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INTRODUCTION

Parallel computation offers the promise of great improvements in the
solution of problems that, if we were restricted to sequential computation,
would take so much time that solution would be impractical.

There is a drawback to the use of parallel computers, however, and that
is that they seem to be harder to program. For this reason, parallel
algorithms in practice are often restricted to simple problems such as
matrix multiplication. Certainly this is useful, and in fact we shall see later
some non-obvious uses of matrix manipulation; but many of the large
problems requiring solution are more complex. In particular, an instance
of a problem may be structured as an arbitrary graph or tree, rather than
in the regular order of a matrix.

In this paper we describe a number of algorithmic techniques developed
for solving such combinatorial problems. The intent of the paper is to
show how the algorithmic tools we present can be used as building blocks
for higher-level algorithms, and to present pointers to the literature for
the reader to look up the specifics of these algorithms. We make no claim
to completeness; a number of techniques have been omitted for brevity or
because their chief application is not combinatorial in nature. In particular
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234 EPPSTEIN & GALIL

we give very little attention to parallel sorting, although sorting is used as
a subroutine in a number of algorithms we describe. We also only describe
algorithms, and not lower bounds, for solving problems in parallel.

The model of parallelism used in this paper is that of the PRAM, or
shared memory machine. This model is commonly used by theoretical
computer scientists but less often by builders of actual parallel machines;
nevertheless it is hoped that the techniques described here will be useful
not only on the shared memory machines that have been built, but also
on other types of parallel computers, either through simulations of the
shared memory model on those computers (Mehlhorn & Vishkin 1984;
Vishkin 1984a; Karlin & Upfal 1986; Ranade 1987), or through analogues
of these techniques for different models of parallel computation (e.g. Hillis
& Steele 1986).

All logarithms in this paper should be assumed to be base 2 unless
another base is explicitly stated.

1. THE MODEL OF PARALLELISM

The model of parallel computation we for the most part use in this paper
is the shared memory parallel random access machine, the PRAM. In this
model, one is given an arbitrarily large collection of identical processors
and a separate collection of memory cells; any processor can access any
memory cell in unit time. The processors are assumed to know the size of
their input, but the program controlling the machine is the same for all
sizes of input.

There are both theoretical and practical reasons for using this model.
The theoretical motivation is based on another model, that of the circuit.

An algorithm in this model consists of a family of Boolean circuits, one
for each size of a problem instance. To correspond with the PRAM
requirement of having one program for all input sizes, the circuit family
is usually required to satisfy a uniformity condition (Ruzzo 1981). Such 
condition states that there must be a program meeting certain conditions
(for instance taking polynomial time, or running in logarithmic space)
which, given as input a number, produces as output the circuit having that
number as its input size.

The output of the algorithm for a given instance of a problem consists
of the result of the circuit of the appropriate size, when the circuit’s
input lines are set to some binary representation of the instance. The two
measures of an algorithm’s complexity in this model are the circuit’s size
and depth, both as a function of input size.

Circuit models are good for producing theoretical lower bounds on the
complexity of a problem, because a gate in a Boolean circuit is much
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COMBINATORIAL COMPIYrATION 235

simpler than an entire processor in a parallel computer, and because most
other models of parallelism can be described in terms of circuits. But it is
difficult to construct algorithms in the circuit model, again because of the
simplicity of the circuits.

It turns out that any uniform circuit family can be described as a PRAM
algorithm, by simulating each gate of the circuits with a processor of the
PRAM. The number of processors used is proportional to the size of the
circuit, and the parallel time is proportional to the circuit’s depth. Similarly,
a PRAM algorithm may be simulated by a circuit family of size propor-
tional to the total number of PRAM operations, and of depth proportional
to the parallel time, with perhaps an extra logarithmic factor in the size
and depth due to the fact that PRAM operations are performed on num-
bers rather than single bits.

Therefore if a problem can be solved by a PRAM algorithm with a
number of processors polynomial in the size of the input, and a.time
polynomial in the logarithm of the input size, it can be solved by a
polynomial-sized circuit with polylogarithmic depth, and vice versa. The
class of problems solved in such bounds is called NC; the theoretical
importance of this class is due to the fact that it does not depend on
whether one is using the PRAM or the circuit as a model, or on details
such as whether the circuit is allowed unbounded fan-in or whether the
PRAM is allowed simultaneous access to the same memory cell by multiple
processors.

Practically, one is given a machine capable neither of configuring itself
into arbitrary circuits nor of accessing memory in unit time, and one would
like an algorithm that takes a total number of operations that is close to
the best possible sequential time, but with a nonconstant factor speedup
over that sequential time. It is in many cases possible to simulate a PRAM
algorithm on a real parallel machine, with only a logarithmic loss in time
for the simulation. In particular, efficient randomized simulations are
known for the butterfly network (Karlin & Upfal 1986; Ranade 1987) and
for a more specialized combination of sorting and merging networks
(Mehlhorn & Vishkin 1984; Vishkin 1984a). in both cases the inter-
connection network has bounded degree.

Many combinatorial problems can be solved on the PRAM using algo-
rithms that fulfill both the theoretical requirement of taking poly-
logarithmic time, and the practical requirement of taking a number of
operations within a polylogarithmic factor of the best known sequential
algorithm. For a number of other problems, the best known NC algorithm
takes a number of processors that is a small polynomial of the input size,
and so for small problem instances the parallel solution may still be
practical. In this paper we restrict our attention to NC algorithms, but we
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236 EPPSTEIN & GALIL

attempt to keep the number of processors small enough that the algorithms
remain useful in practice.

1.1 Details of the PRAM Model
We assume that each processor of the PRAM is arbitrarily assigned a
unique identifier, which can fit in a single memory cell; we also assume
that memory addresses can fit in memory cells. Each processor can access
any memory cell in unit time. In some cases we add the further restriction
that a memory cell can contain only a number of bits of information
proportional to the logarithm of the size of the input (note that there must
be at least that many bits to meet our earlier restriction that addresses fit
in a cell). Processors are allowed to perform in constant time any other
operation that a typical sequential processor could do; this usually means
processors are restricted to arithmetic and bit vector operations.

The input to a PRAM algorithm is given in a predetermined fashion in
the memory cells of the processor. We assume that the size of a given input
instance (which may be represented by more than one parameter; e.g. the
numbers of vertices and edges in a graph) is known. The number of
processors used for a given computation may vary depending on the size
of the instance, but may not change during the computation, nor may it
in any other way depend on the actual contents of the problem instance.

The efficiency of a PRAM algorithm is measured by two criteria, taken
as functions of the instance size: the number of processors used to perform
the computation, and the amount of time taken by that number of pro-
cessors for the computation. The latter criterion is usually taken to be the
worst case over all instances of a given size. Another criterion, the total
number of operations, is then the product of the number of processors
with the total time taken; that is, we count a processor as performingan
operation even when it is idle. We later describe a way of performing a
parallel computation such that at most a fixed fraction of the time is spent
idle; this means that we could instead count non-idle operations only, and
take the number of processors to be the number of operations divided by
the time.

Since a parallel algorithm can easily be simulated on a sequential com-
puter in time proportional to the number of parallel operations, it is clear
that conversely the number of operations of a parallel algorithm must be
at least proportional to the best known sequential algorithm. A parallel
algorithm that meets this bound is called optimal. Optimality depends on
the specifics of the model we are using, because as we shall see, simulation
of an algorithm designed for one model on a processor of a different model
may lose a polylogarithmic factor in the number of operations. Many of
the algorithms we consider are in fact optimal for some model.
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COMBINATORIAL COMPUTATION 237

There is an important question we have not yet addressed, which is what
happens when more than one processor tries to access the same memory
cell at a given time. Various possible answers have been chosen; it will be
convenient to pick different answers for different algorithms. This does
not mean that the algorithms will only work for a specific choice of
concurrent memory access behavior, because as we shall see, there are a
number of simulation results that let algorithms written for one choice
work with machines that use a different choice.

There are three main choices for processor action on concurrent memory
access. The first choice is simply to disallow such access altogether, and
leave undefined the behavior of a program that attempts to perform such
access. Such a machine is called exclusive read exclusive write, or EREW
for short. This is the weakest of the various types of PRAM, and so an
algorithm that works on this model with a given time and number of
processors is preferable to one that achieves the same time and processors
on a stronger model.

The second type of PRAM, known as a concurrent read exclusive write
machine, or CREW for short, allows several processors to read the same
cell at once, but disallows multiple concurrent writes to a cell. Again,
the behavior of a program that violates these constraints is undefined.
For a long time this seems to have been the only type of PRAM used
(Ku~era 1982); it appeared in the literature as early as 1976 (Csanky
1976; Hirschberg 1976; Fortune & Wyllie 1978).

In the third and strongest version of the PRAM, the CRCW, both
concurrent reads and concurrent writes are allowed. We still need to define
what happens when several processors write to a single cell with different
data values. A number of different possibilities have appeared in the
literature under various names:

1. Weak CRCW. In this model concurrent writes are allowed only if all
processors performing a concurrent write are writing the value zero.
Sometimes the further restriction is added that they be writing to one
of a set of special cells that can only contain zero or one; but this
restricted weak CRCW is equivalent to the version described here, as
we show in the simulations below. This model was introduced by Kurera
(1982), who showed that certain problems could be solved more quickly
on it than on the CREW which had typically been used before then,
and that (see below) problems that can be solved in a given time on any
version of the CRCW can be solved within a constant factor of that
time on this version (but perhaps with many more processors).

2. Common-mode CRCW. In this model there are no restrictions on the
values written in a concurrent write; however, all processors writing at
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238 EPPSTEIN & GALIL

a given time to the same cell must write the same value. Therefore there

is no question of which value is actually written to the cell.
3. Arbitrary-winner CRCW. Processors may write different values to the

same cell, and one of the values written is the value the cell ends up
containing. But which processor wrote the winning value may be chosen
arbitrarily; in particular the result may be different if the same step is

executed another time. This version of the CRCW is the one most
commonly used by workers in the area of parallel algorithms.

4. Priority CRCW. The result written in a concurrent write is the value
from the writer with the largest processor identifier. Recall that these
identifiers may be chosen arbitrarily; thus like the arbitrary-winner
CRCW it is not clear a priori which processor will be the one to get its
value chosen as the result; however, unlike the arbitrary-winner CRCW
a repetition of the same concurrent write will give the same result.

5. Strong CRCW. This model is less often seen than the previous ones,
but it has appeared in the literature (Galil 1986a; Cole & Vishkin
1986c). In it, the value written in any concurrent write is the largest (or
equivalently smallest) of any of the values the processors are attempting
to write.

Note that the strong CRCW model can simulate each step of a priority
CRCW in constant time by, in a concurrent write, first writing the identi-
fiers of the processors attempting the write, and then the winner writing
the original value it wanted written. Thus it is at least as strong as the
priority CRCW. Similarly we can see that each of the models we have
given is at least as strong as the previous ones, so the various models form
a hierarchy. Grolmusz & Ragde (1987) have recently described some other
CRCW models that are intermediate in power among the ones we have
listed but do not fall into a hierarchy with them.

Vishkin (1984b) has described an even stronger version of the CRCW
PRAM. In this model, which has been partially implemented as the NYU
Ultracomputer (Gottlieb et al 1983), there is a further kind of concurrent
write available. If one processor performs this write to a cell, the value it
was writing is added to the value at the cell, and the result is stored back
into the cell. The old cell value, before the addition, is returned to the
writing processor. If several processors write to the same cell, the effect is
as if they had performed the above operation one at a time, in some
arbitrary order. One could further generalize this to any (associative)
binary operation, rather than just addition. Vishkin showed that in certain
simulations of one parallel model by another, this very strong write opera-
tion can also be simulated with no further loss of time or efficiency.

A final distinction to be made among PRAM models is whether they
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COMBINATORIAL COMPUTATION 239

are randomized or deterministic. If we allow randomness in parallel com-
putation, it is performed as follows. Each processor is given its own
random number generator, with which it can generate in constant time a
number drawn from a uniform distribution over the numbers fitting in a
memory cell. These numbers are private; if a processor wants to share its
random number with another processor it must write it to a memory cell.
The distribution of numbers drawn at any one processor is usually taken
to be independent of that drawn at all other processors, although some
algorithms have weaker independence requirements.

When a parallel algorithm uses random numbers, we still require that
the number of processors be a fixed function of the input size; that is, only
the run time, and not the number of processors, may vary randomly.
The algorithm may always terminate with the correct answer (such an
algorithm is commonly known as a Las Vegas algorithm) or it may get
the correct answer with high probability (a Monte Carlo algorithm). The
algorithm must be able to detect when it has terminated. The time we
measure for a randomized parallel algorithm is then the worst case
expected time of termination over all instances of a given size.

Random numbers are used in a number of parallel algorithms for which
there are efficient deterministic sequential solutions. One important use of
them is for what is known as symmetry breaking; for instance, one may
have a graph in which many nodes have similar local neighborhoods, but
in which after the algorithm terminates different nodes must have different
data values. One such problem is that of coloring the graph. If we used a
deterministic algorithm, the nodes must look far away from themselves to
see enough to differentiate them from their neighbors, but in a parallel
algorithm they might merely flip coins and expect with high probability to
get a different result. For certain problems these coin flips can be replaced
by a use of the processor identifiers known as deterministic coin tossing,
introduced by Cole & Vishkin (1986a,b); this technique is discussed below.

