Hashing & Dictionaries

Dictionary

Search —— Static |

1.
3. Delete

Dictionary

1. Search —— Static |
3. Delete
Depth

Binary Search Tree

Dictionary

1. Search —— Static |

3. Delete

Depth -

Can we do better?

Binary Search Tree

Hashing
Key: HASH TABLE

“Paloma Guerrero”
K Bucket
Value: ey
Toronto “New York”
Value: unction e %
“New York” / \ TOr‘OntO

“Manila”

Value:
“Manila”

Collisions

—_—

=009 e
Michael 1 0 0.8 r"f
Jim ’ © 07 i
Dwight 3 © 0.6 i
Pam 4 3\0.5
Toby = 04
< 0.3 g
Q0.2 :
O i
< 0.1
o 0 _.-'"rlrw 23 | | ! | ! |
For any hash function 0O 10 20 30 40 50 60 70 80 90 100

there are bad key sets! Number of people

Universal Hashing

e Universal Hash Family: the hashes are distributed well regardless the key set.

e Universal Hashing: We simply choose a prime number m and uniformly at

random some factors a, ..., a.

Static Hashing

e Space - Collisions trade-off
e Perfect Static Hashing

Hash Table

Array of
Linked Lists

innnn

RIN.

Hashing with probing

e Linear probing (primary clustering)
e Quadratic Probing (secondary clustering)
e Double Hashing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Probe Probe Probe Insert
here
- Filled slot
E lot
Slot to insert

Key resolves to index 5: Collision

Three probes required to
insert

Cuckoo Hashing

Insertion when one of the two buckets is empty Insertion when the two buckets already contain entries

Step 1: Here <y,b> will be withdrawn from T1 so that <x,a> can
be stored.

<y,b> T1 <y,b> T1

A B

Step 1: Both buckets for <x,a> are tested, the one in T2 is empty.

<X,a> ﬁ ﬁ‘
T2 <z,c> T2
Step 2: <x,a> is stored in the empty bucket in T2. Step 2: After <x,a> has been stored in T1, <y,b> needs to be
moved to T2. The bucket in T2 may already contain an
<y, b> T1 entry, if so this entry will need to be moved.

1

2 i —
o T2

