Chapter 6
PEER-TO-PEER
COMPUTING

, Computer Networks
oHP Summer 2005

Overview

O »0 »0

What is Peer-to-Peer?

Dictionary

— Distributed Hashing
— Search

— Join & Leave
Other systems

Conclusion

@ Distributed Computing Group Computer Networks R. Wattenhofer

6/2

“Peer-to-Peer” is...

O

»0) »0)

L d NS

Software: Napster, Gnutella, Kazaa, ...
File “sharing”

Legal issues, RIAA

Direct data exchange between clients
Best effort, no guarantees

80% of Web Traffic “P2P”

...a socio-cultural phenomenon!

®

Distributed Computing Group Computer Networks R. Wattenhofer

6/3

“Peer-to-Peer” Is also...

O

»0)
L4

®

o

A hot research area: Chord, Pastry, ...
A paradigm beyond Client/Server
Dynamics (frequent joins and leaves)
Fault tolerance

Scalability

Dictionary... and more!

a new networking philosophy/technology!

Distributed Computing Group Computer Networks R. Wattenhofer

6/4

Client/Server

O

b4
C
Y
C
b4
)

Distributed Computing Group Computer Networks R. Wattenhofer 6/5

Client/Server Problems

O

»0) »0)
L d

o Scalability

— Can server serve 100, 1'000, 10’000 clients?
— What's the cost?

o Security / Denial-of-Service

— Servers attract hackers

* Replication

®

— Replicating for security
— Replicating close to clients (“caching”)

Distributed Computing Group Computer Networks R. Wattenhofer

6/6

Case Study: Napster

(o]

»0O »0O

Beach Boys: Pet Sounds @ 170.13.01.02
Twin: Ptolemy @ 212.17.11.69
@ 129.132.13.122
@ 129.132.13.122

H
@ Distributed Computing Group Computer Networks R. Wattenhofer 6/7

(o]

Case Study: Gnutella

»0)

NS

@ Distributed Computing Group Computer Networks R. Wattenhofer

6/8

Pros/Cons Gnutella

O »0 »0O

 totally decentralized

 totally inefficient
— “flooding” = directionless searching

 Gnutella often does not find searched item
- TTL
— Gnutella “not correct”

@ Distributed Computing Group Computer Networks R. Wattenhofer

6/9

Dictionary ADT

O

(o]
(o]

e A collection of objects
— Each object uniquely identified by key

e Supports these operations:

— Search(key) —> object(key)
— Insert(key, object) - OK?
— Delete(key) - OK?

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/10

Dictionary Implementations

O »0 »0O

e Classic Implementations
— Search Tree (balanced, B-Tree)
— Hashing (various forms)

» “Distributed” Implementations

— Linear Hashing
— Consistent Hashing

@ Distributed Computing Group Computer Networks R. Wattenhofer

6/11

Distributed Hashing

O

o
b4
)

8| -hash . 10111010101110011... ~ 73

 Remark: Instead of storing a document at the right peer,
just store a forward-pointer

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/12

Linear Hashing

C »0)

* Problem: More and more objects should be stored; need
to buy new machines!

 Example: From 4 to 5 machines

0 1
l l l l I
I ! ! ! !
0 Move many objects (about 1/2) 1
l
. — .
0] Linear Hashing: Move only a few objects to new machine (about 1/n) 1]
l l l l l I
. —

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/13

O

Consistent Hashing

(o]

 Needs central dispatcher

» |dea: Also the machines get hashed! Each machine is

responsible for the files closest to it. Use multiple hash
funct. for reliability.

&

L
[
[
[
[
[
[
[
[
[
[
[

Distributed Computing Group Computer Networks R. Wattenhofer 6/14

Not quite happy vet...

(o]

e Problem with both linear and consistent hashing is that
all the participants of the system must know all peers...

 Number one challenge: Dynamics!
— Peers join and leave

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/15

Dynamics

O »0 »0O

« Machines (peers) are unreliable
— Joins; worse: spontaneous leaves!

 Decentralized (“symmetric”) System
— scalable, fault tolerant, dynamic

@ Distributed Computing Group Computer Networks R. Wattenhofer

6/16

P2P Dictionary = Hashing

O

o
b4
)

=] hash

Z > 10111010101110011...

 Remark: Instead of storing a document at the right peer,
just store a forward-pointer

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/17

P2P Dictionary = Search Tree
0

But who stores search tree?

O »0 »0

 In particular, where is the root stored?
— Root is scalability & fault tolerance problem
— There is no root...!

« If a peer wants to store/search, how does it know where
to go?
— Does every peer know all others?

— Dynamics! If a peer leaves, all peers must be notified. Too
much overhead

— ldea: Every peer only knows subset of others

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/19

The Neighbors of Peer 001x

o

Distributed Computing Group Computer Networks R. Wattenhofer

P2P Dictionary: Search

Search
hash
value

1011...

P2P Dictionary: Search

Search
hash
value

1011...

P2P Dictionary: Search

Search
hash
value

1011...

23

Again: 001 searches 100

001 searches 100 (continued)

Search Analysis

O

»0) »0)

L d NS

 We have n peers in system
 Assume that “tree” is roughly balanced

— Leaves (peers) on level log, n + constant

o Search has O(log n) steps

®

— After K'th step, you are in subtree on level k
— A “step” is a UDP (or TCP) message
— Latency is dependent on P2P size (world!)