There are several ways randomness can improve the parallel time and
processor bounds of an algorithm. First, a randomized parallel algorithm
may solve in polylogarithmic expected time a problem for which there is
no known NC algorithm. We call the class of problems solved by such
algorithms RNC. Such is the case for matching (Karp et al 1985a; Galil
& Pan 1985a; Mulmuley et al 1987) and for the construction of maximal
paths (Anderson 1985) and of depth-first search trees (Aggarwal & Ander-
son 1987). Karp et al (1985b) describe a general model of parallel com-
putation in the presence of oracles; they give a problem which they prove
no deterministic PRAM with polynomial processors can solve in poly-
logarithmic parallel time, but which can be solved quickly and efficiently
in parallel using a probabilistic algorithm.
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240 EPPSTEIN & GALIL

Second, a randomized parallel algorithm may perform a task that can
bc performed detcrministically in parallel, but the parallel algorithm may
bc more efficient than the best known deterministic algorithm, may take
less time than it, or may run on a weaker model of parallelism. Even if the
randomized algorithm takes the same asymptotic bounds, it may be
simpler and therefore more practical than its deterministic counterpart.
Examples of improved efficiency in randomized parallel computation arc
the various algorithms known for finding maximal independent sets. The
randomized algorithm of Luby (1985) uses less operations than the deter-
ministic algorithm of the same paper, and runs more quickly (with the
same number of processors) than the newer deterministic algorithm, of
Goldberg & Spencer (1987).

Other examples of randomized parallel algorithms that are more efficient
than their deterministic counterparts include those for finding connected
components (Gazit 1986) and for sorting integers (Reif 1985). Another
example in which the randomized parallel time is faster than the best
known deterministic time for a given number of processors (in fact the
time is better than the deterministic lower bound) is the constant time
selection algorithm given by Reischuk (1981); note, however, that both
Reischuk’s algorithm and the lower bounds given are for the comparison
tree model of parallelism, and therefore do not translate directly to the
PRAM.

Finally, a randomized algorithm may use the same asymptotic time and
number of processors as a deterministic algorithm, but may be much
simpler. Such an algorithm would typically be more useful in a practical
implementation, because of the ease of writing the program for it and also
because these simpler programs tend to run faster (by a constant factor,
but sometimes a very large constant factor) than their deterministic
counterparts. Also the randomized algorithms are often discovered some
time earlier than an equally efficient deterministic solution. One such
instance is the randomized EREW list ranking algorithm of Vishkin
(1984c), which was discovered some time before the best deterministic
algorithms (Cole & Vishkin 1986c; Anderson & Miller 1988b). We give 
more complete history of ranking in the next section. Another example is
the randomized tree contraction algorithm of Miller & Reif (1985), which
was later made deterministic by Cole & Vishkin (1987).

1.2 Simulations Among PRAM Models

We have looked at a number of different ways that the PRAM model of
parallel computation may have its details of concurrent memory access,
and of randomness or determinism, filled out. All of the different types of
deterministic PRAM we have seen have been used in the development of
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parahel algorithms to solve various problems, and the same is true for
many probabilistic PRAM models. An algorithm designed for a weak
model can be used in a stronger model within the same processor and time
bounds as they would take in the weaker model. But we would like to use
any PRAM algorithms on any model, and so it is important to be able to
simulate efficiently stronger models by weaker ones.

We give a number of these simulation results between different pairs of
models, but before we do, let us first see a result in which the model being
simulated and the model doing the simulation are the same. That is, if we
have a parallel algorithm running on a certain PRAM model with a given
number of processors and within a given amount of time, we would like
to be able to run it with fewer processors without more than a proportional
loss of time.

Theorem 1 (Brent 1974). If a parallel computation can be performed in
time t, using q operations on any number of PRAM processors (of a given
fixed type), then it can be performed in time t+ ( q- t ) /p using p processors
(of the same type).

Proof." Suppose that each time step i, taking i from 1 to t, the original
computation performs qi operations, so that q = ~EI= i qi. Then with p
processors, we can simulate step i in time [qi/p] = [(qi+P-1)/p] _< (q~+
p- 1)/p, by breaking the operations into blocks of size p and perform-
ing one block at a time, with one processor per operation within each
block. Summing gives total time Y’~-I [q~/P] <- Y~= I (qi+P-- 1)/p = 
(q--t)/p. Iii

Corollary. A parallel computation that can be performed in time t, using
p processors, can be performed in any amount of time greater than t and
less than pt using 0 ( pt ) operations.

Note that the proof of the theorem assumes we know how to split the
operations into blocks of a given size, and within each block assign one
processor to each operation of the block. In most uses we will make of
this theorem this scheduling problem will be easy, although this is by no
means true in general. In particular the corollary follows immediately
without any assumptions, because the operations we are counting there
are simply the actions of the original processors.

Now let us look at simulations between different types of PRAM. With
all of these simulation results, we have that, if the original algorithm took
polylog time with polynomial processors, the same will be true of the
simulation of the algorithm.

The next theorem is the most important: it simulates the strongest of
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our models, the strong CRCW, on the weakest, the EREW. Therefore it
can also be used to simulate an algorithm designed for any model by a
parallel computer of any weaker model.

Theorem 2 (Nassimi & Sahni 1981; Vishkin 1983). A parallel computation
that can be performed in time t, using p strong CRCW processors, can also
be performed in time t log p, using p EREW processors.

Proof: Each step of the strong CRCW PRAM is simulated by log p
steps of the EREW. We assume that processor identifiers on the EREW
run from 1 to p. If the processors are reading from memory, each processor
first writes the pair consisting of its own identifier and the address it wants
to read from. If the processors are writing, they instead write triples of
processor identifiers, addresses, and the values to be written. In either case
the pairs or triples are written in constant time to an auxiliary array, with
the position in the array being the identifier of the processor doing the
writing. Because of uniqueness of identifiers, this causes no write conflict.

Next the pairs or triples are sorted by the addresses in them. In a write
cycle, ties are broken by sorting according to the value being written. This
sorting stage can be performed in time O(log p) with O(p) processors
(Ajtai et a11983; Cole 1986). We now assign one processor for each element
of the sorted list.

If the processors were writing, then each processor reads first the triple
it is assigned to, and then the next position in the list. If a processor is
assigned the final triple in the list, or if the address in the following triple
differs from the one in the processor’s own triple, the processor writes the
value from its triple to the address from its triple. The sorted order of the
list guarantees that only the processor with the highest value for a given
address will attempt to write to that address.

If the processors were reading from memory, the values they want can
be distributed as follows. Construct a list, where the values at each point
of the list are the addresses and processor identifiers in sorted order as
above, together with a value for each address. For each point in the list,
the new value is computed as follows. If the point is the start of the list,
or if the address there differs from that at the previous point, the processor
for that point reads the value from memory. Otherwise it is taken to be
the least value that will fit in a memory cell.

Once the list has been constructed, the processors compute for each
prefix of the list the maximum pair of address and value that can be found
in that prefix; pairs are ordered lexicographically, address first and then
the value. This prefix maximum operation can be performed using the
prefix computation algorithm described in the next section. The maximum
up to a given element in the list will have the same address as that element,
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because the addresses were already sorted, but the value part of the
maximum will be the actual data value at that address. Now the processor
for each triple of value, address, and processor identifier writes the value
of the triple to an auxiliary array indexed by the processor identifier.
Finally, the processors read the value they wanted from this array using
their own identifier as index.

It is not difficult to verify that the above actions simulate exactly those
performed by the original strong CRCW. The initial writing of addresses
and reading of values, and the final writing of values, can be performed in
constant time with O(p) processors; by the corollary to Theorem 1 they
could also be performed in time O(log p) using O(p/log p) processors.
The two prefix computations each take time O(log p) using O(p/log 
processors, as we shall see later. The initial sorting can be performed in
the same time but with O(p) pro.cessors. This gives the total bounds of the
statement of the theorem. ̄

The simulation above Was given by Nassimi & Sahni (1981) and Vishkin
(1983) in terms of bitonic sort, which was then the best known parallel
sorting algorithm. Using more recently discovered sorting algorithms gives
the bounds above. The simulation can be made to apply to Vishkin’s fetch-
and-add CRCW model, by using a somewhat more complicated prefix
computation. Again by using a more complicated prefix computation, we
need not sort the addresses, but may instead choose any order for the list
of addresses and values in which all members of the list having the same
address are adjacent in the list. If such an ordering can be found more
efficiently than by sorting, or if we could sort addresses more efficiently,
we could perform the total simulation using only O(p/log p) processors,
which is the best we could hope for. In general it is not known how to do
this, but for many specific algorithms the structure of concurrent reads
and writes is simple enough that this more efficient simulation can be
performed. Also, for probabilistic computation we have the following:

Corollary. A parallel computation that can be performed in time t, with
p probabilistic strong CRCW processors, and using the assumption that
addresses can be written in at most 0 (log p) bits, can also be performed 
expected time 0 (t log p), using 0 (p/Iog p) probabilistic arbitrary-winner
CRCW processors.

Proof: Reif (1985) has shown that n numbers, each represented by 
most O(log n) bits, can be sorted in expected time O(log n) using O(n/log n)
probabilistic arbitrary-winner CRCW processors. Since it is easy to test
that the numbers are sorted, the algorithm is Las Vegas (always correct).
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The result follows by using this result in place of the deterministic sort in
the proof of the theorem. ¯

The corollary above gives one example where a weak model of con-
current write can perform a better simulation of a strong CRCW than the
best known EREW simulation. As another example, we give the following
theorem, which applies when we want to know the minimum time for
performing a parallel computation with less concern for the total number
of processors used.

Theorem 3 (Ku~era 1982)..4 parallel computation that can be performed
in time t, usiny p strony CRCW processors, can also be performed in the
same asymptotic time usinl7 0 (p~) weak CRCW processors.

Proof: For each pair of original processors p,. and pj we add an auxiliary
processor q,~. When Pi wants to write a value o; to address ai, it first writes
a~ and v~ to locations in auxiliary memory where all processors q0 read
them, and sets a flag f in auxiliary memory to one. Each pair of processors
q~ and qji then compare their addresses and data. Ifai ~ aj, they do nothing.
Otherwise if v~ < vj, or if v~ = vj and i < j, processor q/j writes a zero tof.
Finally all original processors for which the flag is still one perform the
write. It can be seen that the only concurrent writes are those zeroing flags,
that of all processors wanting to write to a given address exactly one will
be left with a nonzero flag, and that that one will have the largest data
value of those processors wanting to write there. ¯

As we discussed earher, the result of Theorem 2 can be improved in the
case that we know enough of the pattern of concurrent memory access to
be able to group accesses to the same cell into blocks without the use of a
general-purpose comparison sort. A similar improvement can be made in
Theorem 3, again in the case that the pattern of concurrency is known.
We will only describe algorithms for finding the maximum among n values;
many uses of strong concurrent write in parallel algorithms reduce to this
case.

Tl~eorem 4 (Fich et al 1983; Shiloach & Vishkin 1981). The maximum of
n values can be found in the weak CRCW model (a) in time t = 0(lo#
lO#k n) usin# O ( kn/t ) processors; ( b ) in constant time usiny TM) pro-
cessors; and (c) in constant time usin# O(n) processors, this last case under
the assumption that the values can be represented usin# at most 0 (loy n)
bits.

Proof: Cases (a) and (b) were proved by Shiloach & Vishkin (1981); 
the proof here we use a technique known as accelerated cascades, described
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by Cole & Vishkin (1986a), in which an instance of a problem is reduced
in a sequence of stages to smaller instances of the same type of problem.
The stages start out making small reductions, but as the problem instances
become smaller there are proportionally more processors available and
the reductions can become larger and larger.

The reductions use a subroutine we will call reduce(r). It reduces the
problem from one of taking the maximum of n values to one of n/r values,
using rn operations: The values are split into n/r blocks of size r. Then for
each block, using r2 processors per block, we find the maximum in constant
time as in the proof of Theorem 3. The maximum of all n values can then
be found as the maximum of the n/r block maxima.

First we prove case (a). For notational convenience, let tn = n/log log~
n. The algorithm for case (a) first performs log log log~ n iterations 
reduce(2), reducing the total number of values left to m in time O(log log
IOgk n). Because each iteration uses half as many operations as the previous
one, and using Theorem 1, the total number of operations is O(n). We
now proceed in log Iogk rn stages, each taking constant time. Prior to stage
i there will be talk2’ ’- ~ values left to take the maximum of; at stage i we
call reduce(k2’ ~), leaving m/k2’- ~ values. The number of processors used
by each call to reduce is O(k2’ "talk~’-’ ~) = O(krn), so the total number
of processors used by the algorithm is again O(km).

Case (b) is a special case of case (a), with k ".

