Eidgentssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

SS 2005 Prof. Gustavo Alonso / Jianbo Xue

Vernetzte Systeme
Exercise 12

Ausgabe: 17. Juni 2005
Abgabe: 24. Juni 2005

1. Task: Implementation of M essage Passing

Based on the implementation of persist messageegsewer and clients done in
Exercise 10, this exercise is to usea messagapgasechanism to generate remote
function operations instead of using pure RPC/RMthanism.

Server

Client 1

Request
Processor

retrieveResult()

l ™ Client2
Data Queue 1 M je

Queue Queue
Manager Manager

Queue 1

Queue 2

Queue N

@ Op Queue

Persistent Storage

Figure 1: Message Server

* The servepat aMessagePool Server implements two remote methods defined in

the interface clagsat aMessagePool :
package server;

i nport java.rm . Renote;
i mport java.rm . RenoteException;

i nport server.nessagi ng. AckMessage;

i nport server.nessagi ng. Request Message;
i mport server.nessagi ng. Resul t Message;

public interface DataMessagePool extends Renote{
Renot eExcept i on;

Renot eExcept i on;

}

publ i ¢ AckMessage recei veRequest (Request Message nsg) throws

publ i c Resul t Message retrieveResul t (AckMessage nsg) throws

List 1. Interfaceper si st MessagePool

The client sends a request by callirgei veRequest () to instruct the server
to perform certain operations. Once the requesprigessed, the server
generates arequest Message containing the output and the result of the
operation, and puts it into a specifesul t MessageQueue. The server then
replies the client with amckMessage which contains the information about the
Resul t MessageQueue Where theresul t Message IS stored and the identifier of
the message. Finally, the client calletrieveResult to retrieve the
Resul t Message from the server.

The server contains two QueueManagei:si st Dat aMessageQueueManager
and Resul t MessageQueueManager . Persi st Dat aMessageQueueManager and its
structure are the same as those in Ex&0ul t MessageQueueManager has
multiple Resul t MessageQueue: one special opQueue to Sta&sul t Message
related to the queue management; and the same nunabe
Resul t MessageQueue which matches one-by-one to the
Per si st Dat aMessageQueue managed by theer si st Dat aMessageQueueManager .

recei veRequest () method accepts 8equest Message from the client. The
Request Message requests one of the 4 operatiorgafeQueue, deleteQueue,
putMessage, getMessage) Which the server supports.

* createQueue, deleteQueue: the server creates/deletes a queue according to
its name. Theresul t Message generated for the operation is stored in
the speciakesul t MessageQueue — OpQueue.

* putMessage, getMessage:. the server puts/gets a message to/from a
specific Per si st Dat aMessageQueue. The Resul t Message generated for
the operation is stored in tResul t MessageQueue corresponding to the
Per si st Dat aMessageQueue involved in the operation.

The server creates abkMessage Which contains the ID of theesul t Message
and the name of theesul t MessageQueue Where the message is stored, and
return theackMessage to the client.

retrieveResul t () method accepts asekmessage from the client. According
to the content of theckMessage, the server retrieves timesul t Message from
the correspondingesul t MessageQueue, and returns it to the client.

» There are three types of messages exchanged betveesarver and the clients.

Request Message SUPPOItS 4 typesget Request , put Request ,

cr eat eQueueRequest anddel et eQueueRequest , which match to the 4
operations the server supports.

AckMessage contains 2 fieldsstring queueNane andint msgNunber .

Resul t Message contains information about the result and outpuhef
operation. If the operation fails, aper ati onExcepti on (an inner class of
Resul t Message) IS attached to thResul t Message. Theper at i onExcept i on
shows the exception or error happened during tleeadipn. If the operation
succeeds, noper at i onExcept i on IS attached.

Oper at i onExcept i on IS usedto replace th@&enot eExcept i on which is directly
attached to the RMI method call. It has 5 types:

* EXCEPTI ON_TYPE_MESSAGE_NULL: It happens when trying to put an
empty message to the queue in the server.

* EXCEPTI ON_TYPE_QUEUE_NOT_FOUND: It happens when trying to delete a
queue, put or get messages from or to a queugharglieue does not
exist.

* EXCEPTI ON_TYPE_QUEUE_FULL: It happens when trying to put a message
into a full queue.

* EXCEPTI ON_TYPE_QUEUE_EMPTY: It happens when trying to get a
message from an empty queue.

* EXCEPTI ON_TYPE_QUEUE_DUPLI CATI ON: It happens when trying to create
a queue which is already created.

e EXCEPTI ON_TYPE_UNKNOWN: For all other unknown exceptions.

* Two clientsvessageGet d i ent andmessagePut O i ent are to be implemented.
Similar to the clients in Ex10, these two clients & get/put messages from/to
the server.

MessageGet O i ent generates et Request Message With the name of the queue
from which the data message is to be retrieved, samdis it to the server.
Then it gets theresul t Message in which the content of the data message is
stored. The client retrieves messages periodi¢allmessage per 2 second);
In case the specified queue cannot be found ogtleee is empty, the client
will wait and retry.

MessagePut d i ent generates But Request Message With the content of the data
message and the name of the queue. The client ajeeemessages
periodically (1 message per second). In case teedjis full, the client will
wait and retry.

* For this exercise, the program should be singlesithed.

