
 1

SS 2005 Prof. Gustavo Alonso / Jianbo Xue

Vernetzte Systeme
Exercise 12

Ausgabe: 17. Juni 2005
Abgabe: 24. Juni 2005

1. Task: Implementation of Message Passing
Based on the implementation of persist message queue server and clients done in
Exercise 10, this exercise is to usea message passing mechanism to generate remote
function operations instead of using pure RPC/RMI mechanism.

Client 1receiveRequest()

Server

Client 2

retrieveResult()

Data

Queue

Manager

Request

Processor

Message

Queue

Manager

Queue 1

Queue 2

Queue N

…
..

Persistent Storage

Op Queue

Queue 1

Queue 2

Queue N

…
..

Figure 1: Message Server

• The server DataMessagePoolServer implements two remote methods defined in

the interface class DataMessagePool:
package server;

import java.rmi.Remote;
import java.rmi.RemoteException;

import server.messaging.AckMessage;

 2

import server.messaging.RequestMessage;
import server.messaging.ResultMessage;

public interface DataMessagePool extends Remote{
 public AckMessage receiveRequest(RequestMessage msg) throws
RemoteException;
 public ResultMessage retrieveResult(AckMessage msg) throws
RemoteException;
}

List 1. Interface PersistMessagePool

- The client sends a request by calling receiveRequest() to instruct the server
to perform certain operations. Once the request is processed, the server
generates a RequestMessage containing the output and the result of the
operation, and puts it into a specific ResultMessageQueue. The server then
replies the client with an AckMessage which contains the information about the
ResultMessageQueue where the ResultMessage is stored and the identifier of
the message. Finally, the client calls retrieveResult to retrieve the
ResultMessage from the server.

- The server contains two QueueManager: PersistDataMessageQueueManager

and ResultMessageQueueManager. PersistDataMessageQueueManager and its
structure are the same as those in Ex10. ResultMessageQueueManager has
multiple ResultMessageQueue: one special opQueue to store ResultMessage
related to the queue management; and the same number of
ResultMessageQueue which matches one-by-one to the
PersistDataMessageQueue managed by the PersistDataMessageQueueManager.

- receiveRequest() method accepts a RequestMessage from the client. The

RequestMessage requests one of the 4 operations (createQueue, deleteQueue,
putMessage, getMessage) which the server supports.

• createQueue, deleteQueue: the server creates/deletes a queue according to
its name. The ResultMessage generated for the operation is stored in
the special ResultMessageQueue – opQueue.

• putMessage, getMessage: the server puts/gets a message to/from a
specific PersistDataMessageQueue. The ResultMessage generated for
the operation is stored in the ResultMessageQueue corresponding to the
PersistDataMessageQueue involved in the operation.

The server creates an AckMessage which contains the ID of the ResultMessage
and the name of the ResultMessageQueue where the message is stored, and
return the AckMessage to the client.

- retrieveResult() method accepts an AckMessage from the client. According
to the content of the AckMessage, the server retrieves the ResultMessage from
the corresponding ResultMessageQueue, and returns it to the client.

 3

• There are three types of messages exchanged between the server and the clients.
- RequestMessage supports 4 types: getRequest, putRequest,

createQueueRequest and deleteQueueRequest, which match to the 4
operations the server supports.

- AckMessage contains 2 fields: String queueName and int msgNumber.
- ResultMessage contains information about the result and output of the

operation. If the operation fails, an OperationException (an inner class of
ResultMessage) is attached to the ResultMessage. The OperationException
shows the exception or error happened during the operation. If the operation
succeeds, no OperationException is attached.

- OperationException is used to replace the RemoteException which is directly
attached to the RMI method call. It has 5 types:

• EXCEPTION_TYPE_MESSAGE_NULL: It happens when trying to put an
empty message to the queue in the server.

• EXCEPTION_TYPE_QUEUE_NOT_FOUND: It happens when trying to delete a
queue, put or get messages from or to a queue, and the queue does not
exist.

• EXCEPTION_TYPE_QUEUE_FULL: It happens when trying to put a message
into a full queue.

• EXCEPTION_TYPE_QUEUE_EMPTY: It happens when trying to get a
message from an empty queue.

• EXCEPTION_TYPE_QUEUE_DUPLICATION: It happens when trying to create
a queue which is already created.

• EXCEPTION_TYPE_UNKNOWN: For all other unknown exceptions.

• Two clients MessageGetClient and MessagePutClient are to be implemented.
Similar to the clients in Ex10, these two clients are to get/put messages from/to
the server.
- MessageGetClient generates a GetRequestMessage with the name of the queue

from which the data message is to be retrieved, and sends it to the server.
Then it gets the ResultMessage in which the content of the data message is
stored. The client retrieves messages periodically (1 message per 2 second);
In case the specified queue cannot be found or the queue is empty, the client
will wait and retry.

- MessagePutClient generates a PutRequestMessage with the content of the data
message and the name of the queue. The client generates messages
periodically (1 message per second). In case the queue is full, the client will
wait and retry.

• For this exercise, the program should be single threaded.