The proof of case (c) was given by Galil (1986a), who attributed it 
Fich et al (1983). We split each value into blocks of log n]2 bits. Since each
value can be represented using at most O(log n) bits per value, there is 
constant number of blocks per value. We proceed one block at a time,
starting with the high-order bits first. Within a block we use weak con-
current write to find which of the x//n settings of the block’s bits are used
by the values we have left. Then we take the maximum of these x//~ values
in constant time with O(n) processors, using Theorem 3, throw out all
values whose bits in that block do not match the maximum, and repeat
until we reached the last block. At this point we know the bits in each
block of the maximum value, and therefore we know the maximum value
itself. ¯

Valiant (1975) has given lower bounds showing that cases (a) and 
are the best possible for comparison algorithms. Case (c) improves these
bounds but only by splitting the values into bits, which causes it not to be
a comparison algorithm. Valiant also gave matching upper bounds using
a decision-tree model of parallelism; the algorithms of Shiloach & Vishkin
(1981) given in the proofs of cases (a) and (b) are essentially those 
Valiant translated to the PRAM model.
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2. PREFIX COMPUTATION AND RANKING

2.1 The Prefix Computation Algorithm

A prefix calculation takes as input a sequence of data values vt, v2 .....
for some associative binary operation o taking pairs of data values to
single values drawn from the same range. The binary operation need not
be commutative. The result of the computation is a sequence of prefix
sumsp~ = v~, p2 = v~ o v2, . . . ,Pn = v~ o v2 o.." o v,. There is a simple algo-
rithm for performing prefix computation on an EREW PRAM, discovered
by Ladner & Fischer (1980), which runs as follows.

1. For each input value v~, if i is even, calculate the values in a new array
x of temporary values as Xi] 2 = Oi_ 1 0 l)i.

2. Recursively calculate the prefix sums of the [n]2] data values from
into another new temporary array yi.

3. For each value v~, if/= 1 thenp~ = v;; if/is even thenp~ = Yi/2; or finally
if i is odd and greater than 1 then p~ = Y0- 1)/2 o v~.

Theorem 5 (Ladner & Fischer 1980). A prefix computation with n inputs
can be performed in O(log n) time using O(n/log n) EREW processors,
each capable of performing the binary operation of the prefix computation
in constant time.

Proof: Steps 1 and 3 take constant time with n processors. The recursion
in step 2 involves a problem instance half the size of the original one;
therefore the recursion bottoms out O(log n) levels deep, and the whole
computation takes time O(log n). At first it would seem that we need O(n)
processors to achieve this time, but in fact we only need O(n/log n). This
can be seen in the fact that the number of processors needed decreases by
a factor of two at each lex, el of the recursion, and therefore (using Theorem
1) there is a total of O(n) operations performed. ̄

In fact Ladner & Fischer (1980) express their result in terms of circuits,
rather than in the PRAM model, but the algorithm is essentially the same
in either model.

We should mention here that Reif (1983) has proved that certain prefix
computations can be performed in O(log log n) expected time, again with
O(n) total operations. This result is deterministic, but for the average case
in which the inputs are drawn from a random distribution. The result uses
essentially the same algorithm as above, together with the observation that
it is likely to be necessary to look at only O(log n) values prior to a value
v~, rather than the entire sequence of values up to that point, in order to
determine the correct value of p,-. Obviously this observation does not hold
for arithmetic operations such as addition or maximum. But it does hold
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for others, and in particular it holds for the operation used by Ladner &
Fischer (1980) to construct circuits for bitwise binary addition.

We should also note that prefix maximum may be performed in O(log log
n) (worst case) time, using linear weak CRCW operations (Schieber 1987).
The algorithm is similar to that described in Theorem 4.

The prefix computation algorithm above only works when the input
values are listed in an array, because we need to be able to tell for each
value whether it is in an even or odd position in the list. We shall see later
in this section how to deal with input sequences represented as a linked
list; but there is another possible representation of’a list for which it is
possible to perform prefix computations. This is a representation as a
binary tree in which each path from the root to a leaf has length at most
O(log n), with the elements of the sequence stored at the leaves of the tree.
Then in step 1 we compute sums of pairs of leaves into their parent in the
tree, in step 2 we recursively compute the sums in the tree formed by
removing the leaves from the original tree, and in step 3 we bring the
results back down to the leaves. In step 3 we need some further information
that was more easily available in the array version, and that is the address
of the next leaf after each leaf in the tree; but that is easily calculated
recursively as part of step 2. The condition that the tree be balanced is
necessary for this version of prefix computation to take the same time as
the array version, O(log n). Note also that we must be able to perform
operations on one level of the tree at a time without having to pick out
the nodes at that level from all the other nodes in the tree.

2.2 Applications of Prefix Computation

As we have seen in Section 1, prefix computation can be used in the
simulation of one model of parallel computation by another. Another
simple application of prefix computation is in list manipulation (Schwartz
1980). Let us assume that we have a list of data values, represented as an
array with the contents of each array cell being the value at the cor-
responding position in the list. As mentioned above, we will see later hbw
to deal with a linked list representation. Suppose that certain members of
the list are marked, and others are unmarked; we want to extract a sublist
consisting only of the marked members.

This problem can be easily solved using prefix computation. With each
member of the list we associate an integer, initially one for the marked
members and zero for the unmarked ones. Then we perform a prefix
sum, using the usual arithmetic addition operation. The result we have
calculated is, for each marked member of the list, the position that member
has in the new sublist; then the marked members can simply copy them-
selves across to an array representing the sublist.
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If we wanted to represent the resulting sublist as a linked list (i.e. each
member of the sublist knows the name of the’next member of the sublist),
we could again do-it with prefix computation. In this case the data values
would be indices in the original list together with the mark or lack of a
mark. If the first index is marked and the second is not, we take as the
result of the binary operation the first index; otherwise we take the second
index. The prefix computation for this operation copies the index of a
marked list member all the way across a sequence of unmarked members
until the member just before the next marked member, which can then
read it from there in a single step.

As a less obvious example of prefix computation we will now describe
the paralld simulation of a finite state automaton. A typical use for such
simulation would be the lexical analysis step in a compiler (Aho & Ullman
1977); the state of the automaton after each character of the program text
determines where the edges of each token are and which kinds of token
those are the edges of.

To calculate the state of an automaton after it has processed each prefix
of a string of characters, first replace each input character by the transition
function from states to states of the automaton corresponding to that
character. Since the automaton is finite, all such transition functions can
b~ r~pr~sented in a constant amount of space. Now perform the prefix
sum over these transition functions, using the binary operation of function
composition. This will compute for each character position the function
corresponding to the action of the whole prefix substring from the start of
the string to that position. Finally for each resulting composite transition
function, compute the result of that function given as input the initial state
of the automaton. This will be the correct state of the automaton after it
has processed characters up through that position.

This use of prefix computation to simulate a finite automaton was given
in the original prefix computation paper of Ladner & Fischer 0980). This
automaton simulation was used in turn to define Boolean circuits of size
O(n) that can find the sum of two binary numbers, each n bits long, in
time O(log n). The more general prefix computation result s~ms to have
been new with that paper, but addition circuits with those bounds
had been known for some time (Ofman 1962; Krapchenko 1970). The
construction follows.

The output of an addition circuit at a given bit position is the sum taken
modulo 2 of the two input bits at that position with the carry bit from the
previous position. The carry is defined to be the majority of those three bits.
Thus one can detin¢ a four-state automaton, where the states correspond
to each combination of carry and output bits: The input to the auto-
maton at each bit position, starting from the low order bits, is the pair
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of input bits at that position. Then the new state can be calculated from
those two bits together with the carry portion of the old state.

One can construct a circuit to perform prefix computation analogously
to the EREW algorithm described above. Composition of the transition
functions of the binary addition automaton can easily be computed by
circuits of constant size, so this composition operation can be incorporated
in the prefix computation circuit. Finally, one needs a stage to translate
pairs of input bits to transition functions, and another to translate states
to the corresponding output bits. Putting all of this together we have a
linear-size circuit to perform binary addition in logarithmic time.

2.3 Rankin#
We have seen that prefix computation is useful in a great variety of
circumstances. But often we might want to perform a prefix computation
on a sequence of values represented as a linked list, and the techniques
described above are not adequate for the task. Here we describe techniques
for prefix computation on lists. In particular we study the problem of
ranking, which is a special case of prefix computation. Ranking can be
used in conjunction with the array prefix computation algorithm already
given to provide efficient algorithms for general prefix computation on
linked lists.

The rank of a member of a linked list is simply the number of its position
in the list--i.e. 1 for the first member, 2 for the next, and so on. The
ranking problem is, given a linked list, to calculate for each member of
the list its rank in the list. If we could perform prefix computation we
could perform ranking, by giving each member a number value initially 1,
and performing a prefix sum on those numbers. Conversely, if we could
rank we could perform prefix computation, by using the ranks to move the
data into an array and performing the array prefix computation algorithm
described above. Thus, as we have said, ranking is equivalent to prefix
computation.

One algorithm for ranking, or equivalently prefix computation, due to
Wyllie (1979), is as follows.

1. Give each member of the list a data value of 1.
2. For each list member other than the first, add the value of the previous

member in the list into the value at this list member.
3. Recursively call steps 2 and 3 on a new linked list formed by linking

each list member with the list members two steps away in the original
linked list.

This is just like the array prefix computation algorithm, except that we
don’t distinguish between even and odd members of the linked list. The
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recursive call in step 3 splits the list into two separate lists of half the
length, and this can only continue for O(log n) stages before all lists have
only one member; therefore the algorithm takes total time O(log n). But
because we don’t distinguish between even and odd, the size of the recursive
subinstances of the problem adds to the same size as the original instance,
so we need O(n) processors at each stage. Thus we have lost a factor of
O(Iog n) in efficiency over the array version of prefix computation.

Wyllie’s algorithm was improved by Vishkin (1984c), who gave a ran-
domized ranking algorithm for the EREW. This algorithm was later made
deterministic (Cole & Vishkin 1986a,b), made more efficient but at a cost
in total time (Kruskal et al 1985), and still later made faster with the same
asymptotic number of operations (Cole & Vishkin 1986c; Anderson 
Miller 1988b). Hillis & Steele (1986) showed how Wyllie’s ranking algo-
rithm may be used to perform prefix computations on the Connection
Machine, and listed a number of practical applications, including lexical
analysis in program compilation.

We now describe Vishkin’s randomized algorithm; this forms a basis
for our discussion of the later deterministic algorithms.

2.4 Randomized Ranking and Deterministic Coin Tossing

As we have noted, if our list were represented as a balanced binary tree
we could perform prefix computations, or equivalently ranking, as
efficiently as if it were an array. Therefore we might start looking for an
algorithm to turn the list into a tree. This can be done as follows:

1. For each element of the list, flip a random coin. Form set S as that of
all elements whose coin was 1 and whose predecessor’s coin was 0. S is
an independent set; that is, no member of S is adjacent in the list to
another member of S.

2. For each member of S, make a new tree node with both it and its
predecessor (which is not in S) as children.

3. For each nonmember of S that is not followed in the list by a member
of S, add a new tree node with that element as its only child.

4. Make a linked list in a separate array of the new tree nodes.
5. Recursively find a tree connecting the new list of tree nodes.

With high probability, the new list is 3/4 the size of the old one; therefore
the tree has logarithmic expected height. Further, this geometric reduction
between levels of the recursion ensures that the total number of operations
is linear in the size of the original input list. The steps requiring the most
time are 3 and 4, which can each be solved with a prefix sum taking O(log
n) time. There are O(log n) levels of recursion; therefore the algorithm 
a whole takes time O(log~ n), which is more than we would like.
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We can make one improvement fairly simply, and that is to only con-
struct tree levels until the size of the remaining linked list (which can be
calculated as part of the prefix sum for step 4) is O(n/log n). Each level
still takes time O(log n), but in this version there are only O(loglog 
levels of recursion. This constructs a forest of O(n/log n) trees; we can
perform prefix computation by using the tree algorithm within each tree,
and using Wyllie’s linked-list algorithm on the roots of the trees. The total
expected time is now O(log n loglog n), again using a linear number 
operations. The algorithm described above was first given by Vishkin
(1984c), who also gave a more complicated probablistic algorithm taking
time O(log n log* n) using the same asymptotic number of operations.

It turns out that, if we are willing to make the assumption that memory
addresses are represented using at most O(log n) bits, we can achieve the
same bounds as abov.e deterministically. We describe the O(log n log log
n) version, but similar techniques apply to the O(log n log* n) algorithm
mentioned above. I~stead of flipping coins we find a maximal independent
set in the linked list; this is an independent set such that each list element
is adjacent to some member of the set. Such a set must have at least n/3
elements, so if we use it as S in the algorithm above we will again get
the correct geometric reduction in list length at each level. A maximal
independent set can be found in time O(log n) using O(n) operations
(matching the bounds used in step 4 above, and thus retaining the same
total bounds for ranking) using the following algorithm.

1. Initialize the set S to the empty set.
2. Give each element i a different color st, such that adjacent members of

the list have different colors. Initially we pick color s~ to be i itself; this
gives us n colors ranging from 1 to n. Then in constant time we can
reduce the number of color classes to O(log n), by choosing a new color
st to be the position of the first bit at which s~ differs from s~ 1, together
with the value of that bit in s~.

3. Bucket sort the array containing the linked list, ordering the list mem-
bers by their color classes. This is performed using the following steps.
(a) Divide the list elements into groups of size log n. Allocate one
processor for each of the n/log n groups; sequentially within each group,
calculate for each color class s the number c~ of elements in the group
with color equal to s. Also count for each list element i the number Pi
of vertices before it in the same group and having the same color.
(b) Perform for each color class s a prefix sum algorithm on the
n/log n numbers cg~, into dg.s, the number of elements up through
that group having that color. Let ds be the total number of elements in
all groups having color s. (c) With a single processor, perform a prefix
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sum on the numbers ds to obtain ts, the total number of list elements
having colors less than or equal to s. Using binary trees, make n/log n
copies of each ts, one for each group. (d) Again allocate one processor
per group. For each element i in group g, with elements processed
sequentially within each group, calculate the position of i in the sorted
list as t~,_~+dg_l,~,+pi. This i~ the number of elements in the list
having a lower color, or having the same color but appearing earlier
in the unsorted array.

