MViTv2-L Sup, IN-21K 85.8 377⇥1⇥10 218M
MViTv2-L MaskFeat 86.4 377⇥1⇥10 218M
Hiera-L MAE 88.3 413⇥3⇥5 213M
Hiera-H MAE 88.8 1159⇥3⇥5 672M

(a) Kinetics-600 video classification

backbone pretrain acc. FLOPs (G) Param
MViTv2-L Sup, IN-21K 76.7 377⇥1⇥10 218M
MViTv2-L MaskFeat 77.5 377⇥1⇥10 218M
Hiera-L MAE 80.3 413⇥3⇥5 213M
Hiera-H MAE 81.1 1159⇥3⇥5 672M

(b) Kinetics-700 video classification

Table 5. K600 and K700 results. Hiera improves over SotA by a
large margin. FLOPs reported as inference FLOPs ⇥ spatial crops
⇥ temporal clips. Approaches using extra data are de-emphasized.

on video (Feichtenhofer et al., 2022; Tong et al., 2022).
Hiera-L brings large gains (+2.1%) over previous SotA (Fe-
ichtenhofer et al., 2022; Tong et al., 2022), while using
⇠45% fewer flops, being ⇠43% smaller and 2.3⇥ faster
(Fig. 3). In fact, Hiera-L significantly outperforms (+0.7%)
models one tier higher, while being 3⇥ smaller and 3.5⇥
faster. Hiera-L achieves a gain of +6.8% over the corre-
sponding MViTv2-L supervised baseline. Going one tier
up in size, Hiera-H improves performance over previous
SotA by +1.2%, establishing a new SotA for 2242 without
external data. We show similarly large improvements over
the art on K600 (+1.9%) and K700 (+2.8%) in Tab. 5, with
our H models bringing even further gains.

Something-Something-v2 (SSv2). In Tab. 6, we compare
our Hiera with the current art on SSv2 (Goyal et al., 2017b)
at a system level: MViTv2-L (Li et al., 2022c) pretrained
with MaskFeat (Wei et al., 2022) and ViT (Dosovitskiy et al.,
2021) pretrained with MAE on video (Tong et al., 2022).
When pretrained on K400, Hiera-L outperforms the runner-
up method MaskFeat by +0.6%, but Hiera is dramatically
more efficient, using 16 frames at 2242 resolution vs. 40
frames at 3122 resolution in MaskFeat, effectively using

backbone pretrain acc. FLOPs (G) Param
K400 pretrain
ViT-L supervised 55.7 598⇥3⇥1 304M
MViTv2-L40,312 MaskFeat 74.4 2828⇥3⇥1 218M
ViT-L MAE 74.0 597⇥3⇥2 305M
Hiera-L MAE 74.7 413⇥3⇥1 213M
Hiera-L MAE 75.0 413⇥3⇥2 213M

SSv2 pretrain
ViT-L MAE 74.3 597⇥3⇥2 305M
Hiera-L MAE 74.9 413⇥3⇥1 213M
Hiera-L MAE 75.1 413⇥3⇥2 213M
ViT-L32 MAE 75.4 1436⇥3⇥1 305M
Hiera-L32 MAE 76.5 1029⇥3⇥1 213M

Table 6. SSv2 results pretrained on Kinetics-400 and SSv2. Hiera
improves over SotA by a large margin. We report inference FLOPs
⇥ spatial crops ⇥ temporal clips.

3.4⇥ fewer FLOPs. When pretrained on SSv2, Hiera-L
achieves 75.1%, outperforming ViT-L pretrained with MAE,
by +0.8%, while using ⇠45% fewer flops and being ⇠43%
smaller. Our Hiera-L32 model further achieves 76.5%, SotA
among approaches trained only on SSv2.

Transferring to action detection (AVA). We evaluate trans-
fer learning of K400/K600/K700 pretrained Hiera on action
detection using AVA v2.2 dataset (Gu et al., 2018). In
Tab. 7 we compare the pretrained Hiera with SotA meth-
ods, MViTv2 with MaskFeat (Wei et al., 2022) and ViT
with MAE on video (Tong et al., 2022; Feichtenhofer et al.,
2022) at system level, and report mean average precision
(mAP). Our K400 pretrained Hiera-L outperforms an MAE
pretrained ViT-L by +2.8% and an MViTv2-L40,312 Mask-
Feat by +1.3% mAP while Hiera-L has fewer FLOPs and
parameters. Our Hiera-H outperforms an MAE pretrained
ViT-H by +3.0% mAP. We observe similar performance
improvement of the K600/K700 pretrained Hiera as well.
Specifically, the K700 pretrained Hiera-H outperforms an
MAE pretrained ViT-H by +3.2, establishing a new SotA.

6. Image Results
We first evaluate performance on IN1K and then transfer to
other image recognition, detection, and segmentation tasks.

6.1. Performance on ImageNet-1K

In Tab. 8, we perform a system-level comparison of Hi-
era trained with MAE to relevant prior work. First, we
observe that the supervised MViTv2 baselines are already
quite strong, with MViTv2-B (L) reaching 84.4 (85.3) top-
1 accuracy—better than several approaches that use pre-
training (e.g. ViT-B MAE). This showcases the significant
benefits that convolutions give in the supervised setting, es-
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backbone pretrain mAP FLOPs (G) Param
K400 pretrain
ViT-L supervised 22.2 598 304M
MViTv2-L40,312 MaskFeat 38.5 2828 218M
ViT-L MAE 37.0 597 305M
Hiera-L MAE 39.8 413 213M
ViT-H MAE 39.5 1192 633M
Hiera-H MAE 42.5 1158 672M

