

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SS 2006

Prof. R. Wattenhofer / Prof. P. Widmayer / T. Locher / R. Flury

Principles of Distributed Computing Exercise 9

1 Segmented Prefix Sums

We are given a sequence $A = (a_1, a_2, \ldots, a_n)$ of elements from a set S with an associative operation *, and a Boolean array B of length n such that $b_1 = b_n = 1$. For each $i_1 < i_2$ such that $b_{i_1} = b_{i_2} = 1$ and $b_j = 0$ for all $i_1 < j < i_2$, we wish to compute the prefix sums of the subarray $(a_{i_1+1}, \ldots, a_{i_2})$ of A. Develop an $O(\log n)$ time algorithm to compute all the corresponding prefix sums. Your algorithm should use O(n) operations and should run on the EREW PRAM. The results are written into an array r (see Figure 1 for a numeric example).

Figure 1: The prefix sums are written into the array r. There is a 0 at a given index in r, if the corresponding entry of b is also 0. The last element of r is always 0, as there are no subsequent elements in b.

2 Prefix and Suffix Minima

Let $A = (a_1, a_2, \ldots, a_n)$ be an array of elements drawn from a linearly ordered set. The *suf-fix minima problem* is to compute for each *i*, where $1 \le i \le n$, the minimum element among $\{a_i, a_{i+1}, \ldots, a_n\}$. We can, in a similar fashion, define the *prefix minima*. Develop an $O(\log n)$ time algorithm to compute the prefix and the suffix minima of A using a total of O(n) operations. Your algorithm should run on the EREW PRAM.