4. Divide the sorted list into blocks, with each block consisting of all
elements with a given color. Perform O(log n) stages, in each stage
processing a single color block. Within each block check in parallel for
each list element i whether either of its neighbors is in S already. If not,
add i to S.

Because adjacent elements have different colors, and because step 4 only
processes one color class with each parallel step, it never adds two adjacent
elements to S, and thus the result is an independent set. The set is maximal
because step 4 checks each element once, and only discards it if some
adjacent element is already in S. It can be seen that all steps can be
implemented in time O(log n) using O(n/log n) EREW processors; the
only point at which these bounds are not entirely clear is step 4, for which
we need to apply Theorem 1. Thus we can use this routine in place of the
coin tossing in our ranking algorithm, and rank a linked list in O(log 
log log n) time with linear deterministic EREW operations.

We should also note that, by repeatedly reducing the number of colors
as we did in step 2, we can find the independent set S in time O(log* n),
using a linear number of processors. For our purposes the algorithm above
is better, since it uses less total operations without slowing down the main
algorithm of which it is a subroutine.

The maximal independent set algorithm above, along with its appli-
cation to ranking, was discovered by Cole & Vishkin (1986a,b), who called
it deterministic coin tossing. A bucket sorting algorithm similar to the one
in step 3 was described by Reif (1985), who used it as part of his prob-
abilistic algorithm for bucket sorting numbers with larger keys.

2.5 Optimal Logarithmic Time Ranking

We described above an algorithm for parallel list ranking that runs in time
O(log n log log n) using O(n/log n log log n) EREW processors, for a linear
total number of operations; this algorithm is likely to be sufficient for all
practical purposes. But the extra factor of O(loglog n) in the time 
irritating to theoreticians, and so two of them, Cole & Vishkin (1986c),
have come up with an algorithm that runs in logarithmic time and linear
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EREW operations. As we have said, the previous algorithm is sufficient
in practice; further, the newer logarithmic time algorithm is not practical,
because the constants involved in the bound on its run time are quite large.
Nevertheless, we spend the rest of this section describing the new algorithm.

The general outline of the algorithm is as follows. We start by performing
a sequence of operations, each one removing an element from the list, that
reduces the problem to one of size O(n/log n); then we perform Wyllie’s
list ranking algorithm on the reduced linked list; finally we undo the
operations we started out with to obtain the final ranking.

We assume that the list we are processing is doubly linked, so each
element can find its successor and predecessor in constant time. Each
element i of the list will start out with a number r[i] = 1, and for most of

¯ the algorithm the prefix sum of the r[i] for the elements remaining in the
list will give the ranks of those elements. At the last stage of the algorithm
we will use Wyllie’s algorithm to perform this prefix sum, after which point
r[i] will be the actual rank of element i.

The elements removed from the list will further have a pointer p[i] to
the predecessor of i at the time i was removed, and a timestamp t[i]. A
removal of element i is performed by setting p[i] to the current predecessor
of i, adding r[i] into r[j] wherej is the successor of i in the remaining list,
removing i from the doubly linked list, and setting t[i] to be the time at
which the removal was performed. For the algorithm to be correct, no two
adjacent list elements may be removed at the same time.

When Wyllie’s algorithm on the shortened list has finished, we still need
to find the ranks of the removed list elements. This is done in the reverse
order from that in which they were removed. Therefore we need to sort
elements by their removal times; these times are O(log n) so we can use
the deterministic bucket sort of Reif (1985), described above. The reverse
order guarantees that, by the time we calculate the rank of element i, the
rank ofp[i] will already have been calculated into’ r[p[i]]. We add this rank
into r[i], giving the correct total rank of element i.

It remains to show how we can perform a sequence of removals, with
no two adjacent elements removed at the same time, taking total time
O(log n) with O(n/log n) processors, and leaving at most O(n/log n)
elements unremoved.

The algorithm is controlled by a scheduler, about which we have more
to say below. Choices made by the scheduler alternate with stages of the
algorithm; each stage takes constant time using O(n/log n) processors, and
the scheduler will make sure that there are O(log n) stages.

We introduce two more values kept by each list element i: A count c[i]
of the number of removals performed by that element on other elements
of the list, and a state s[i]. The state can be any one of the following five
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values: waiting, active, marked, full, done. If s[i] is waiting, no processor
has yet been assigned to i, but the scheduler may at any time change the
state of i to active. Ifs[i] is active, the scheduler will assign a processor to
i in the next stage of the algorithm. If s[i] is marked, i will no longer be
assigned a processor, but it has not yet been removed from the list; some
other active element will remove it later. We mark elements rather than
removing them immediately because otherwise we might try to remove
two adjacent elements at the same time. If s[i] is full, it is still in the list,
and will remain in the final reduced list. If s[i] is done, i has been removed
from the list. Not all removals are counted in c[i]; in particular if i is
removed by its own processor there is no need to increment c[i].

Each element is initially waiting; when the algorithm finishes, all
elements must either be full or done, and there can be at most O(n/iog n)
full elements. Therefore we can see that after the completion of the
algorithm, the reduced list will have length at most O(n/log n) as desired.

At each stage of the algorithm, after the scheduler has perhaps made
some waiting elements active, each active element i is assigned a processor
p~ which performs the following operations.

1. If c[i] > log n and the successor of i is not marked, p~ sets s[i] to full
and stops processing element i.

2. If i is still active and its successor is full, Pi checks the state of the
predecessor of i. If the predecessor is also active, p,- sets s[i] to marked;
otherwise it removes i from the list and sets s[i] to done.

3. If i is still active, then the previous steps did nothing, so in particular
the successor of i is not full. Nor is it done, because done elements have
been removed from the list. Therefore i belongs to a chain of active
elements followed by an element that is either marked or waiting.
The processors corresponding to the elements of this chain find an
independent subset S of the chain, such that each member of S is at a
distance of at most O(log n) from some other member; this independent
set computation is described below.

4. If i is active, and the first member of its chain, but is not in S, then Pi
tests whether the successor of i is in S. If so, p; removes i from the list;
otherwise, it adds i to S. After this step, the first element in the remaining
chain will be in S.

5. If i is active, but not in S, Pi sets s[i] to marked.
6. If i is still active, and therefore in S, pi removes the (marked or waiting)

successor to i (setting its state to done) and increments c[i].

Elements are only marked when their predecessors are either marked or
active, and when it is known that the chain of marked elements is headed
by some active element; an active element at the head of such a chain will

Annual Reviews
www.annualreviews.org/aronline
Annual Reviews
www.annualreviews.org/aronline

A
nn

u.
 R

ev
. C

om
pu

t. 
Sc

i. 
19

88
.3

:2
33

-2
83

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 E
id

ge
no

ss
is

ch
e 

T
ec

hn
is

ch
e 

H
oc

hs
ch

ul
e 

Z
ur

ic
h 

on
 0

6/
08

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline/


COMBINATORIAL COMPUTATION 255

not become inactive until all marked elements have been removed.
Therefore when the algorithm terminates there can be no marked elements.
All waiting elements will eventually become active, so when the algorithm
terminates there can be no waiting elements. And if there is an active
element the algorithm has not terminated, so when it does terminate there
can be no active elements. Therefore we can deduce that all elements either
become full or are eventually removed from the list. If an element i becomes
full, this can only be after Pi has performed log n removals of other elements
in step 6, and so there can be at most O(n/log n) full elements. Thus our
algorithm correctly reduces the length of the list to O(n/log n).

Before we show that the algorithm can be performed in the claimed
bounds, let us first tie up the remaining loose end, the calculation of S. S
is found in constant time as follows, using a slightly different version of
the deterministic coin tossing technique described above. S will be an
independent set, but it will not necessarily be maximal. As in the previous
application of deterministic coin tossing, calculate for each element a color
drawn from a set of O(log n) colors. The members of S are taken to 
those elements i for which the color of i is less than those of both its
successor and its predecessor.

Colors of adjacent list elements are different; therefore it is imposible
for two adjacent elements to both have colors that are local minima, so S
is an independent set. The colors of the elements following a particular
local minimum can grow larger for at most O(log n) elements before they
must drop again, and after this drop they can continue to drop for only
O(log n) elements before rising again; therefore the members of S are 
most O(log n) entries apart.

It remains to show that all of the computations described above can be.
performed in time O(log n) using linear operations. First let us see that
each element i is active for at most O(log n) time units. Call a stage 

which i remains active, but the successor to i was active and becomes
marked, bad; call a stage in which i becomes inactive itself, indifferent;
and call a stage in which i removes a marked successor from the list and
increases c[i], good. It can be seen that all stages are bad, good, or indiffer-
ent. Further, there is at most one indifferent stage, and each bad stage is
followed by a good stage, so we need only count the number of good
stages.

At any stage, c[i] is exactly the number of prior good stages. Let stage
s be the last bad stage executed for element i. Then prior to s there can
only have been O(log n) good stages, because otherwise i would have
declared itself full and s would be an indifferent stage. Stage s will be
followed by a number of good stages equal to the number of marked
elements following i in stage s, because an element following i can only
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become marked in a bad stage. But the number of marked elements is
bounded by the distance between members of S, which as we have seen is
O(log n). Therefore there are O(log n) good stages both before and after
the last bad stage, so the total number of stages in which i is active is also
O(log n).

Now we can see that, assuming a smart enough scheduler, the algorithm
described above can be performed in time O(log n) using O(n/log n)
EREW processors as claimed. Each processor is assigned a pool of waiting
elements; whenever the element it was assigned to becomes inactive, it
chooses a new element from its pool to make active. The pools are period-
ically rebalanced, so that until the number of waiting elements has been
reduced to O(n/log n), a constant fraction of the processors will have
waiting elements in their pools. The rebalancing itself is beyond the scope
of this paper; for details see Cole & Vishkin (1986c).

At each stage, each active processor will either make its own element
inactive or remove another element from the list; each of these actions can
happen at most linear times. Prior to the stage s at which the number of
waiting elements is reduced to O(n/log n), there will be t)(n/log n) active
processors, so together with the linear bound on the number of actions
this gives a bound of O(log n) on the time used. After that stage, we can
distribute the remaining waiting elements evenly among the processors
using a prefix computation; each processor will have a constant number
of elements in its pool, and as we have shown each element can remain
active for at most O(log n) stages, so the time used will again be bounded
byt O(log n).

Anderson & Miller (1988a,b) have recently discovered randomized and
deterministic algorithms for optimal parallel list ranking that are some-
what simpler, and therefore also more practical, than those of Cole &
Vishkin.

3. EULER TOURS, EAR DECOMPOSITION, AND
RELATED TECHNIQUES

In the previous section we discussed prefix computation techniques, which
have wide application to problems in which the data are arranged in some
linear order. In this section we discuss a number of algorithmic techniques
for handling the case that the data to be processed are not already in a
linear order, and in particular when the data are structured as a graph or
as a tree. These techniques find an ordering of the edges or vertices of the
graph or tree, so that prefix computation can then be used on the resulting
sequence of edges or vertices. In general graphs it is less clear what such
an order might be; we also describe algorithms for partitioning the graph
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edges into a sequence of subgraphs, each of which has a simple and easily
ordered structure.

When the problem already has some structure as a tree, the parallel
algorithms can be quite similar to their sequential counterparts. Sequen-
tially, one often solves tree problems by using some standard tree traversal
order, such as pre-order, post-order, or in-order. For parallel algorithms
one would like to generate a list of tree vertices in these orders; this
can be done using the Euler tour technique described below. Many tree
problems can be solved directly using Euler tours, rather than indirectly
on some generated traversal order.

We should mention another parallel technique that has in many cases
been replaced by that of Euler tours. One obvious method for computing
tree functions would be to process each leaf separately, and then remove
the leaves and repeat until all vertices of the tree have been processed.
However, the tree may be very deep, in which case this may not give us
the polylogarithmic time bounds we want. An improvement to this method
alternately called centroid decomposition or tree contraction (Snir & Barak
1977; Megiddo 1983; Miller & Reif 1985), does give polylogarithmic
bounds. In centroid decomposition, one alternates this removal of leaves
with the removal of vertices having one child (sometimes with the further
restriction that the parent of the vertex also only has one child).

Cole & Vishkin (1988) have given an improved centroid decomposition
algorithm that for a number of problems can be made to run in logarithmic
time and a linear number of EREW operations, matching the bounds for
Euler tours. Gazit et al (1988) have recently given a simplified version 
this algorithm that runs in the same bounds. We do not describe centroid
decomposition further, except to note that as one of its applications we
may compute, given a tree with a value stored at each vertex, the minimum
value in each subtree of the tree. This turns out to be useful in computing
ear decompositions.

For sequential algorithms on general graphs, one would typically tra-
verse the edges of the graph using a depth-first search (Tarjan 1972). 
we have mentioned, finding a depth-first search tree in parallel seems to
be difficult; a randomized parallel algorithm is known that constructs such
a tree (Aggarwal & Anderson 1987), but this algorithm is not useful 
practice for finding efficient parallel algorithms. As replacements for depth-
first search in general graphs, we describe algorithms for finding Euler
tours, pseudo-forest decompositions, and ear decompositions.

