Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Principles of Distributed Computing Exercise 9

1 Segmented Prefix Sums

We are given a sequence $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of elements from a set S with an associative operation *, and a Boolean array B of length n such that $b_{1}=b_{n}=1$. For each $i_{1}<i_{2}$ such that $b_{i_{1}}=b_{i_{2}}=1$ and $b_{j}=0$ for all $i_{1}<j<i_{2}$, we wish to compute the prefix sums of the subarray ($a_{i_{1}+1}, \ldots, a_{i_{2}}$) of A. Develop an $O(\log n)$ time algorithm to compute all the corresponding prefix sums. Your algorithm should use $O(n)$ operations and should run on the EREW PRAM.
The results are written into an array r (see Figure 1 for a numeric example).

Figure 1: The prefix sums are written into the array r. There is a 0 at a given index in r, if the corresponding entry of b is also 0 . The last element of r is always 0 , as there are no subsequent elements in b.

2 Prefix and Suffix Minima

Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be an array of elements drawn from a linearly ordered set. The suffix minima problem is to compute for each i, where $1 \leq i \leq n$, the minimum element among $\left\{a_{i}, a_{i+1}, \ldots, a_{n}\right\}$. We can, in a similar fashion, define the prefix minima. Develop an $O(\log n)$ time algorithm to compute the prefix and the suffix minima of A using a total of $O(n)$ operations. Your algorithm should run on the EREW PRAM.

