Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
SS 2006

Principles of Distributed Computing Exercise 5

1 Pancake Networks

In the lecture, you have encountered several different graphs as underlying network structures (Chapter 5). Here, we will look at another prominent example, the Pancake graph P_{n}.

Define P_{n} as follows: the vertex set is

$$
\begin{equation*}
V\left(P_{n}\right)=\left\{v_{1} v_{2} \ldots v_{n} \mid v_{i} \in[n] \text { and } v_{i} \neq v_{j} \forall i \neq j\right\} \tag{1}
\end{equation*}
$$

where we use $[n]=\{1,2, \ldots, n\}$. In other words, $V\left(P_{n}\right)=S_{n}$, the group of all permutations on n elements. There exists an edge of dimension i for $2 \leq i \leq n$ when

$$
\begin{align*}
& e_{i}=\left(u_{1} u_{2} \ldots u_{i} \ldots u_{n}, v_{1} v_{2} \ldots v_{i} \ldots v_{n}\right) \in E\left(P_{n}\right) \Longleftrightarrow \\
& v_{j}=u_{i-j+1} \text { for } 1 \leq j \leq i \text { and } v_{j}=u_{j} \text { for } i<j \leq n \tag{2}
\end{align*}
$$

or, we can say that an edge e_{i} represents a prefix reversal

$$
\begin{equation*}
v_{1} v_{2} \ldots v_{i} v_{i+1} \ldots v_{n} \longleftrightarrow v_{i} \ldots v_{2} v_{1} v_{i+1} \ldots v_{n} . \tag{3}
\end{equation*}
$$

For the following questions, where appropriate, give your answers in terms of $N:=\left|V\left(P_{n}\right)\right|$ (approximately), the number of vertices, as well as n.
a) Draw (nicely!) P_{n} for $n=2,3,4$. Try to describe a pattern for drawing P_{n} for any n.
b) What is the degree of each vertex in P_{n} ?
c) Can you give bounds on the diameter $D\left(P_{n}\right)$ of the pancake network?
d) (optional) Show that P_{n} is Hamiltonian for $n \geq 3$.

The pancake graph has recently been proposed for P2P networks, owing its usefulness to the above and other properties.