Finally, note that two more algorithms for ordering graphs--topo-
logical sorting and breadth-first search--have wide application in sequen-
tial algorithms. The best known parallel algorithms to perform these tasks
are much less efficient than their sequential counterparts, and therefore
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these methods are less useful as building blocks for parallel algorithms
than they are sequentially. Finding a breadth-first search tree is equivalent
to finding the shortest paths to or from a single vertex in a graph, but in
parallel it seems we must instead find the shortest paths between all pairs
of vertices in the graph. This latter task can be described as a closed
semiring system (Aho et al 1974), and the parallel semiring algorithm 
Ku~era (1982) described in the next section can be used to solve the
problem. The best known parallel algorithm for topological sorting, also
due to Ku~era (1982), again uses a semiring system, this time the one for
finding the transitive closure of a graph, and again it is described in the
next section.

3.1 Euler Tours for Trees
In the Euler tour technique, we order the edges of the tree by finding an
Euler tour on the directed graph formed by replacing each tree edge with
two directed arcs, one in each direction. Such a tour is a directed cycle
such that each arc appears exactly once in the cycle. Of course the vertices
of the tree will typically appear many times in the cycle, so it is not a simple
cycle. Euler tours for binary trees were first used by Wyllie (1979). The
Euler tour technique for general trees was introduced by Tarjan & Vishkin
(1984), who used it as part of an algorithm for finding biconnected com-
ponents of a graph. The examples we give of tree functions computable
using Euler tours were also introduced in the same paper.

For each vertex v, let p(v) be the parent of v in the tree, or some special
marker if v is the root of the tree; let s(v) be the next sibling of v in some
ordered list of the children of p(v), or some special marker if v is the
last in the list or the root of the tree; and let c(v) be the first child of v, or
some special marker if v is a leaf. Denote the number of vertices in the
tree by n.

In the Euler tour algorithm that follows we assume that each vertex v
has a copy of each of these three values stored together with its local data.
Ifp(v) is not known but s(v) and c(v) are known, then p(v) can be calculated
in time O(log n) and a linear number of operations using a prefix cal:
culation on the linked lists formed by s(v) and c(v); no efficiency will 
lost. The tour itself will be found in logarithmic time, not constant time.
If only p(v) is known, with s(v) and c(v) unknown, it seems we must sort
the vertices by their values ofp(v) in order to calculate the other two values
for each; this takes a linear number of processors and logarithmic time, a
loss of both time and efficiency.

In the Euler tour, each vertex v is responsible for two edges, the one
from p(v) to v and the other one in the reverse direction. The edges into
and out of the root will be taken care of by the children of the root; in the
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following description we assume that v is not the root. We need to calculate,
for each edge, the next edge in the tour. If v is a leaf, we take the edge
following (p(v), v) to (v,p(v)); otherwise we fol low (p(v), ~) by c(v)).
Then, if s(v) exists, the edge following (v,p(v)) is (p(v),s(v)). Otherwise
s(v) does not exist. In this case, ifp(v) is the root, we follow (v,p(v)) by
(p(v), c(p(v))) to close the cycle, or by nothing if an open Eulerian path is
desired; ifp(v) is not the root, we follow (v,p(v)) by (p(v),p(p(v))).

It can be seen that each edge follows, and is followed by, exactly one
edge in the tour; further all such links may be computed in constant time
with O(n) EREW processors. Typically we will perform prefix com-
putations on values placed at each edge of the tour; this takes O(log n)
time with O(n/log n) processors. By Theorem l we can compute the tour
itself in these same bounds.

Theorem 6 (Tarjan & Vishkin 1984). Given an Euler tour of a tree, a
pre-order or post-order traversal of the vertices can be computed in time
0 (lo9 n) using 0 (n/log n) EREWprocessors.

Proof: If we form a new tree by reversing the order of the children at
each vertex of the original tree, and find the post-order of this new tree,
the resulting ordering will be exactly the reverse of a pre-order of the
original tree. Therefore we only describe here the construction of a post-
order traversal.

We perform a prefix computation on the edges of the tour; the data at
each edge will be that edge’s name, together with a bit which is true if the
edge goes down from a vertex to one of its children, or false if it goes up
from a vertex to its parent. The result of the binary operation used in the
prefix computation is as follows. If the bit of the second operand is true,
the edge flame and bit are both copied from the first identifier. Otherwise
the resulting edge name is copied from the second identifier, and the bit
of the result is set to false.

If we apply this operation to a sequence of edges, the resulting bit will
be true if and only if all the edges in the sequence run down. The resulting
edge name will be that of the edge appearing before the maximal sub-
sequence of downward edges containing the last edge in the sequence, or
the last edge itself if that edge runs up. This operation can clearly be seen
to be associative.

Consider edges of the form (v,p(v)); let (u, v) be the edge preceding
(v,p(v)) in the tour, and let (x,y) be the edge name left at (u,v) by the
prefix computation. If v is not a leaf, then (x, y) will be (u, v) itself; x is 
last child of v to appear in the tour, and can be taken as the predecessor
of v in the post-order traversal. If v is a leaf, y is the first ancestor of v
such that some child of y appears before the subtree containing v, and x
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is the last such child. Therefore x can again be seen to be the correct post-
order predecessor of v. In this way we can calculate the predecessor of
every vertex except the root; then the vertex v that does not yet have a
successor, and is not itself the root, is the predecessor of the root. ¯

Theorem 7 (Tarjan & Vishkin 1984). Given an Euler tour of a tree, we
can calculate the number of vertices in each subtree of the tree, in the same
bounds as the previous theorem.

Proof: Assign each edge of the tree the value one if it goes down from
p(v) to v, or zero if it goes up from v to p(v). Find the prefix sum of these
numbers. The sum computed at edge (p(v), gives thenumber of d iff erent
vertices appearing before v first appears in the tour; the sum computed at
(v,p(v)) gives the number of vertices appearing before the last appearance
of v. The difference between the two sums is the number of vertices in the
subtree rooted at v. ¯

In a similar fashion, we may use prefix computation on Euler tours to
compute many other tree functions. In particular, Tarjan & Vishkin 0984)
used this technique to compute the distance of each vertex from the root
of the tree, along with two functions they called low(v) and high(v), which
they used in a parallel algorithm for computing the biconnected com-
ponents of a graph. Tsin 0985), and independently Vishkin 0985), used
Euler tours to compute a data structure for finding the least common
ancestors of pairs of vertices in trees, which they both then used as part
of algorithms for computing strong orientations of undirected graphs.
Schieber & Vishkin (1987) gave an improved algorithm for least common
ancestors, again using Euler tours in trees.

3.2 Euler Tours for Graphs
As in the case of trees, we can order the edges of an undirected or directed

graph in an Euler tour; that is, a cycle such that each edge appears exactly
once. If the graph is directed, we further require that the cycle be directed.
Obvious necessary conditions for an undirected graph to have an Euler
tour are that it be connected and that the degree of each vertex is even;
Euler proved that these conditions are also sufficient. Similarly, necessary
and sufficient conditions for a directed graph to have an Euler tour are
that each vertex have an in-degree equalling its out-degree, and that the
graph be connected (strong connectivity follows from this and the first
condition).

Awerbuch et al (1984) gave efficient algorithms for finding Euler tours
in the directed case, and for finding an orientation for any undirected
graph such that the resulting directed graph has an Euler tour. Atallah &
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Vishkin (1984) independently arrived at the same result. We follow here
the presentation from Awerbuch et al.

Define an Euler partition of a directed graph to be an assignment to
each edge e = (v, w) in the graph of some succeeding edge s(e) = (w, in
the graph, with the tail of e equal to the head of s(e), such that no other
edge is also assigned (w, x). This can easily be seen to partition the edges
of the graph into disjoint cycles; the result is an Euler tour if and only if
there is only one such cycle. If at each vertex we are given a list of the
edges of that vertex, we can use a simple prefix computation on that list
to compute for each edge its rank in the sublist of in-edges or out-edges,
and from that by matching ranks an Euler partition, in time O(log n) using
O(n/log n) EREW processors. As in the computation of Euler tours for
trees, if we are simply given the collection of edges, without having lists of
the edges at each vertex, we will first need to sort the edges.

Given an Euler partition, we now define what it means to swap two
edges e = (u, w) and e = (v, w) having a common tail w. Let s(e) = 9, and
s(f) = h. Then the result of swapping e and f is to make s(e) = and
s(f) = g; i.e. the two edges will have traded successors.

We define the graph CG of an Euler partition as follows. Vertices of
CG will be cycles in the Euler partition. For each e = (u, v) in the original
graph, letf be the next edge after e in the list of edges incoming to v. Then
we add an edge in CG between the cycle containing e and that containing
f Note that CG may contain self loops as well as more than one edge
between pairs of vertices; this turns out not to be a problem.

Awerbuch et al (1984) give the following theorems; the proofs are not
difficult, but we refer the reader to the original paper for them.

Theorem 8 (Awerbuch et al 1984). CG is connected.

Theorem 9 (Awerbuch et al 1984). G&en a spannin9 tree of CG, if we
execute the swaps correspondin# to the ed#es of the spannin# tree in any
order the resultin9 Euler partition will be a single cycle.

Because of these theorems, we can find an Euler tour of a directed graph
using the following steps:

1. Generate an Euler partition as described above.
2. Find the circuits of the partition (which are the vertices of CG) and

determine which circuit each edge of the original graph belongs to.
3. Construct the edges of CG, and find a spanning tree for it.
4. Execute the swaps indicated by the spanning tree.

Step 1 has been described already. Step 2 and step 3 both can use any
algorithm for finding connected components and spanning trees of a graph.
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The best known algorithm for this is due to Cole & Vishkin (1986c). 
uses O(log n) time, with O(m~(m, n)/log n) CRCW processors. Here n 
the number of edges in the graph, m is the number of vertices, and g is the
inverse Ackerman function, which grows very slowly. In both uses we
are making of this connected components algorithm, both the number of
vertices and the number of edges can be proportional to the number of
edges in the original graph.

Finally, step 4 can be executed as follows. Let ei, e~-+ ~ .... ej be a maximal
sublist of the edges coming in to vertex v, such that (ei, el+ 1), (e~+ l, e~-+ 2) 
(ej 1, el) are all swaps indicated by the spanning tree of CG. Then for
i _< k < j we assign the old value of s(ek+ ~) to be the new value of s(ek),
and similarly we assign the old value of s(ei) to be the new value of s(ei).
This can be performed in logarithmic time and a linear number of EREW
operations using prefix computation on the lists of edges incoming to each
vertex v.

Theorem 10 (Awerbuch et al 1984). An Euler tour of a directed graph
with n vertices and m edges, in which the number of edges incoming to each
vertex v is the same as the number of outgoing edges from v, can be found
in the same time and processor bounds as those for computing a spanning
tree of an undirected graph with 0 (m) vertices and edges, assuming those
bounds are no better than O(log n) time with O((n+m)/log n) 
processors if the graph is given as a list of edges at each vertex, or 0 (n + m)
processors if the graph is given only by its edges.

Proof: As described above. The best known connectivity algorithm gives
bounds for computing Euler tours of O(log n) time with O(m~(m, m)/log 
arbitrary winner CRCW processors. ¯

The above algorithm works only on directed graphs. But note that we
can construct an Euler partition as above for an undirected graph. If
we could orient the edges of the graph so that each cycle of the partition
is made directed, we would then be able to find an Euler tour for the
resulting directed graph, which would also be an Euler tour for the under-
lying directed graph.

Theorem 11 (Awerbuch et al 1984). An Euler tour of an undirected graph
can be found in the same time and processor bounds as Theorem 10.

Proof: First split the graph into a new graph which is a union of disjoint
undirected cycles, by creating a new vertex between each edge and its
successor in the partition. Now find a spanning forest of this graph. Each
cycle of the partition will correspond to one tree of the forest, and each
tree will consist of two directed paths leading to the root of the tree. Use

Annual Reviews
www.annualreviews.org/aronline
Annual Reviews
www.annualreviews.org/aronline

A
nn

u.
 R

ev
. C

om
pu

t. 
Sc

i. 
19

88
.3

:2
33

-2
83

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 E
id

ge
no

ss
is

ch
e 

T
ec

hn
is

ch
e 

H
oc

hs
ch

ul
e 

Z
ur

ic
h 

on
 0

6/
08

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline/


COMBINATORIAL COMPUTATION 263

prefix computation to reverse the direction of the edges on one of the two
paths, and once this is done orient the remaining edge of the cycle by
looking at the orientations of the edges to either side. Using this process
and then continuing with the directed Euler tour algorithm gives us an
Euler tour of the original undirected graph. ¯

Not every graph has an Euler tour, so we cannot usually use this
algorithm directly on an arbitrary graph as part of some other graph
algorithm. Further, if we tried the same trick that we used for trees,
splitting every edge in two, one possible tour could be constructed from a
tour of a spanning tree of the graph, and therefore any resulting tour
would be little more useful than a spanning tree. But there is a different
way to transform a graph into one having an Euler tour, and that is to
add a new dummy vertex, and add an edge between that vertex and each
original vertex having an odd degree. Israeli & Shiloach (1986) use this
construction as part of an algorithm that efficiently and quickly finds a
maximal matching for an arbitrary graph.

3.3 Pseudo-Forest Decomposition

Define a pseudo-forest to be a directed graph in which each vertex has
out-degree at most one. Every rooted tree or forest is a pseudo-forest, but
a pseudo-forest may contain cycles. In this section we describe extensions
of the deterministic coin tossing technique of Cole & Vishkin (1986a,b) 
pseudo-forests, found by Goldberg et al (1987). These extensions will 
turn lead to efficient algorithms for graphs of bounded degree, which
operate by partitioning the edges of the graph into a number of pseudo-
forests.

By a coloring of a graph or pseudo-forest below, we mean an assignment
of colors to the vertices such that no two adjacent vertices have the same
color. In what follows, n will refer to the number of vertices of a given
pseudo-forest or graph, and m will refer to the number of edges of the
graph. The number of edges in a pseudo-forest can of course be no more
than n.

Lemma (Goldberg et al 1987). Given a pseudo-forest colored with k
colors, we can compute a new coloring with 2[1o# k] colors, in constant
time using 0 (n) CRElY processors.

Proof: We assign one processor per vertex of the pseudo-forest. Each
processor reads the color of the parent of its own vertex, and sets the new
color of its vertex to be the number of the first bit at which the parent’s
color differs from the color at its vertex, together with the value of that

bit at the vertex. []
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Define log* x to be min{i:logt°x < 1}, where log(° x means the result
of iterating the log function i times, starting with an initial value of x.

¯ Theorem 12 (Goldberg et al 1987). Given a pseudo-forest, a coloring of
that pseudo-forest using only 3 colors can be found in time 0 (log* n) using
0 (n) CREWprocessors.

Proof: We start with n-color coloring given by using the name of each
vertex as its color, and iterate the algorithm of the lemma. After O(log*
n) steps, the number of colors will have been reduced to 6, beyond which
the lemma cannot make any improvements. We now reduce the number
of colors one step at a time, as follows. Each vertex takes as its color the
color of its parent, with the root (if any) of the pseudo-forest taking any
color differing from its previous color. After this step the neighbors of
each vertex will only be of two different colors. Then each vertex having
the color we wish to eliminate chooses as its new color some color other
than those two. This can again be performed in constant time with a linear
number of CREW processors, and after a constant number of such steps
the number of colors will have been reduced to 3. ¯

Theorem 13 (Goldberg et al 1987). If the maximum degree of any vertex
in the pseudo-forest is bounded by A, and if we are already given lists of the
vertices incoming at each vertex, then the algorithm of Theorem 12 can be
performed on 0 (n/log A) EREWs using time 0 (log A log* 

Proof: The only use we make of concurrent read is to get the color of
each vertex’s parent at each step. These colors can be distributed using
prefix computations on the lists of incoming vertices. ¯

Theorem 14 (Goldberg et al 1987). Given a graph with maximum vertex
degree A, represented by lists of edges at each vertex, with A = 0 (log n),
we can calculate a coloring of the graph with A + 1 colors in time 0 (A log
A (A + log* n), using 0 (n) EREWprocessors.

Proof: We first assign each edge of the graph an arbitrary direction.
Next we partition the edges of the graph into O(A) pseudo-forests, 
letting each vertex label its outgoing edges from 1 to A. For each value of
i from 1 to A, each vertex constructs the list of edges incoming to it in
pseudo-forest i by using a prefix computation on the list of all its incoming
edges. Then we 3-color each pseudo-forest in turn, adding its edges back
to the graph and combining the 3-coloring with a A + l-coloring of the
already processed portion of the graph to find a new A + 1-coloring.

The combination of colorings is done as follows. First each vertex takes
as its color the pair of colors from the two colorings we are combining;
the resulting coloring has 3(A+ 1) colors. We will also temporarily color
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the edges of the graph; initially all edges are uncolored, but as we color
each vertex in the new A + 1-coloring we will also give the same color to
its adjacent edges, so that the vertices at the other ends of those edges will
be able to find which color was used without worrying about concurrent
read conflicts.

We now process each of the pairs of colors in turn; within a color class
we process all vertices in parallel. Each vertex, when it is processed, looks
at the colors of the edges adjacent to it and chooses a color that is not
already taken; because it has at most A neighbors there must be at least
one such color. Next it again goes through those edges and recolors them
with its new color. Both of these steps can be performed with a prefix
computation on the list of neighbors; because of the assumption that
A = O(log n) we can use bit vector operations to choose a color. Because
we process only vertices from a single color class at a time, each pair of
adjacent vertices will be processed at different times, so they will end up
with different colors, and no two processors will try to color the same edge
at once.

There are A pseudo-forests, and each must be 3-colored and then com-
bined with the previous coloring. The combination is done for each of
O(A) color classes, and each class takes time O(log A) using O(n/log A)
processors. The coloring also uses n/log A processors, but it takes time
O(log A log* n). Therefore the total time taken is O(A log A(A+
log* n)). 

Theorem 15 (Goldberg et al 1987). A maximal independent set of a
bounded degree graph can be found in the same bounds as those of Theorem
14.

Proof: We use the above algorithm, but when we recolor a vertex we
always pick the lowest-numbered available color. The vertices ending up
with the lowest-numbered color will form a maximal independent set. ¯

Goldberg et al also give similar algorithms, again using a pseudo-forest
decomposition, for finding colorings, maximal independent sets, maximal
matchings, separators, and depth-first search trees, all for planar graphs.

3.4 Ear Decomposition

An ear decomposition is another way of partitioning the edges of a graph,
in this case into ears. An ear is simply a path in a graph; if the graph is
directed, the ear must also be directed. No vertex in the interior of the
path may appear more than once in the ear. If the endpoints of the ear are
different, it is called an open ear. An ear decomposition consists of a
partition of the edges of the graphs into a sequence of ears, such that the
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endpoints of each ear appear in previous ears but such that the interior
points of each ear appear.for the first time in that ear.

The following well-known theorems, quoted by Lov~sz (1985), indicate
the importance of ear decompositions to questions of graph connectivity.
When we say an ear decomposition starts from a vertex v, an edge e, or a
cycle c, we mean that the first ear of the decomposition is v, e, or c,
respectively. An open ear decomposition is one in which all ears are open.

Theorem 16 (Whitney 1932). An undirected graph is bridgeless (2-edge-
connected) if and only if it has an ear decomposition starting from a single
vertex.

Theorem 17 (Whitney 1932). An undirected graph is biconnected (2-
vertex-connected) if and only if it has an open ear decomposition starting
from a single edge.

Theorem 18 (Folklore). A directed graph is strongly connected if and
only if it has an ear decomposition starting from a single vertex.

In all of the above theorems, the ear decompositions may equivalently
be required to start from a cycle; however, the above descriptions give rise
to simpler algorithms.

Lov~,sz 0985) first noted that ear decompositions can be found quickly
in parallel; he gave an algorithm for finding decompositions of strongly
connected directed graphs, and of bfidgeless and biconnected undirected
graphs. Maon et al (1986) showed Lov~sz’s biconnected graph ear
decomposition algorithm to be faulty, and gave a more efficient and correct
algorithm for both undirected cases. Miller & Ramachandran (1986) inde-
pendently discovered a similarly efficient ear decomposition algorithm
which uses tree contraction instead of Euler tours.

We describe here the algorithm given by Maon et al for finding an ear
decomposition of a bridgeless graph, shown to exist by Theorem 16.
Algorithms for the other types of ear decompositions are similar but more
complicated. The algorithm itself, perhaps not surprisingly, turns out to
be similar to those given by Tsin (1985) and Vishkin (1985) for strongly
directing a bridgeless graph, mentioned as an application of the Euler tour
technique for trees. In fact, if one applies the cycle-directing algorithm,
described previously as part of the Euler tour technique for undirected
graphs, to the ear decomposition of a bridgeless graph, the result can be
seen by Theorem 18 to be a strongly connected directed graph.

To find an ear decomposition of a directed graph, one proceeds as
follows.

1. Find a spanning tree of the graph.
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2. For each edge (u, v) not in the spanning tree, compute the least common
ancestor a = lca(u, v) of u and v in the spanning tree, and the distance
level(u, v) from a to the root of the spanning tree.

3. For each edge e in the spanning tree, find the set S of edgesfsuch that
e is part of the cycle induced by adding f to the tree. Let master(e) be
the member of S with the least level, with ties being broken by picking
the minimum edge identifier.

4. For each edge (u, v) not in the spanning tree, form an ear consisting 
(u,v) itself together with all tree edges over which (u,v) is master. Sort
the ears by level(u, v) and within levels by the identifiers of the master
edges used to break ties above.

Theorem 19 (Maon et al 1986). The above algorithm correctly finds an
ear decomposition of a bridgeless graph.

Proof: For each tree vertex w other than the root, there must be some
nontree edge from w or one of its descendants to some vertex that is not
a descendant of w, or else the edge from w to its parent would be a bridge.
Therefore the edge from w to its parent, and similarly each tree edge, is
contained in some ear.

The ear calculated for each nontree-edge (u, v) is clearly a subset of the
cycle induced by adding (u, v) to the tree, which can be divided into (u, 
itself, the path from u to lea(u, v), and the path from v to lea(u, v). If some
edge e along the path from u to lea(u, v) is missing from the ear, then it is
part of a cycle induced by an edge (w, x) with level(w, x) > level(u, v). But
this implies that lea(w, x) is either lea(u, v) or an ancestor of lea(u, v) so all
edges above e in the path are also part of the cycle induced by (w, x), and
so they cannot be part of the ear for (u, v). Similarly if an edge in the path
from v to lea(u, v) is missing from the ear, all edges above that edge will
also be missing. Thus we see that each ear is in fact either a simple path
or a simple cycle.

We also see from the above argument that if an endpoint x of the ear
corresponding to edge (u, v) is not lea(u, v), the edge from x.to its parent
in the spanning tree must belong to an ear appearing earlier in the sorted
order. If lea(u, v) is an endpoint, then either it is the root and appears in
the initial point ear, or it has a parent and the edge from it to its parent
appears in an earlier ear.

Finally, we must show that no interior vertex of the ear containing (u, v)
appears in a previous ear. If w is the root of the tree, it must be the lea of
any ear containing it, and so it will be an endpoint rather than in the
interior. Otherwise, assume w is not the root. Each ear consists ofa nontree
edge together with all or part of the cycle it generates; therefore if w is an
interior vertex of an ear, then the edge from w to its parent in the tree
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268 EPPSTEIN & GALIL

must be contained in that ear, and can be contained in no other ear.
Therefore w appears as an interior vertex of at most one ear. But the first
ear containing w must contain it as an interior ear, because as we have
seen the endpoints appear in previous ears. So w appears once as an
interior ear, and before that appearance does not appear in any ear. ¯

Theorem 20 (Maon et al 1986). Given a spanning tree of a bridgeless
graph, and assuming that the ears need not be sorted, the remaining steps
of the ear decomposition al9or.ithm above can be computed in time 0 (lo9
n) time with 0 ( (m + n)/lo9 n) CRE W processors.

Proof: The least common ancestors can be computed using an algorithm
of Schieber & Vishkin (1987). This algorithm pre-computes a number 
values at each vertex of the tree using the Euler tour method described
above; from these values the least common ancestor of any pair of vertices
can be computed in constant (sequential) time. In particular we can com-
pute lca(u, v) for each nontree edge (u, v) in constant time with one pro-
cessor per edge. Then level(a) for each such common ancestor can again
be found by the Euler tour method, although in fact it will have already
been computed as part of Schieber & Vishkin’s algorithm. Finally, we
compute for each vertex the adjacent edge with the least level. We use
the centroid decomposition of Cole & Vishkin (1987) to propagate these
minimum edges up through the spanning tree, so that each vertex knows
the minimum from all of its descendants.

For each vertex v, we calculate the master of the tree edge from v to its
parent as the minimum edge value reaching v in the previously described
computation; this is the nontree edge adjacent to some descendant of v
and having the least level of all such edges. If the tree was bridgeless, this
computation will give us a correct ear decomposition. If the tree has a
bridge from some vertex v to its parent, the computed master of that edge
will also be the master of more than one edge from a child of v to v itself,
and this erroneous condition can be detected again within the time and
processor bounds given. ¯

Maon et al (1986) also give an algorithm for finding an open ear
decomposition of a biconnected graph. This algorithm is essentially the
same as the one described above, except that the identifiers used to break
ties between edges with the same level are carefully chosen so that none
of the resulting ears are open.

A characterization of biconnected graphs closely related to that of the
open ear decomposition is that each such graph has what is known as an
st-numbering. This is an ordering of the vertices of the graph such that
there is an edge between the first vertex s and the last vertex t, and such
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COMBINATORIAL COMPUTATION 269

that each other vertex has a neighbor in the graph somewhere prior to it
in the ordering, and another neighbor after it. It is well known (Even 
Tarjan 1976) that an st-numbering can be computed from an open ear
decomposition of a graph; Maon et al (1986) also showed how to perform
this efficiently in parallel. Klein & Reif (1986) used this st-numbering
algorithm as part of a parallel algorithm for finding embeddings of planar
graphs.

Ear decompositions have also been used as part of other graph algo-
rithms, in particular in computing the connectivity of a graph. The ear
decomposition algorithms we described above will determine whether a
graph is bridgeless or biconnected, although at least in the latter case a
simpler algorithm was known (Tarjan & Vishkin 1984). Miller & Rama-
chandran (1987) used the open ear decomposition algorithm for bicon-
nected graphs as part of an efficient algorithm for testing graph 3-vertex-
connectivity. This algorithm has recently been improved by Rama-
chandran & Vishkin (1987). Kanevsky & Ramachandran (1987) again
used ear decomposition to test 4-vertex-connectivity.

Linial et al (1986) have found a characterization of vertex connectivity
using a generalization of st-numbering. This characterization does not,
however, involve ear decompositions. They give randomized algorithms
for computing the connectivity of a graph using various matrix operations;
we do not describe these algorithms, but they can be performed efficiently
in parallel using the matrix techniques described in the next section.

4. MATRIX METHODS

One usually thinks of matrix calculations in the context of scientific com-
putation, in which the matrix typically contains floating point numbers,
and corresponds to an approximation of some physical system. Certainly
this is a common use of matrices, and as the matrix systems used tend
to be extremely large this is also an important application for parallel
computation.

Matrices and matrix methods can, however, also be used to solve com-
binatorial problems. In such a problem one might for instance have as
input a network (graph with edge weights), and want to compute shortest
paths in the network. One would again have a matrix of floating point
numbers: the adjacency matrix of the graph, with the value at each cell
being the weight of the corresponding edge. As we shall see, the values of
the matrix cells need not even be numeric; matrix-like computations may
still be useful given a matrix of values taken from some arbitrary semiring.
For this reason the matrix algorithms we describe will be those that work
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270 EPPSTEIN & GALIL

for all matrices, no matter what algebraic system the cell values are taken
from.

More formally, we define a semiring as a triple (S, +, x ) where S 
some (possibly infinite) set of values, and + (addition) and x (multipli-
cation) are associative binary operations on S, with multiplication dis-
tributing over addition. Addition in the semiring must be commutative,
but in general we will not require the same of multiplication. Sometimes,
as in the case of closed semiring systems, we will add further properties
holding for the semiring operations. We assume that values of S can be
stored in single memory cells, and that both addition and multiplication
in the semiring can be performed in constant time by a single processor.

A matrix A, of dimension rn x n, can be thought of as a function from
pairs of integers (i, j) with < i _<m and1 < j < n,tovaluesfrom the
semiring. We write A[i, j] for the value of the matrix at the pair (i, j).

4.1 Basic Matrix Operations

Assume we are given two m × n-dimensional matrices A and B. The
matrix sum C = A + B can be computed by, for each pair (i, j), letting
C[i, j] = A[i, j]+B[i, j]; this can be computed in the obvious way, using
constant time with O(mn) EREW processors.

Given a matrix A of dimension m × n and another matrix B of dimension
n × p, the product C = AB is defined as the rn × p-dimensional matrix
calculated by C[i, k] = ~= ~ A[i, j] × B[j, k]. If we use a balanced binary
tree of additions to perform the sum for each element of C, the result can
be computed in time O(log n), using mnp/log n EREW processors. We are
unlikely to do better than this for arbitrary semirings, but if more is
known we can sometimes improve this result. For instance, if the addition
operation of the semiring is finding the minimum of log n-bit integers, as
in the case of the breadth-first search algorithm given below, we can
compute the matrix product in constant time with O(mnp) weak CRCW
operations. Of, if the semiring is in fact a ring (i.e. additive inverses
exist), we can use various more complicated algorithms to reduce the total
number of operations; the best known bound on the number of processors
needed to multiply two n x n matrices over a ring in logarithmic time is
O(n2"376) (Coppersmith & Winograd 1987).

An important special case of matrix multiplication that we use below is
when the two matrices to be multiplied are lower triangular Toeplitz
matrices. In a Toeplitz matrix A, for each diagonal of the matrix, each cell
of the diagonal has the same value as each other cell. If the matrix is lower
triangular, it can be represented by the values at A[i, 1]; all other values
can be derived from these using the formula A[i, j] = A[i-j+ 1, 1].

Theorem 21 (Berkowitz 1984). Given two lower triangular Toeplitz
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COMBINATORIAL COMPUTATION 271

matrices A and B, of dimensions m x n and n x p, the product C = AB is
lower trianyular and Toeplitz, and can be computed in time 0 (loy n) with
0 (mn/loy n) EREWprocessors.

Proof: It can be seen from the definitions of matrix multiplication and
of Toeplitz matrices that C[i, 1] = E~=n~i’n)A[i-j+ 1, 1] × B[j, 1]. Each of
these coefficients can be calculated independently with a prefix com-
putation in the bounds of the theorem. ¯

Again one can make improvements in certain special cases; in particular
if the base field of the matrices supports a fast Fourier transform we may
compute the product in the same time as before, but using only O(n)
processors. Also note that the product of nontriangular Toeplitz matrices
is not necessarily Toeplitz.

The following result simplifies and improves by a factor of n’ a theorem
of Berkowitz (1984). It was discovered by von zur Gathen (1984), 
independently by Eppstein. In this and the following theorems, M(n)
denotes the number of processors needed to multiply two n x n matrices
in time O(log n). Note that M(n) is at least f~(n2/log 

Theorem 22. Let R be a 1 x n matrix (i.e. a row vector), .4 an n x 
matrix, and S an n x 1 matrix (column vector). We can compute {R x Ai},

for all i from 0 to n, simultaneously, usin# O(loy2 n) time and O(M(n))
processors. Further, we may compute {R x Ai × S} in the same bounds.

Proof: The algorithm for computing R x Ai proceeds in log n stages,
each consisting of two matrix multiplications. Prior to stage k we will have
computed the values of R × Ai for i from 0 to 2k ~- 1, arranged as
2k ~ x n matrix X. We will also have computed A2~-’. In particular prior
to the first stage we already know R and A, as these are~ the input to the
algorithm. Then at stage k we compute Y = X x A2k- 1. It can be seen that
the rows of Y are exactly R × Ai, for i from 2g- 1 to 2k- 1; therefore
combining X with Y gives R x A~ for all i from 0 to 2~- 1. To complete
the required input for the next stage, we also compute A2k by squaring
A2/C- 1.

Each stage takes time O(log n) using O(M(n)) processors, and there 
log n stages, so the bounds of the theorem follow. Computing R x A~ x S
may be accomplished with one further matrix multiplication. ¯

An important function of a square n x n matrix A, closely related to
the determinant and inverse, is the characteristic polynomial p(2)--
det(A-,~’I), where det stands for the determinant operation and I is the
identity matrix (having the multiplicative identity 1 on the main diagonal,
and the additive identity 0 in all other cells). Let ~(A) be the column vector

Annual Reviews
www.annualreviews.org/aronline
Annual Reviews
www.annualreviews.org/aronline

A
nn

u.
 R

ev
. C

om
pu

t. 
Sc

i. 
19

88
.3

:2
33

-2
83

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 E
id

ge
no

ss
is

ch
e 

T
ec

hn
is

ch
e 

H
oc

hs
ch

ul
e 

Z
ur

ic
h 

on
 0

6/
08

/0
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.annualreviews.org/aronline/


272 EPPSTEIN & GALIL

(P0, P t .... , p,) of coefficients of p(2); p0 is the coefficient n in p(2), pt th
of 2n- I, and so on.

Define Ai to be the square submatrix of A formed by taking rows i+ 1
through n and columns i+ 1 through n of A. Also let R; be the row vector
(A[i, i+ 1], A[i, i+2] .... A[i, n]), and let Si be the column vector (A[i+ 1, i],
A[i+2, i],... A[n, i]).

Theorem 23 (Berkowitz 1984). The coefficients ~ ( A ) of the characteristic
polynomial of A can be computed in time O(log2 n) using O(M(n).n)
processors.

Proof: Define Ci, an (n- i+ 2) × (n- i+ 1) dimensional lower triangular
Toeplitz matrix, as follows. Ci[1, 1] = -1; C;[2, 1]---A[i, i]; for each j
greater than 2, Ci[j, 11 = Ri × M~- 3 × Si. By Theorem 22, we can calculate
the coefficients of each Ci in time O(log2 n) using M(n) processors, so 
may calculate all of the C~ using a factor of n more processors. Berkowitz
(1984) showed that 2(A) = 1-I7= 1 Ci; this can be calculated in time O(log2

n) using O(n3/log~ n) processors, which by assumption is less than
O(M(n) " n). 

Theorem 24 (Berkowitz 1984). The determinant and inverse of an n × n
matrix over an arbitrary field can be calculated in time 0 (lo92 n) with
0 (nM(n)) processors.

Proof: The determinant is simply the constant term Pn of the charac-
teristic polynomial. By the Cayley-Hamilton theorem, we may compute
A-1 as

Pn i= 0

Again the computation can be performed in time O(log2 n) using
O(M(n)’n) processors. 

As with the other matrix computations described earlier, the com-
putation of the determinant and inverse described above can be made
more efficient for certain restrictions on the field the matrix cell values are
taken from. In particular, if the field has characteristic 0, Preparata &
Sarwati (1978) improve an algorithm of Csanky (1976) to achieve the 
time using O(M(n)V/~) processors; Galil & Pan (1985b) give a 
improvement to this result.

If the entries in the matrices are k-bit integers or quotients of k-bit
integers, the entries of the inverse may be ratios of n(k + log n)-bit integers,
so the assumption of unit time arithmetic operations no longer holds. Galil
& Pan (1985a) give a randomized algorithm for inverting matrices of 
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bit rational numbers in time O(log2 n) using O(knM(n)) processors, using
only single bit operations.

4.2 Closed Semiriny Systems
Let S be a semiring as defined above, but with the following further
properties. First, the addition property should be idempotent; that is, for
any a, a+a = a. Second, any countably infinite sum a~ +a2+ ̄ "" +a,-+ -.-
should have a unique solution; further, the usual commutative, associative,
and distributive laws should apply to infinite as well as finite sums. We
call such a system a closed semiring (Aho et al 1974). By the properties 
a closed semiring, the following function, known as closure, is well defined.
For any element a in the ring, let a*, the closure of a, be 1 + a ÷ a2 + a3 ÷ " ",
where 1 is the multiplicative identity of the semiring. We assume that
closure as well as addition and multiplication can be performed in constant
time by a single processor.

A closed semiring system consists of a semiring, together with a directed
graph labeled on the edges with elements of the semiring. We define the
label of a path in the graph to be the product in the semiring of all the
labels of the edges of the path, in order as they appear in the path. The
problem we wish to solve is, given such a labeled graph, to find the closure
of the graph; that is, for each pair of vertices, the sum of the labels on all
possible paths between those two vertices.

Note that we don’t require the paths to be simple, so the sum as described
above is infinite. Nevertheless it is possible to compute this sum for all
pairs of vertices of the graph sequentially in time O(n3). In fact, this may
be computed in the same sequential time as a single matrix multiplication
over the given semiring (Aho et al 1974). The sequential algorithm for
solving closed semiring systems uses a form of dynamic programming, and
seems to be inherently sequential.

We describe below a parallel algorithm, due to Ku~era, that works for
those semirings in which, for all a, 1 +a = 1 (so a* = 1). This algorithm
uses a number of operations that is within a logarithmic factor of the best
known sequential time for these problems. It is not clear whether it could
be extended to a parallel algorithm for more general closed semiring
systems.

Theorem 25 (Ku~era 1982). Assume that the 9iven semirint7 has the
property that, for all a, 1 ÷ a = 1, and denote the parallel time and number
of processors for multiplication of n × n matrices over the semirin9 by T(n)
and M(n). Then we can perform a closed semiriny system computation on 
9raph of n vertices in parallel time T(n) loy n, using M (n) processors.

Proof: Let A be the n x n matrix constructed as follows. For each edge
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(i, j) in the graph, labeled with some value v, we let A[i, j] = v. For each
i, j with no edge between them, we let A[i, j] = 0, the additive identity.
For each i, A[i, i] = l, the multiplicative identity. Let rn be the least power
of 2 greater than or equal to n, and let B = A", computed in log n
multiplications by repeated squaring.

In fact the algorithm described by Ku~era (1982) repeats, instead 
squaring, the following step: A ,-- A+A~. But it can be seen that, in the
algorithm we give, Ak[i, i] = 1 always, and so the extra addition performs
no useful work.

We claim that for each k, Ak[i, j] will hold the sum of all path labels’for
paths from i to j using at most 2~ edges. Clearly this is the case for k = 0.
For k > 0, note that each path from i to j having at most 2~ edges can be
formed as a path from i to some vertex h having at most 2k- 1 edges,
together with another path from h to j again having at most 2~- 1 edges.
Ak[i, j] = ~]~= I(Ak- l[i, h] +Ak ~[h, j]), which by induction is the sum of
the labels of all ways of combining two paths of length at most 2~- ~. The
matrix multiplication may compute the label for a given path in several
different ways, but by idempotence the sum of any number of copies of
the path label is that path label itself.

Finally, note that, again using the fact that 1 ÷a = 1, the sum of the
label of any nonsimple path with that of a simple path using a subset of
the same edges will be the label of the simple path; therefore since all
simple paths use at most n-1 edges we need not take A to any higher
power. ¯

Now let us describe some applications of closed semiring systems. First
consider finding the shortest path between each pair of vertices in the
graph, and assume the edge lengths are given as log n-bit integers. The
corresponding semiring has as its addition operation the integer minimum
function, and as its multiplication operation integer addition. The multi-
plicative identity is the integer 0; we add a special infinite value to be our
additive identity.

Matrix multiplication in the above semiring can be seen to take constant
time using O(n3) weak CRCW processors. Therefore we can find all short-
est paths in the graph in time O(log n), and the same number of processors.

As a second example, consider finding the transitive closure of a directed
graph. We take as our semiring Boolean algebra: the addition operator
will be logical or and the multiplication operator logical and. The additive
identity is the value representing falsehood, and the multiplicative identity
that representing truth. Again matrix multiplication can be performed in
constant time with O(r/3) weak CRCW processors, so finding the transitive
closure takes O(log n) time with the same number of processors. Essentially
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this algorithm, in a version for EREW processors, was given by Hirschberg
(1976).

As a less obvious example of the use of semiring systems, consider
finding a topological ordering of a directed acyclic graph. This can easily
be performed in linear time sequentially, but the algorithm does not obvi-
ously lend itself to parallelism. The following algorithm, due to Ku~era
(1982), does find a topological ordering in parallel; however, the efficiency
of .the algorithm is much lower than that of the sequential topological
sorting algorithm.

We first find the transitive closure of the graph, using the above semiring
algorithm. For each vertex v, we compute the in-degree ofv in the transitive
closure. Finally we sort the vertices by their computed in-degrees. If a
vertex v is an ancestor of another vertex w in the original graph, then in
the transitive closure w will have incoming edges from all the ancestors of
v, plus one from v itself, with possibly still others. Therefore sorting by in-
degrees in fact results in a topological ordering. Each step can be performed
in O(log n) time; the step that requires the most processors is that 
computing the transitive closure, which as we have seen takes O(n3) weak
CRCWs.

4.3 Matchin9

Another important problem that can be solved in parallel using matrix
techniques is that of matching. A matching is a subset M of the edges of
an undirected graph, such that no two edges in M share a vertex. There
are a number of closely related problems one would like solved, all involv-
ing finding matchings of a certain sort. In particular, we might want to
find any of the following types of matching.
1. A perfect matching. Each vertex must appear in some edge of the

matching.
2. A maximum matching. This is a matching with the largest number of

edges over all possible matchings in the graph. If there is a perfect
matching, it is obviously a maximum matching, but there are graphs in
which no perfect matching exists.

3. A maximal matching. With such a matching, each edge of the graph
has at least one of its vertices covered by the matching, so no more
edges can be added in the matching. A maximum matching must be
maximal, but the converse is not necessarily true.

4. A minimum (or maximum) weight perfect matching. Each edge is given
an integer weight; the task is to find a matching such that the sum of
the edge weights is minimized.

5. A minimum weight perfect matching, assuming that there is only one
perfect matching having the minimum weight.
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In problems 4 and 5 we restrict the weights to be integers bounded by
a polynomial in the input size. It is not clear whether the problems can be
solved quickly and efficiently in parallel for more general weights.

Matching is interesting in its own right, but it is also closely related to
a number of other problems. In particular if we can calculate maximum
flows on a bipartite graph, we can use that calculation to find a maximum
matching on that graph; and conversely matchings can be used to find
certain types of flows. Aggarwal & Anderson (1987) used flows calculated
by matchings in their algorithm for computing a depth-first search tree. If
we could compute matchings more efficiently, we could in turn use that
computation to compute depth-first search trees more efficiently.

Here we describe a solution to problems 1 and 5, due to Mulmuley et
al (1987). Problem 1 is reduced to problem 5 by an appropriate choice 
relatively small random weights; then problem 5 is solved deterministically
using inversion of a matrix derived from the edge weights. We should note
that the same paper also describes a solution of problems 2 and 4 using
similar techniques.

Problem 3, finding a maximal matching, seems to be much easier; it can
be solved efficiently and deterministically in parallel with an algorithm
based on the Euler tour technique for graphs (Israeli & Shiloach 1986).
The best known randomized algorithm for this problem is even more
efficient (Israeli & Itai 1986).

Finally we should note that an important special case of all of the above
problems is finding the appropriate matching for a bipartite graph. We do
not discuss this case further here.

Theorem 26 (Mulmuley et al 1987). Let S = {x~,x2,... ,x,} be a finite
set, and let F= {S1, S2 ..... Sk}, with Sic S, be a family of subset of S. Let
weights wi, drawn randomly and independently from a uniform distribution on
the integers from l to 2n, be assigned to each of the xi, and define the
weight w(Sj) of a set in F to be the sum of the weights of its members.
Then the probability that there is exactly one member of F having the
minimum weight is at least 1/2.

Proof: Let P be the probability that more than one minimum weight
matching exists. Let Ei be the event that x~ is both in some minimum weight
matching and not in some other minimum weight matching, and let P~ be
the probability of event Ei. We first show a bound on Pi, and then from
this derive a bound on P.

Assume a fixed assignment of weights wi. For each i, define Fi to be the
collection of sets from Fcontaining x~. Let m(X) for X ~ Fbe the minimum
weight set in X. Then xi can only be included in some minimum weight
set and not included in some other such set when re(F-F,.) = m(F~); 
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equivalently when wi = re(F--Fi)--(m(Fi)--wi). But wi is independent of
both m(F-F3 and m(F3-wi, so P~, the probability of wi being chosen to
equal their difference, is at most 1/2n.

If there are two or more minimum weight sets in F, they must differ
in at least one xi; that is, at least one of the events E~ must occur. These
events are not independent, but the probability of any of them occurring
can be no more than the sum of their individual probabilities. That is,
P < ~i"= ~ Pi <-- n/2n = 1.2. ¯

Corollary. If we can solve problem 5 above in time t using p CRCW
processors, we can solve problem 1 in expected time O(t ) using the same
number of processors.

Proof." Assume the graph has n vertices and m edges. We give each edge
a random weight from 1 to 2m; this takes linear operations, so it must be
within the bounds for solving problem 5. By the theorem above, there is
a unique minimum weighted matching with probability at least 1/2. There-
fore with probability 1/2 the algorithm for problem 5 finds a perfect
matching; if the minimum matching is not unique we don’t know what the
algorithm will do, but we can stop it after the appropriate amount of time
and check in linear (CRCW) operations whether it has in fact found 
perfect matching. Again, since we assume nothing about the algorithm for
problem 5, if the minimum matching is not unique it might attempt some
concurrent memory operations that would not happen otherwise; but with
CRCW processors this can cause no harm. The expected number of times
we need perform this sequence of operations is at most 2. ¯

Now assume we have a graph G with n vertices and m edges, each edge
(i, j) marked with an integer weight < w~,j < k,andthatthereis exactl y
one minimum weight perfect matching in G. We now show, following
Mulmuley et al (1987), how to find that perfect matching in parallel.

First define the skew-symmetric matrix B as follows. If (i, j) is not 
edge of G, or if i = j, then B[i, j] = 0. Otherwise, if i < j, B[i, j] = 2w,.J, or
if i > j, B[i, j] = - 2w,,J. The value at each cell is an integer representable
in O(k) binary digits. Also, let w be the weight of the minimum weight
perfect matching M of G.

Theorem 27 (Mulmuley et al 1987). If G has a unique minimum weight
perfect matching, and B is defined as above, then the determinant of B is
divisible by 22w, and by no higher power of 2.

Proof: For each permutation a of the numbers from 1 to n, let
value(a) = +_ 1-I7= ~ B[i, a(i)], with the sign positive if a is an even permu-
tation, or negative if it is odd. Then det(B) = Z, value(a).
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Now let o- be an arbitrary permutation. If o. takes any number i to itself,
then value(o.) includes B[i, i] = 0 and is therefore zero. If o- contains an
odd cycle of length more than one, then it can be paired with another
permutation o-’ which is identical except that it contains the inverse cycle.
If there is more than one odd cycle we choose the one containing
the smallest of the numbers being permuted; in this way we make the
pairing of permutations one-to-one. Where one cycle contributes B[i, j]
to the value of its permutation, the one it is paired with contributes
B[j, i] = -B[i, j]. Because the cycles are odd, the total number of such
terms contributed by either cycle is odd, so value(a) = -value(a’), and
the two values cancel out in det(B).

The remaining case is that o, contains only even cycles. Then split each
cycle into odd and even edges; this gives rise to two perfect matchings M1
and M2 such that value(a) = ± w(u’)+w(Mg. I f M1-= M2 =M is themini-
mum weight matching, with weight w, then value(s)= ±22w, and o- is
the permutation taking each vertex to its match in M. Only one such
permutation exists because of the assumption that the minimum weight
perfect matching is unique. Otherwise, w(MO + w(M2) > 

We have shown that det(B) is the sum of a number of terms, some 
which cancel, some of which are divisible by a higher power of 2 than 2w,
and exactly one of which is ± 22w. Therefore the highest power of 2 dividing
det(B) is as claimed exactly 2w. 

Now define Bi.j to be the matrix formed by removing row i and column
j from matrix B. The adjoint adj(B) is defined by adj(B) [j, i] = det(B;,j).
It turns out that B adj(B) = det(B)’I, so the adjoint can be found 
omitting the division by the determinant from the matrix inversion algo-
rithm described earlier. In this particular case, we are better off using the
matrix inversion algorithm of Galil & Pan (1985a), which also computes
the adjoint before dividing it by the determinant.

Theorem 28 (Mulmuley et al 1987). An edge (i,j) is in the unique
minimum weight perfect matching M, having weight w, exactly when
det ( Bi,~) 2wi,J/22w is odd.

+Proof: Assume without loss of generality that i< j. Note that
det(Bi,j)2~ = E~ value(o-), where the sum is over those permutations 
such that o-(i) = 

As in the previous theorem, those o- taking some k to itself contribute
nothing to the sum. If some a has an odd cycle of length greater than one,
then because n is even either o- takes some k to itself or it contains another
odd cycle. In the latter case, at most one of the odd cycles can contain i
andj. We find the odd cycle not containing i andj and having as a member
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of the cycle the smallest of the numbers from l to n among all such odd
cycles, and pair o- with another permutation obtained by reversing this
cycle; again as in the previous theorem, this permutation exactly cancels
value(a).

Finally if a has only even cycles, then again as in the previous theorem
it can be decomposed into two matchings, and as before it will contribute
22w exactly for the permutation corresponding to the minimum weight
perfect matching (if that matching contains edge (i, j)) and higher powers
of two for all other permutations.

Therefore, if (i, j) ~ M, the highest power of 2 dividing det(Bi,j)2~,.J 
be exactly 2w, and if(i, j) ¢ M, then det(Bi, j)2’~i,J will be divisible by a higher
power of 2 than 2w. ¯

The above theorems lead us to the following algorithm for finding a
minimum weight perfect matching whenever this matching is unique:

1. Compute B, det(B), and adj(B).
2. Find w from det(B) as in Theorem 27.
3. Determine for each edge (i, j) whether it is in the minimum weight

perfect matching using Theorem 28.

Theorem 29 (Mulmuley et al 1987). A unique minimum weiyht perfect
matchin9 on a 9raph with n vertices, with integer edye weights from 1 to k,
can be found in expected time 0(lo92 n) usin9 0(knM(n)) 
processors.

Proof: We use the integer matrix inversion algorithm of Galil & Pan
(1985a), which computes the determinant and adjoint of B in the above
bounds. The remaining steps may easily be performed in the same
bounds. ¯

Corollary. A perfect matchin9 of an undirected 9raph, if one exists, may
be found in expected time 0 (lo#2 n) usin# 0 (mnM (n) ) CRCW processors.

We should note that Galil & Pan (1985a) give a different perfect
matching algorithm, based on that of Karp et al (1985a), which takes
O(log3 n) expected time with O(nM(n)) processors. Neither algorithm is
as efficient as the best sequential algorithm, which takes O(mv/n) time
(Micali & Vazirani 1980).

As we previously noted, Israeli & Shiloach (1986) gave an algorithm for
maximal matching which takes O(log3 m) time with O(m +n) processors.
Israeli & Itai (1986) gave a randomized algorithm using the same number
of CRCW processors, but taking time O(log m). Maximum matching can
be solved by first computing the size of the matching from the rank of the
adjacency matrix, and then computing a perfect matching on a graph
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derived from the original graph; the resulting algorithm takes the same
bounds as perfect matching. The minimum weight perfect matching prob-
lem can be solved using a factor of O(nw) more processors than needed
to find a perfect matching (Galil 1986b; Mulmuley et al 1987); here w 
the largest weight on any edge.

5. CONCLUSIONS

We have described a number of algorithmic tools useful in the construction
of parallel algorithms; among these are prefix computation, ranking, Euler
tours, ear decomposition, and matrix calculations. We have also described
some applications of these tools and listed many others.

The algorithms and algorithmic tools we have given seem likely to be
useful not only in their own right for the problems they solve, but also as
examples of ways to break up other problems into parts suitable for
parallel solution.

A number of open problems remain. It is likely that many of the prob-
lems for which we have described algorithms can be solved more quickly,
more efficiently, or with a weaker type of PRAM. In particular, we would
like to reduce the processor bounds and remove the requirement for
random numbers of the algorithms for matching and finding depth-first
search trees. In the weighted matching algorithms, we would also like to
remove the linear dependence on the weights from the bound on the
number of processors. Another algorithm we gave that was much less
efficient than its sequential counterpart was for topologically sorting a
directed acyclic graph; perhaps this problem can be solved more efficiently.
A related problem is that of finding shortest paths from a single source in
a graph; the best known parallel solution is no better than finding the
paths from all sources, using the parallel closed semiring system algorithm
we gave. This algorithm itself solves an important special case of closed
semiring systems; can the general case of these systems be solved quickly
and efficiently in parallel?
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