Distributed Computing Group Computer Networks R. Wattenhofer

6/26

Peer Join

O »0

(o]

e Part 1: Bootstrap

e In order to join a P2P system, a joiner must already
know a peer already in system. Typical solutions are

— Ask a central authority for a list of IP addresses that have
been in the P2P reqularly; look up a listing on a web site

— Try some of those you met last time
— Just ping randomly (in the LAN)

o Part 2: Find your place in P2P system

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/27

. Find your place

»0)

®

(o]

L d

The random method: Choose a random bit string (which
determines the place)

Search* for the bit string
Split with the current leave responsible for the bit string
Search* for your neighbors

* These are standard searches

Distributed Computing Group Computer Networks R. Wattenhofer 6/28

Example: Bootstrap with 001 peer

=

Random Bit String = 100101...

29

Joiner searches 100101...

Joiner found 100 leave = split

31

Find neighbors

Random Join Discussion

O »0 »0

o If tree is balanced, the time to join Is

— O(log n) for the first part
— O(log n)-O(log n) = O(log? n) for the second part

 Itis believe that since all the peers are chosen their

position randomly, the tree will more or less be balanced.

— However, theory and simulations show that this is widely
believed but not really true.

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/33

Leave

O

(o]
(o]

e Since a leave might be spontaneous, it must be detected
first. Naturally this is done by the neighbors in the P2P
system (all peers periodically ping neighbors).

o If a peer that left was detected, it must be replaced. If

peer had sibling leaf, the sibling might just do a “reverse
split.”

« If not, search recursively... example!

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/34

Peer 01 leaves spontaneously

. Go down sibling
tree, until you hit
sibling leaves.

. Make the left sibling
the new common
node.

. Move the free right
sibling to the empty
spot.

35

Was that all?

O

(o]
(o]
(e}

* Yes, you now mastered all the P2P basics...
Congratulations!

* But there are some nasty “technicalities” ©

* Most importantly we would like to know what happened
o the data that was stored at the peer that left (important
guestion if we want to use the P2P network as a
storage/file system). We study that soon...

e First some other comments...

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/36

Questions of experts...

O »0O

(o]

 Q: 1 know so many other structured peer-to-peer
systems; they are completely different from the one
you showed us!

 A:They look different, but in fact the difference comes
mostly from the way they are presented. (I give a few
examples on the next slides)

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/37

Chord

O

(o]
(o]

 The most cited system by lon Stoica, Robert Morris,
David Karger, M. Frans Kaashoek, and Hari
Balakrishnan, MIT, presented at ACM SIGCOMM 2001.

* Most discussed system in distributed systems and
networking books, for example in Edition 4 of
Tanenbaum’s Computer Networks.

 There are extensions on top of it, such as CFS, Ivy

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/38

Chord

Distributed Com&%fﬁ%(Group

 FEvery peer
has log n
many
neighbors;
one in about
distance 27,
k=1, 2, ..., log

Computer Networks R. Wattenhofer 6/39

Skip List

O »0

o
) 4
o

* Are you afraid of programming balanced search trees (e.qg.
AVL or red-black tree)?!?

 Then the skip list is a data structure for you!

e |dea: Ordered linked list with extra pointers

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/40

Skip List

O

(o]

root

(o]

rootr

rootr

O Fr N W

rootr

7_

11

17

32

34

60

69

/8

34

318|838

®

(Doubly) linked list, with sorted items

All items have additional pointers on levels 1, ..., k, with

probability 2-%

Search, insert, delete: Start with root, search for the right
Interval on highest level, then continue with lower levels.

Distributed Computing Group Computer Networks R. Wattenhofer

6/41

Skip List

C L %4

(o]

It can easily be shown that search, insert, and delete
terminate in O(log n) expected time, if there are n items

In the skip list

e Also, on expectation, the number of pointers is only
twice as many as with a regular linked list, thus the

memory overhead is edible
e As a plus, the items are always ordered...

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/42

Skip Net

(o]

O »0

« Use the skip list as a peer-to-peer architecture: Again
each peer gets a random value between O and 1, and is
then responsible for storing that interval.

* Instead of a root and a sentinel node (“o0”), the list is
short-wired as a ring

 There exist several proposals towards this end...

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/43

Many many others

[]
0O)

O

(o]

7

* Original work by Plaxton, Rajaraman, and Richa;
“unfortunately” theory paper, so it includes many other
aspects, such as a distance discussion... similar
proposals are Pastry/Tapestry, or Kademlia.

e Some proposals improve the design; e.g. The Viceroy
resp. Koorde proposals are Butterfly-based resp.
DeBruijn-based and therefore only need a constant
number of neighbors per peer.

* Closest/best design in reality is Freenet. However,
Freenet has some questionable design properties

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/44

Why should | care?

O »0

(o]

 Q:ldon’'t wantto program a worldwide music stealing
application, so why should | care?

* A: Many future networking applications will have a form
of decentralized control, for scalability, fault-tolerance,
and security.

« Example: P2P Spam-Filtering (Spamato-P2P).

@ Distributed Computing Group Computer Networks R. Wattenhofer 6/45

