Hashing & Dictionaries
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Universal Hashing

e Universal Hash Family: the hashes are distributed well regardless the key set.

e Universal Hashing: We simply choose a prime number m and uniformly at

random some factors a, ..., a.



Static Hashing

e Space - Collisions trade-off
e Perfect Static Hashing
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Hashing with probing

e Linear probing (primary clustering)
e Quadratic Probing (secondary clustering)
e Double Hashing
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Cuckoo Hashing

Insertion when one of the two buckets is empty Insertion when the two buckets already contain entries

Step 1: Here <y,b> will be withdrawn from T1 so that <x,a> can
be stored.

<y,b> T1 <y,b> T1
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Step 1: Both buckets for <x,a> are tested, the one in T2 is empty.

<X,a> ﬁ ﬁ‘
T2 <z,c> T2
Step 2: <x,a> is stored in the empty bucket in T2. Step 2: After <x,a> has been stored in T1, <y,b> needs to be
moved to T2. The bucket in T2 may already contain an
<y, b> T1 entry, if so this entry will need to be moved.
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