K600 pretrain
ViT-L MAE 38.4 598 304M
MViTv2-L40,312 MaskFeat 39.8 2828 218M
Hiera-L MAE 40.7 413 213M
ViT-H MAE 40.3 1193 632M
Hiera-H MAE 42.8 1158 672M

K700 pretrain
ViT-L MAE 39.5 598 304M
Hiera-L MAE 41.7 413 213M
ViT-H MAE 40.1 1193 632M
Hiera-H MAE 43.3 1158 672M

Table 7. AVA v2.2 results pretrained on Kinetics. Hiera improves
over SotA by a large margin. All inference FLOPs reported with a
center crop strategy following Fan et al. (2021).

pecially at the base model size and lower. Remarkably, even
at this size, Hiera-B without using any bells-and-whistles
(e.g., convs), is able to reach 84.5% (slightly) outperforming
MViTv2-B; MCMAE-B achieves a higher accuracy, but the
model is significantly heavier. Our Hiera-B+ model handily
outperforms it in both speed (Fig. 3) and accuracy. Going
even smaller, Hiera-S, -T demonstrate remarkably strong
performance - in a scale regime where convolutions have
historically dominated, consistent with our core premise
that good spatial biases can be learned.

At our default scale, Hiera-L MAE reaches an accuracy of
86.1%, a significant +0.8% gain over MViTv2-L; it also
(slightly) outperforms ViT-L MAE, which is 42% larger and
has 1.6⇥ the FLOPs, by +0.2%. Note that while we adopted
the MAE pretraining in this work due to its efficient sparse
pretraining, Hiera-L is readily compatible with complemen-
tary, orthogonal approaches, e.g. using an EMA teacher
(El-Nouby et al., 2021; Baevski et al., 2022).

6.2. Transfer learning experiments

Here, we perform transfer learning experiments on down-
stream classification, detection, and segmentation tasks.

Classification on iNaturalists and Places. In Tab. 9 we
evaluate transfer learning performance on downstream iNat-
uralist (Van Horn et al., 2018) and Places (Zhou et al., 2014)
datasets. We finetune the ImageNet-1K pretrained Hiera on
iNaturalist 2017, 2018, and 2019, and Places 365. Hiera con-
sistently outperforms ViT pretrained with MAE (He et al.,
2022), indicating that our Hiera-L and Hiera-H architectures

backbone pretrain acc. FLOPs (G) Param
Swin-T 81.3 5 29M
MViTv2-T 82.3 5 24M
Hiera-T MAE 82.8 5 28M
Swin-S 83.0 9 50M
MViTv2-S 83.6 7 35M
Hiera-S MAE 83.8 6 35M
ViT-B 82.3 18 87M
Swin-B 83.3 15 88M
MViTv2-B 84.4 10 52M
ViT-B BEiT, DALLE 83.2 18 87M
ViT-B MAE 83.6 18 87M
ViT-B MaskFeat 84.0 18 87M
Swin-B SimMIM 83.8 15 88M
MCMAE-B MCMAE 85.0 28 88M
Hiera-B MAE 84.5 9 52M
Hiera-B+ MAE 85.2 13 70M
ViT-L 82.6 62 304M
MViTv2-L 85.3 42 218M
ViT-L BEiT, DALLE 85.2 62 304M
ViT-L MAE 85.9 62 304M
ViT-L MaskFeat 85.7 62 304M
Swin-L SimMIM 85.4 36 197M
MCMAE-L MCMAE 86.2 94 323M
Hiera-L MAE 86.1 40 214M
ViT-H 83.1 167 632M
ViT-H MAE 86.9 167 632M
Hiera-H MAE 86.9 125 673M

Table 8. ImageNet-1K comparison to previous MIM approaches.
We de-emphasize approaches using extra data and indicate the
source of extra data.

are effective outside of just ImageNet.

Object detection and segmentation on COCO. We fine-
tune Mask R-CNN (He et al., 2017) with different pretrained
backbones on the COCO dataset (Lin et al., 2014). We re-
port APbox and APmask for object detection and instance
segmentation. We utilize the training recipe following ViT-
Det (Li et al., 2022b) and incorporate multi-scale features
from Hiera with a Feature Pyramid Network (FPN, Lin et al.
(2017)) as described in the original paper.

In Tab. 10, our Hiera with MAE pretraining demonstrates
a strong scaling behavior when compared models with su-
pervised pretraining such as MViTv2 (Li et al., 2022c),
while being consistently faster. For example, Hiera-L is
+1.8 APbox higher than MViTv2-L (55.0 vs. 53.2) with
a 24% reduction in inference time. Even when compared
to MViTv2 using ImageNet-21K pretraining, Hiera-L still
performs +1.4 APbox better than MViTv2-L.

When compared to the state-of-the-art method, ViTDet, our
Hiera models achieve comparable results while having faster
inference and a lower operation count. For example, Hiera-
B shows +0.6 higher APbox than ViTDet-B with 34% fewer
parameters and 15% lower inference time. Additionally,
Hiera-B+ achieves +1.9 boxAP improvements while having
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multi-scale image video
7 85.0 83.8
4 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 ⇥ 32 mask unit instead of 16 ⇥ 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without

drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2⇥ 32⇥ 32 px (i.e., 1⇥ 8⇥ 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
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multi-scale image video
7 85.0 83.8
4 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 ⇥ 32 mask unit instead of 16 ⇥ 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without

drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2⇥ 32⇥ 32 px (i.e., 1⇥ 8⇥ 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
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multi-scale image video
7 85.0 83.8
4 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 ⇥ 32 mask unit instead of 16 ⇥ 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without

drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2⇥ 32⇥ 32 px (i.e., 1⇥ 8⇥ 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE


