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Optimal  Transmission  Ranges  for  .Randomly  Distributed 
Packet  Radio  Terminals 

HIDEAKI  TAKAGI,  MEMBER,  IEEE, AND LEONARD  KLEINROCK,  FELLOW, IEEE 

Abstract-In multihop packet radio networks with randomly dis- 
tributed  terminals, the optimal transmission radii to maximize the 
expected progress  of packets in desired directions are determined with 
a  variety  of transmission protocols and network configurations. It is 
shown that the  FM capture phenomenon with slotted ALOHA greatly 
improves the expected progress over the system without capture due 
to  the more limited area  of possibly interfering terminals around the 
receiver. The (mini)slotted nonpersistent carrier-sense-multiple-ac- 
cess  (CSMA) only slightly outperforms ALOHA, unlike the single-hop 
case  (where a large improvement is available), because of a large area 
of “hidden” terminals and the long vulnerable period generated by 
them.  As an  example of an inhomogeneous terminal distribution, the 
effect  of  a gap in an otherwise randomly distributed terminal popula- 
tion on the expected progress of packets crossing the gap is con- 
sidered. In this case, the disadvantage of using a large transmission 
radius is demonstrated. 

0 
I.  INTRODUCTION 

NE of the  key issues in providing’  efficient  and  cost- 
effective  multihop  packet  radio  networks is to  f ind an 

adequate  transmission  power  for  each  terminal  in  the  net- 
work.  The  environment  we  have  in  mind is one  in  which 
communicating  terminals  are  geographically  distributed  and 
possibly  mobile  and  require  multiaccess  to  a  communication 
channel  shared  among  themselves.  It  has  been  shown 171 
that  the  spatial  reuse  of  the  channel  obtained  by  reducing  the 
transmission  power to  such  a level that  only a few  neighbors 
are within  the  range gives rise t o  an improved  throughput 
(the  average  rate of successful  transmissions)  for  the  net- 
work.  However,  since  the  purpose of transmitting  packets 
in  a  multihop  environment is t o  advance  them  towards  their 
destinations,  a  more  appropriate  measure  of  performance 
is the  expected  one-hop  progress of a  packet  in  the  desired 
direction  [41 , 171 . 

The  optimal  transmission  power  to  maximize  the  expected 
progress  involves  the  following  tradeoff.  (Here  we  assume 
every  terminal uses the  same  power.)  A  short-range  trans- 
mission is favorable in terms of successful  transmission  be- 
cause  of  its  low  possibility  of  collision  (the  overlapping  of 
packet  transmission  periods  from  multiple  transmitters) 
at   the receiver.  A  long-range  transmission is favorable  be- 
cause l )  it  moves  a  packet  far  ahead  in  one  hop if successful, 
and 2)  there is high  probability of finding  a  candidate  receiver 
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in  the  desired  direction.  Roughly  speaking, if we  denote 
by N the  average  nurnbe,r  of  terminals  within  the  transmission 
radius (N  is clearly  an  increasing  function of the  radius), 
then  the  probability of successful  transmission is proportional 
to  1/N,  whereas  the  progress is proportional  to a, and  the 
contribution  from  the receiver’s angular  position is expressed 
as a  monotonically  increasing  function  of N from 0 to  some 
asymptotic  value.  Thus,  we see that  there  must  exist  an 
optimal  value  of N ,  which  maximizes  the  obtainable  expected 
progress. 

This  paper  elaborates on these  ideas  with  a  variety of 
transmission  protocols  and  network  configurations.  The  proto- 
cols  considered  here  include  slotted  ALOHA  (with  and  without 
FM capture)  [6]  and  nonpersistent  carrier-sense-multiple- 
access (CSMA) [ 3 ] ,  [81 . Terminals  are  randomly  located  in 
the  plane  according  to  a  two-dimensional  Poisson  distribution 
with  homogeneous  or  inhomogeneous  density.  Each  section 
below  begins  with  the  description of the  model used in  that 
section,  followed  by  the  formulation  of  the  optimization 
problem.  The  optimal  transmission  range is found,  and  the 
performance is compared  to  other  models.  The  results  are 
summarized  in  the  concluding  section. 

11. OPTIMAL TRANSMISSION RADII FOR SLOTTED ALOHA 

This  section is concerned  with  the  optimal  .transmission 
radii  for  randomly  distributed  terminals  using  slotted  ALOHA 
as the  transmission  protocol.  The  same  problem  was  con- 
sidered  by  Kleinrock  and  Silvester [ 4 ] ,  [7]  who  provided 
the  “magic  number” 6 as the  optimal  number of terminals 
to   be covered  by  one  transmission.  However,  there  appears 
t o  be  an  inconsistency in their  treatment.  (In  evaluating 
the  probability of successful  reception [7 ,  eq.  (6.7)1,  the 
number  of  terminals  around  the  receiver is confused  with  that 
around  the  transmitter. As a  matter of fact,  the  resultant 
optimal p ,  p*  = 1/N, could  be  greater  than  1  [inconsistent 
with  slotted  ALOHA]  for  a  very  small  transmission  radius.) 
Therefore,  we  reconsider  their  problem  and  show  a  different 
magic  number  nearly  equal  to 8. The  present  section  also 
serves t o  provide  the  most  basic  model  among  those  con- 
sidered  in  this  paper. 

We consider  the  progress  that  a given packet  makes  in  the 
direction  towards  its  final  destination  for  a single (arbitrary) 
slot  only  and  do  not  discuss  its  behavior  along  the  entire 
path.  The basic assumptions  and  associated  parameters used 
in  this  section  are as follows. 

Transmission  protocol: slotted  ALOHA.  The  slot  length 
in time is equal  to  the  transmission  time of a  packet.  (All 
packets  are  assumed  to  be  of  the  same  length.)  The  Propaga- 
tion  time is ignored  (or  considered to be  included  in  the 
slot). We do  not  take  into  account  the  acknowledgment 
traffic.  It is assumed  that  the  successful  reception of a  packet 
is immediately  made  known  to  the  transmitter  (ex.,  by Using 
a  different  (free)  channel  of  wide  bandwidth). 

Transmission  probabilit}]: p .  All terminals  are  supposed  to 
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have  packets  at all  times  (heavy-traffic  assumption). For 
every  slot,  each  terminal  transmits  a  packet  with  proliability 
p (and  does  not  with  probability  1 - p) ,  where 0 < p < 1. 

Transmission  radius: R .  All terminals  use  the  same  trans- 
mission  radius.  This  means  that  terminals  within  a  circle 
of radius R centered  at  the  transmitter  hear  the  transmission, 
whereas  others do  not  hear  it  at  all.  More  than  one  transmis- 
sion  within  a  distance R of the receiver in  the  same  slot bring 
about  the  collision of all  packets  at  that  receiver. 

Spatial  distribution of terminals: two-dimensional  Poisson 
distribution  with  the average number of terminals  per  unit 
area x. We assume  that  a  new  sample  of  the  spatial  distribution 
is  given for  every  slot. 

Distributiorz o f t h e  sources  and  destinations of packets: two- 
dimensional  isotropic,  i.e.,  uniform  over  the  plane.  For  every 
slot,  the  direction of the  final  destination  for  a  packet  in 
each  terminal  is  assumed  to  be  uniformly  distributed  in  angle. 

Routing strateg,v: most  forward  within R (MFR).  Each 
terminal is assumed to  know  the  position of those  terminals 
within  a  distance R .  Given  a  packet  and  its  final  destination, 
a  terminal  transmits  to  the  terminal  most  forward  (among 
those  whose  positions  it  knows)  in  the  direction of the  final 
destination. If no  terminals  are  in  the  forward  direction,  it 
transmits  to  the  least  backward  terminal, if any. (A  terminal 
cannot  transmit  to  itself.)  In case there  are  no  terminals  in 
the circle of radius R at all, i t  does not  transmit  in  that  slot. 
(Note  that  MFR  may  not  be  minimizing  the  remaining dis- 
tance  to be  traveled to  the  destination;  MFR is myopic 
routing.) 
N : the average number of terminals  within  a  radius 

R ,  and also  a  measure of connectivity of the  network. 
In this  environment,  we  have  the  following  two  measures 

of performance. 
S ( p ,  N )  the  one-hop  throughput,  defined as the average 

number  of  successful  transmissions  per  slot  from  a  terminal. 
Z ( p ,  N )  the  expected  progress  of  a  packet  in  the  direc- 

tion  of  its  final  destination  per  slot  from  a  terminal.  The 
progress x is attained  when x is the  distance  between  the 
transmitter  and  the  receiver  projected  onto  a  line  drawn 
towards  the  final  destination  and  the  transmission  to  that 
receiver  is s t~cess fu l .  

Note  that Z ( p ,  N) has  the  dimension of length  (e.g.,  miles). 
Therefore, Z ( p ,  N M m a y  conveniently  be  used as a  dimen- 
sionless  measure of the  expected  progress  in  the  number of 
hopped-over  terminals  since  1/(2fi) is the average  distance 
between  two  nearest  terminals.  (See (37) below.) We employ 
Z(p ,  N) as the  objective  function  for  our  optimization  prob- 
lem  in  accordance  with  the  routing  strategy MFR. A point 
in  the ( p ,  N) plane  which  maximizes Z ( p ,  N) is sought. How- 
ever,  the  value of S ( p ,  N) at this  optimal  point  is  also  inter- 
esting: I t  will turn  out  that  the  same p = p * ( N )  maximizes 
b o t h   S ( p , N )   a n d  Z ( p ,  N ) .  

In  order  to  evaluate S ( p ,  N), we  first  note  that e r N  is the 
probability of there  being no  terminals  within  a  distance 
R of the  transmitter.  In  such  a  case,  no  transmission  can  oc- 
cur.  Under  the  condition  that  there is at least one  candidate  re- 
receiver  within R ,  let A i  be  the  event  that  there  are i other 
terminals  (excluding  the  transmitter P and receiver Q) within  a 
distance R of Q. (See  Fig. 1 .) Thanks  to  the  memoryless  prop- 
erty of the  Poisson  distribution,  the  distribution of the 
number of other  terminals  within R does  not  depend  on  the 
existence of P and Q. Thus, we  have 

The  transmission  from P t o  Q is  successful  (let  this  event  be 
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u 
Fig. 2. The position of the,receiver Q. 

where 

q( t )  e cos- 1 ( t )  - t <-7. ( 7 )  

Note  that q ( t )  is the  area of A in  Fig.  2  when R = 1  (unit 
circle)  and x = f. Therefore,  we  have 

Z ( p ,  N )  = Prob [P transmits] * Prob [P + Q] 

E [progress of a  packet] 

R 

x - Prob [x <?<x f d x ]  

Thus, given N ,  Z ( p ,  N )  is also maximized  by p = p * ( N )  given 
by  (4),  and  the  normalized  maximum is  given by 

z-(-) 16 N ' I 2  a s N - t O ,  

45 71 

1 
3- - as N - t  m. 

e m  

The  functions p * ( N ) ,  S(p*(N), N ) ,   a n d   Z ( p * ( N ) , N m a s  
given by (e ) ,  (S), and  (9),  respectively,  are  plotted  in  Fig. 3. 
Z(p*(N) ,  N w h a s  its  maximum value at  

N = N* = 1.72. 

Thus,  we  propose  a new  magic number, 8, as .the  optimal 
number  of  terminals  to  be  covered  in  the  transmission  range. 
In  terms of transmission  radius,  we  have 

R* = 3 . 1 4 ( 1 / ( 2 6 ) ) .  

The  associated  optimal  values  are 

p *  4 p*(N*)  = 0.1  13 

S *  e S ( p * , N * )  = 0.0419 

z*f i  4 Z(p*, N * ) f i  = 0.043  1. 

Therefore,  the  sketch  of  optimal  transmission is  described 
as follows.  Each  terminal  transmits  a  packet  in  every  ninth 
slot on  the average ( l / ~ ' ~  = 8.85). The  probability of  success 
of such  a  transmission  is S * / p *  = 0.37,as  slotted  ALOHA 
predicts.  It  uses  a  transmission  radius to  span  just  about  three 
(3.14)  nearest  neighbors  in  linear  distance.  Then,  the  expected 
progress  of  the  packet  is%*/p* = 0.76( 1 / ( 2 n ) )  = (2/3)(R*/e). 
Here  the  factor  l/e  accounts  for  the  probability of successful 
transmission,  and  (2/3)  R * represents  the  effective  distance 
that  a  packet is advanced  by  a  successful  transmission  with 
radius R *. 

111. OPTIMAL TRANSMISSION RADLI FOR ALOHA 
WITH CAPTURE 

The  analysis of the  preceding  section is here  extended 
to  the case of a  slotted  ALOHA  system  with FM capture.  The 
observation  that  the  capture  phenomenon  increases  the 
throughput  for  a single  receiver  has  been  investigated  by 
Roberts  [6]  and  Abramson [ 11.  Fratta  and  Sant  [2] have 
shown  how  capture  affects  the  throughput  behavior of an 
ALOHA  network  which  has  multiple  transmitters  and re- 
ceivers.  They  did  not  use  the  notion of the  transmission 
radius as  we have  done  in  Section 11. Their  work will be  the 
basis of Section VI. In  this  section,  we  consider  the  optimiza- 
tion  problem of the  expected  progress of packets  through 
the  MFR  (most  forward  within  the  transmission  radius R) 
routing  in  a  capture  environment.  Similar  work  has  been  done 
by  Nelson [ 5 ]  using  a  different  routing  strategy.  (Specifically, 
in  his  routing,  one  of  the  [say] k terminals  within  a  half 
circle [in  the  forward  direction] of radius R is  picked  as  a 
receiver  with  probability l / k .  As a  result, his optimized 
expected  progress is somewhat  smaller  than  ours.  For  example 
[using  the  notation  defined  below], in the case  of  perfect 
capture,  he gives Z*/R* = 0.0346, while  we give Z* /R*  = 
0.0393.) 

The basic  assumptions  and  parameters  for  the  model  we 
study  here  are  the  same as  in  Section 11, except  for  the  condi- 
tions  for  successful  transmission.  They  include  the  ,slotted 
ALOHA transmission  protocol,  transmission  probability p ,  
transmission  radius R ,  Poisson  distribution of terminals  with 
parameter X, MFR  routing,  isotropic  distribution of source- 
destination  pairs,  and N 4 h R 2 .  

The  concept of FM capture used in  this  section  and  Section 
VI is the  same as in  the  papers  cited  above,  that  is,  a  receiver 
will correctly  receive  a  packet  from  a  transmitter  which is 
located  at  a  distance r of the receiver if none  of  the  terminals 
within  a  distance ar of the  receiver  transmit  simultaneously. 
The  capture  parameter a is related  to  the  capture  ratio  CR 
in decibels via CR = 20  logloa,   1  < a < O0. The case CY = 1 
is called  perfect  capture,  whereas  the  case CY -+ 00 corresponds 
to  the  system  without  capture  (Le.,  the  case  considered  in 
Section 11). 

Under  these  circumstances,  we  evaluate  the  throughput 
S ( p ,  N ;  a )  and  the  expected  progress Z ( p ,  N ;  a) .  We employ 
Z ( p ,  N ;  a )  as the  objective  function  of  our  optimization  prob- 
lem  with  respect  to p and N .  [Now  the  optimum  p*(N; a )  
for S ( p ,  N ;  a )  is different  from  that  for Z ( p ,  N ;  a).] 

First,  we  state  the  conditions  for  successful  transmission 
of a  packet.  Since  all  terminals  are  using  the  same  transmission 
radius R ,  the  transmission  from  the  transmitter P to  the 
receiver Q, under  the  condition  that  they  are  a  distance r 
apart, is successful if no  other  terminals  within  a  distance 

r' e min [ ar, R]   (1  0 )  

of Q (including Q itself)  transmit  at  the  same  time [ S I  , [61 . 
Fig.  4  shows  the  area o f  potential  interfering  terminals  for  the 
transmission  from P t o  Q. Thus,  unconditioning  on  the  num- 
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Fig. 3 .  The optimal transmission for slotted ALOHA networks with- 
out capture. (In this and some other figures. for conciseness we 
have plotted scaled values against a single  vertical axis.) 

Fig. 4. The area of terminals  possibly interfering with the transmission 
P - t  Q. (a) CYY < R .  (b) CYY > R .  

ber of terminals  in  the  area  as  in  Section 11, we  have 

Prob [P + Q I r'= r] = (1 - p ) e - A P n v ' 2  (1 1) 

where P + Q represents  the  event  that  the  transmission  from 
P t o  Q is successful,  and 7is  the  distance  between P and Q .  

Second,  we  need  the  expression  for  the  distribution  of  the 
positions_ of the  receiver  with  respect  to  the  transmitter. 
Let (r'; 0)  be  the  polar  coordinates of the  position of the 
receiver Q, where  the  origin of the  coordinates is at  the  posi- 
tion of the  transmitter P, and 0 is measured  from  the  direction 
in which  a  packet  at P is destined  to  proceed.  See  Fig. 5 for 
the  configuration.  Let A be  the  shaded  area.  Due  to  the MFR 
routing,  the  receiver is located  at (Y, 0)  if and  only if there  are 
n o  terminals  in A and  there is a  terminal  at  (r, 0) .  Therefore, 

P r o b [ r < ~ < r + d v , 0 < ~ < 8 + d B ]  

= , - h R 2 ( * - s i n * c o s * ) 2 X y d y d 0  

O < r < R , Q < O < n  (1 2) 

where  we  have used the  relation  r  cos 0 = R cos  and  the 
definition  of q ( t )  given in (7). Note  that  this is an  expression 

direction of progress 

Fig. 5 .  The position of the receiver Q with  respect to the position of 
the transmitter P. 

Thus,  we  have  the  throughput  [similar to (3)] 

S ( p ,  N ;  (Y) = p (1 - p ) e - A n p r ' 2  

r n  

where 

t' = min [a t ,  11.  (14) 

We see  that  (13)  reduces  to  (3)  when (Y -+ -. Also,  we  have 

for N 1 and  a  moderate  value of (Y, which is again  the  same 
for  an  event  similar  to  the  event  defined  for (6). as  before. 
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The  expected  progress  can  be  obtained  similarly as 

= - p N ( l  2 - p ) x l l  t 2 e - P N r t 2   d t  
77 

[* cos e e - ( N / n ) q ( r c o s e )  de. (1 5 )  

The  maximum of Z ( p ,  N ;  a)fi is sought in the ( p ,  N )  
plane  for given 01. Let p * ( N ;  a )  be  the p that  achieves  this 
maximum  for given N and a. The  optimal  point  for Q = 1 (per- 
fect  capture) is found  as  follows: 

N* = 7.1 or  R* = 3.0(1/(2dX)) 

p *  4 p*(N*; 1) = 0.17 

S* 4 S(p* ,  N * ;  1) = 0.068 

Z * d g  Z ( p * ,   N * ;  1)&= 0.059. 

The  expected  progress is about  36  percent  better  than  the 
system  without  capture.  The  optimal  transmission is now 
sketched as  follows.  Each  terminal  transmits  a  packet  in  every 
sixth  slot  on  the average ( l / p *  = 5.88). The  probability of 
successful  transmission  is  S*/p* = 0.4 > l/e.  The  transmission 
radius  used is three  times  the average  distance  between  the 
two  nearest  neighbors.  Then,  the  expected  progress of a 
packet  per  transmission  is Z*/p*  = 0 . 6 9 ( 1 / ( 2 A ) ) .  

Fig. 6 displays  the  optimal  values of parameters N and p 
and  resulting S* and 2 . 6  for  various  values of the  capture 
parameter 01. From [ 61, good FM corresp,onds  to CR = 1.5, 
while  moderate  FM  corresponds  to CR = 3.0  and  poor FM 
corresponds  to CR = 6.0. As we  noted  earlier,  the  results 
for cy = 00 (no  capture)  coincide  with  those in Section 11. 
We first  notice  that  Z*&with  some  capture is  always  greater 
than  that  without  capture.  Thus,  a  conclusion  here is that  the 
FM  capture  always  helps  the  progress of packets.  The  reason 
for  this  id  that  we  limit  the  area of interfering  terminals 
within min[cYr, R ]  , which  is  always  no  greater  than R for   the 
case without  capture.  This  implies  a  smaller  number of inter- 
fering  terminals,  thus giving higher  throughput  and  greater 
expected  progress.  It  is  also  interesting  that  as.&  increases, 
N* first  decreases  and  then  increases to  reach  its  final  value. 
This  might  be  explained as follows. For small a ,  the  limitation 
of a  conflicting  area  by QY is more  effective  than  that  by 
R ,  so N* decreases  with  more  conflict  as Q increases.  On  the 
other  hand,  for  large CY, the  limitation  by R is dominant; 
so N* approaches  the  value  without  capture. 

IV. OPTIMAL TRANSMISSION  RADII FOR CSMA 
In  a  single-hop  network,  another  (great)  improvement 

over  ALOHA  is  made  possible  by  CSMA.  With  this  protocol, 
each  terminal  utilizes  the  information  about  channel  status 
(busy  or  idle)  obtained  by  listening  to  the  channel.  However, 
the  existence of some  terminals  which  are  not  in  line of  sight 
of others  causes  degradation  in  performance;  this  is  called  the 
hidden-terminal  effect [SI , [ 9 ] .  If we use the CSMA protocol 
in  a  multihop  network,  we  expect  a  similar  effect  because  the 
hearing  range  of  the  receiver is more  or less different  from  the 
listening  range of the  transmitter.  The  purpose of this  section 
is to estimate  the  effect  of  hidden  terminals  associated  with 
CSMA, with  the  same  terminal  distribution  and  with  the  same 
packet  routing  strategy as  in the  preceding  sections.  The  basic 
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Fig. 6 .  The optimal  transmissions for slotted ALOHA with  capture. 

assumptions  and parameters carried over from  Section I1 
include  the  Poisson  distribution of terminals  with  parameter 1, 
transmission  radius R ,  MFR  (most  forward  within R )  routing, 
isotropic  distribution of source-destination  pairs,  and 

We now  explain  the  protocol of slotted  nonpersistent 
CSMA. The  constant  packet  transmission  time is chosen 
as  the  unit of time,  and  the  length of a  (mini)slot,  denoted 
by a, accounts for the signal propagation  delay.  In  the  deriva- 
tion  below, r 2 l / a  is assumed to  be  an  integer.  (Propagation 
delay a is used to  imply  a  time  interval  long  enough  for  all 
the  terminals  in  the  transmission  range  to  recognize  the  events 
that  occurred  time  a  before.) See  Fig.  7  for  the  illustration 
of the  channel  activity  heard  at  the  receiver. We assume  that 
all the  terminals  within  a  distance R of the  transmitter  recog- 
nize  the  transmission  in  one  slot  and  that  they  hear  the  trans- 
mission  one  slot  more  after  the  completion of transmission. 
Assuming  that  every  terminal  is  ready to  transmit  at all times, 
the  nonpersistent  protocol is described  as  follows.  In  every 
slot,  each  terminal  listens  to  the  channel  with  probability p 
(and  does  not  with  probability  1 - p ) .  That  is,  the  channel- 
sensing  behavior  in  a  sequence of slots  (except  during  the 
transmission)  at  each  terminal  constitutes  independent 
Bernoulli  trials.  The  parameter p is the sensing  rate  per  slot. 
If  the  channel is sensed  idle, i t  begins  transmission  in  the 
same  slot  with  probability  1. If the  channel is  sensed  busy, 
i t  suppresses  the  transmission,  and  stops  sensing  the  channel 
until  the  end of the  current  transmission. When the  channel 
becomes  idle,  the  above  sensing  procedure  is  repeated. 

I t  is clear  that  the  events  whether  an  actual  transmission 
occurs  or  not as a  result  of  channel  sensing  in  a  sequence  of  slots 

N 2 X T R ~ .  
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Fig. 7. Slotted nonpersistent CSMA. Transmission  and  idle  periods. 

at  each  terminal  are  no  longer  independent  Bernoulli  trials. 
However,  we  introduce  the  assumption  that  they  are. TP2f is, 
for every slot  (except  during  the  transmission),  each  terminal 
transmits  a  packet  with  probability p '  (and  does  not  with 
probability 1 - p ' ) .  A  similar  assumption  was used  in [91 , and 
the  validity  of  results  obtained was claimed  by  comparing  the 
throughput values against  simulation.  The  parameter p '  is the 
transmission  rate  per  slot. We leave the  determination of p '  
in  terms of p to   the Appendix,  since  we  formulate  our  optimi- 
zation  problem  with  only p . Under  these  conditjons,  we 
will evaluate  the  throughput of transmission S(p , N ;  a) ,  
and  the  expected  progress Z ( p ' ,  N ;  a) .  We employ Z ( p ' ,  N ;  a )  
as the  objective  function  of  our  optimization  problem  with 
respect t o  p '  and N .  [Agaiy S ( p ' ,  N ;  a )  and Z ( p ' ,  N ;  a )  are 
not  optimized  by  the  same p (N) . ]  

A  particular  transmission is successful  when  no  other  ter- 
minals  within  a  distance  R  of  the  receiver  transmit  during  the 
transmission  period 1 f a .  Let us consider  the  conditions  for 
the  successful  transmission  from  the  transmitter P to receiver 
Q,  referring  to  Fig. 8. The  shaded  area A and B shows  the 
area of terminals  whose  transmission  may  collide  with  the 
transmission  from P to Q at Q .  Since  the  terminals  in  area A 
recognize  the  transmission  in  one  slot,  a  collision will be 
avoided if they  do  not begin  transmission  in  the  same  slot. 
On  the  other  hand,  since  the  transmissions  from  the  terminals 
in  area B occur  independently,  it is sufficient  that  they  keep 
silent  throughout  the  entire  vulnerable  period  of  length  2 f 
a or   2r  4- 1 slots  shown  in  Fig.  8(b)  (the  first r slots  are  included 
so as t o  prevent  any  interference  with  the  ongoing  transmis- 
sions  and  the  second r + 1  slots  are  included  not  to  be  inter- 
fered  with  newly  started  transmissions).  (Two  packets  whose 
transmissions  start  with 7 slots  apart  may  or  may  not  be 
received  successfully;  however,  we  exclude  such  a case t o  
pessimistically  evaluate  the  probability of success.)  Therefore, 
if i: denotes  the  distance  between P and  Q,  and P -+ Q denotes 
the successful  transmission  from P to  Q,  then  we  have 

P r o b [ P + Q l F = r ]  

= Prob [ Q does  not  start  transmission  in  the  same  slot] 

* Prob  [no  transmission  from A during  a  slot I F =  r] 

- Prob  [no  transmission  from B during 27 + 1 

slots I T =  r ] .  

Since  the  area of A is 2R2q(r/2R)  and  the  area of B is r R 2  - 
2R2q(r/2Rj,  we  get 

P r o b [ P + Q l ; = r ]  

- - (1 - p ' )e -p 'h*2R 2q(v/2R) 

. e-(2r+l)p'h*[nR2-2R2q(r/2R)] 
= (1 - p ' ) e - ~ ' ~ C 1 + 2 r [ 1 - ( 2 / n ) q ( r / 2 ~ ) ~ }  (16) 

where  q(t) is defined  in (7). An  assumption  involved  here is 
that  an  independent  sample  of  terminal  distributions is given 
afresh  for  every  slot  throughout  the  vulnerable  period  from B .  

t .-I 
i s G s ! :  I 

_ _ _  
, n m , n  

t- T - 1 slols- 

Fig. 8. The period for the transmission P to Q vulnerable to the trans- 
missions from areas A and B .  (a) Configuration. (b) Time line ( 0 :  

vulnerable points to A and B ;  0 :  vulnerable points to B ) .  

Based on  this  assumption  we  have  evaluated  the  probability of 
success  in  each  slot  independently. 

Since  the  assumptions  about  routing  are  the  sgme as in 
Section 111, the  distribution of the  position (7, 0 )  of the 
receiver Q with  respect  to  the  transmitter P is  given by (1  2). 
It  follows  that  the  one-hop  throughput is given by 

and  similarly  the  expected  progress is  given by 

- ln e-(N/n)q(fcoSe) de, (1 8) 

(We note  that  the  above S ( p ' ,  N; a )  and Z ( p ' ,  N ;  a )  are  not 
the  long-time average  values because  we  have  not  taken  into 
account  the  channel  activity  cycles  (idle  and  busy)  whose 
duration is variable.  Thus, (1 7) and  (18)  may  be viewed as 
giving the  instantaneous values at  transmission  start  times; 
note  that S and Z in  slotted  ALOHA cases are  overall  means 
and  instantaneous  values  at  the  same  time.  Thus,  the  compari- 
son  between CSMA and  ALOHA is meaningful.) 

The  maxima of the  function Z ( p ' ,  N ;  a)fiare  determined 
numerically  in  the ( p ' ,  N )  plane  for  various values of a.  The 
optimal  point  for a = 0 (zero  propagation  delay) is found as 
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Fig. 9. Comparison of the  optimized  expectedprogress  among ALOHA 
with  and  without  capture,  and CSMA networks. 

follows: 

fi* = 5 . 3  or  R* = 2.6(1/(2fi)) 

P* 
lim - = lim rp* = 0.20 

U+O a 7-m 

S * e S ( p * ,  N * ;  0) = 0.077 

Z * f i e  Z ( p * ,  N * ;  0)fi = 0.050. 

Therefore,  the  optimized  expected  progress is only  about  16 
percent (=(0.050 - 0.0431) X 100/0.0431) better  than 
ALOHA  system  without  capture. 

This  small  improvement  in  performance,  unlike  the  single- 
hop case,  appears  due to the  large  area  of  hidden  terminals 
(about  half  of  the  hearable  range  for N = N * )  and  the  long 
period  (twice as long as. the  packet  transmission  time)  vulner- 
able to their  transmission. 

In  Fig. 9, the  optimized  expected  progress  with CSMA  is 
plotted  for  various  values of Q ,  together  with  those  for  ALOHA 
systems  without  capture  and  with  perfect  capture.  (For 
proper  comparison,  the  optimized  expected  progress  with 
slotted  ALOHA  should  be  divided  by 1 -I a to  include  the  propa- 
gation  time  in  a  slot.)  It is seen  that  the  performance  of CSMA 
lies between  ALOHA  without  capture  and  ALOHA  with  per- 
fect  capture.  With  reference  to  Fig.  6, CSMA’s performance 
turns  out  comparable  to  that  of  ALOHA  with  capture  ratio 
about  1.5 dB  which  corresponds to good  FM.  The  degradation 
of  the  expected  progress  with  increasing a is due  to  the  longer 
vulnerable  period. 

V. OPTIMAL TRANSMISSION RADII IN AN INHOMOGENEOUS 
DENSITY OF TERMINALS 

So far  we  have  considered  only  the  Poisson  distribution  of 
terminals  with  the  same  spatial  density  everywhere.  However, 
it  is of importance  in  our  multihop  packet  radio  studies  to 
extend  the  analysis to inhomogeneous  structures.  For  ex- 
ample,  how  should  the  transmission  power  be  controlled 

as one passes from  a  region of low  density  terminals  to  higher 
density  terminals  and  then  back  out  again  to  lower  density 
terminals;  this  corresponds  to  a  kind of geographical  bottle- 
neck.  Another  configuration is what  we  call  the  “dumbbell” 
configuration  in  which  we  have  high  density  regions  (say, 
two  cities)  connected  together  with an extremely  low  density 
region  (say,  a  desert).  Here  one  inquires  whether  the  low 
density  region  helps  the  transmission  or  not.  These  are  some 
of the  motivations  for  our  study  of  inhomogeneous  configura- 
tions  of  packet  radio  terminals. 

Specifically,  the  configuration of terminals  we  consider  in 
this  section is a  vacant  strip  of  width b in an otherwise  Poisson- 
distributed  terminal  population  with  uniform  average  density 
h. Taking  the  x-axis  perpendicular t o   t he  gap  length,  the  average 
density  of  terminals  at x is given by 

I 0 O < x < b  

h elsewhere. 
g(x> 6 (1 9) 

We introduce  the  “intensity” of the  gap  by 

0 e Ab2 (20) 

which is the  average  number of terminals  that  would  be 
in  the  gap  of  length b if it  were  not  for  the  gap.  The  dimen- 
sionless  quantity wiIl be  used as a  characteristic  parameter 
below. 

In  the  following  we  evaluate  the  expected  progress of a 
packet  residing  at  the  terminal P on the  left  bank (x = 0) and 
destined t o  cross  the  gap.  See  Fig. 10 for  the  configuration. 
We assume  slotted  ALOHA  protocol  and  the  transmission 
radius R (>b) for all terminals. For simplicity,  we  do  not 
optimize  the  transmission  probability p but will  use the  value 
p = 0.1 13 which  has  been  found  optimal  for  the  case of 
homogeneous  Poisson  distribution  (see  Section 11). We recog- 
nize  the  terminals  being  with  a  distance R of  the  receiver as 
those  which  may  cause  conflict  with our transmission.  Then, 
our  usual  procedure  yields  the  probability of successful  trans- 
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or, in  a  normalized  form, 
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Fig. 10. Three cases of the position of the recelver Q. P: the  transmit- 
ter, ////: the  area of possibly  interfering  terminals. (a) x < b - R.  
( b ) b - R < x < O . ( c ) b < x < R .  

mission to   the  receiver at  x as 

- exp - - [ 7~ - q(-t)] [ p: 

where 

N = hnR2; r = b/R = m. 
p(l   -p)e-Pn(x;R) Fig.  11  shows  the  optimal  radii N* and R* and  the  ex- 

(21)  pected  progress Z ( N ;  p m f o r  various  values  of  gap  intensity 
where n ( x ;  R )  is the average number  of  terminals  within  a 0. We see  that,  for  fixed X 
circle of radius R around  the  receiver  at x ,  given by 

m2[r -q ( -x ) l  - R < x < b - R  and 
0 .043   a sp+O 

- - m 2 [ q ( y )  +7T-q( - ; ) ]  0.050 (maximum)  at   about = 1 .O (28) 

0 as + 00. 

The  results  for  narrow  gaps  reduce  to  the  case  with  homo- 
b - R  <X GO, b < X  < R (22)  geneous  density. As the gap width  increases,  the  expected 

progress  increases  because  some of the possibly  interfering 
where q ( t )  is  defined  in (7). The  probability  distribution  func-  terminals  are  removed  by  the  gap.  However,  for  too  wide  a 
tion F ( x ;  R )  of the  position of the receiver is given by  gap,  the  transmission  radius  must  be  accordingly  larger  in 

order  to cross it,  which  causes  more  conflicts  at  the  receiver; 
F ( x ;  R )  & Prob  [no  terminal  in (x ,  R )  I R ]  thus,  the  expected  progress  decreases.  It  is  interesting  that  the 

optimized  expected  progress  achieves  its  maximum  at  about 

Using  these  expressions,  the  expected  progress  of  our  packet 
is calculated  as 

p = 1. We can  also  see  that  for  fixed b 

00 a s p + Q  

1 a s p + -  
R*/b 

and 

Z(R * ) / b  E { * a s p + O  

0 asp+- .  

Therefore,  for  large X, the  optimal  transmission  radius is 
just  large  enough  to  reach  the  other  bank.  However,  the 
higher  possibility of interference  with  the  terminals  behind 
the  receiver  (Le.,  those  in  the  area x > b )  diminishes the 
value of Z(R*)/b.  For small X, since  there is almost  no  inter- 
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Fig. 11. The optimal trans~nission radii  and 
packet crossing a gap. 

expected progress for 

ference,  the  packet  can  proceed as far  as'an  arbitrarily  large 
transmission  radius. 

From  Fig.  11,  we  see  that  the  existence of the  gap  such 
that f l  < 2 helps  the  transmission.  Notice,  however,  that  a 
gap has  an  effect  on  performance  only  when f l  % 1 .  Thus, 
a  conclusion  here is that   to cross  the  gap,  we  should  not use a 
large  transmission  power  'with  the  same  channel;  rather,  we 
had  better  use  a  separate  channel  (or  wire) to avoid  possible 
collisions. 

VI. OPTIMAL NUMBER OF NEIGHBORS FOR ALOHA WITH 
CAPTURE 

In this  section,  we  extend  the  model of a partially  con- 
nected  packet  radio  network  with  capture  proposed  by  Fratta 
and  Sant [ 2 ]  to  the  context of our  optimization  problem. 
The  reason  for  doing  this is that  the  packet  routing  algorithm 
possibly  implemented  in  each  terminal is more  suitably  handled 
with  their  model  than  with  the  aforementioned  MFR  which 
assumes  each  terminal  knows  the  position of an  indefinite 
number of terminals  within  a  distance R .  However,  without  a 
notion  of  transmission  radius,  their  model  has  a  drawback 
of having  an  unrealistically  wide  area  of  interfering  terminals 
for  the case of  poor  capture  (large  capture  ratio).  Therefore, 
the  results  obtained  here  should  be  applicable  only  to  the  case 
of good  capture. 

The  present  model  assumes  a  slotted ALOHA transmission 
protocol  with  transmission  probability p in  each  slot,  a  Poisson 
distribution  of  terminals  with  homogeneous  density x, and  an 
isotropic  distribution  of  source-destination  pairs.  The  concept 
of capture is described  in  Section I1 with  capture  parameter 
a. Every  terminal is assumed to  use  the  same  transmission 
power. We do   no t  use  the  notion  of  transmission  radius, 
which  implies  that  a  transmission  over  a  distance Y is success- 
ful if none  of  the  other  terminals  within  the  distance ar of 
the  receiver  transmit  in  the  same  slot. 

We now  explain  the  routing  strategy  employed  here.  Each 
terminal is assumed to   know all the  positions of i ts   Nnearest  
neighbors.  Given  a  packet  and  its  final  destination,  a  terminal 
transmits  to  the  most  forward  terminal  in  the  direction  of  the 

Fig. 

D direction of progress 

12. The angular position of the j th  nearest neighbor. 

final  destination  among  those N neighbors  whose  positions 
are  known.  In  case no terminals  exist  ahead, it transmits 
to   the least  backward  neighbor. We call  this  routing  MFN 
(most  forward  within N). MFN  assumes  that  each  terminal 
keeps  the  positions of only  a  fixed  number of terminals, 
lending  itself t o  easy  implementation. 

The  routing  algorithm  at  each  terminal is formally  stated 
as follows: 

j +N. 
L:  Consider j nearest  neighbors. If the  jth  nearest  one is the 

most  forward,  transmit to it. 

Otherwise, j j - 1  and  go  to L .  

This  algorithm  always  terminates  in  at  most N cycles. We can 
evaluate  the  routing  probability a i (N)  that   the,   j th  nearest  
neighbor is chosen as the receiver  when  considering N neigh- 
bors. To this  end,  let 0 be  the  angular  position of  the   j th  
nearest  neighbor  measured  from  the  direction of progress, 
as shown  in  Fig. 12. Since  the  jth  nearest  neighbor is selected 
as the  receiver  only  when  it is the,  most  forward  among j 
neighbors,  its  probability  is  given  by 

( :  7:' 1 -- - I 8 - sin 8 cos 0 I -lr<e <h. (31) 

(Notice  that  the  distribution  of  the  positions of up  to  the 
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TABLE I 
THE  ROUTING  PROBABILITIES a i (N)  

j N = l  2  3  4  5  6  7  8  9  10 

1 1.0000  0.5000  0.3017  0.1976 
2  0.5000  0.3017  0.1976 
3  0.3967  0.2598 
4  0.3450 
5 
6 
7 
8 
9 

1 0  

0.1359 0.0966 0.0704 0.0523 
0.1359 0.0966 0.0704 0.0523 
0.1787 0.1271 0.0926 0.0688 
0.2373 0.1687 0.1230 0.0913 
0.3122 0.2220 0.1618 0.1202 

0.2890  0.2106  0.1564 
0.2712  0.2015 

0.2571 

0.0395 0.0302 
0.0395 0.0302 
0.0519 0.0397 
0.0689 0.0527 
0.0907 0.0693 
0.1  180 0.0902 
0.1520 0.1162 
0.1940 0.1483 
0.2455 0.1876 

0.2356 

( j  - 1)st  nearest  neighbors is n o  longer  Poisson  but  uniform  where 
since  we  have  specified j . )  Unconditioning  on 6 with  the iso- 
tropic  assumption gives I 2 - ?!? & 0.391 

ci & Prob  [a  terminal  transmits  to  the  jth  nearest  neighbor  3  2n 
a =  1 

among j of them] 

4 =  ' - n+ (a2 - 2)  cos- 
n l I  $)- a d F p }  (39) 

l < a < 2  
j = 1, 2, -., N .  (32) 

Using the  above  definition  of ci's, we may  finally  write  the 
routing  probability  as  Unconditioning  on rj with  (35) gives 

a >  2. 

N 
a j (N)=  c, n (1 - c k )  j =  1, 2 ,   " ' ,N.  

k=j+ 1 

Clearly It  follows  that  the  throughput  of  transmission is  given by 

N z ai(N) = 1. 
i= 1 

N 

(34) 
S ( p ,  N ;  a )  = p aj(N)  Prob  [Si].  (41 1 

j =  1 

In  Table I, we  show  some values  of aj(N). 
From  this  point,  we  follow  the  derivation  in  [2].  First, the expected  progress as 

the  probability  density  function of the  distance r, to   the 
j t h  nearest  neighbor is given by P 

This  completes  our  quotation  from [2]. Similarly,  we  obtain 

N 
Z ( P ,  N ;  a)  = bi(N)E[ri]  Prob [ S i ]  (42) 

2(hnr2)i- 1 e- h n r 2  dl + a2P - p 4  
P ( r )  = ' i  r( j  - I)! (35)  where 

r > O  

I t  follows  that  the  mean  distance  to  the  jth  nearest  neighbor 
is 

where (2j  - l)!! = (2 j  - 1).(2j - 3) ... 3-1  and ( 2 j ) ! !  = 
(2j)*(2j - 2) ... 4.2.  Particularly,  the  mean  distance  between 
the  two  nearest  neighbors is given by 

E[YlI = WdV (3 7) 

which  (without  the  factor  1/2)  we  have used  extensively t o  
normalize  the  expected  progress  in  the  preceding  sections. 

Next,  let S, be  the  event  that  a  packet  transmitted  to  the 
j t h  nearest  neighbor is successfully  received. As shown  in 
121, 

P r o b [ S i I r j = r ]   = ( l - p ) ( l - -  p4)j- 1,-Ahpnv2(cu2--q) 

( 3 8 )  

* [1-:(6-sin6cos6) d6 j =  1,2;-,N. 1 j-l  

(43) 

Our  optimization  problem is to  find  the  maximum of 
Z ( p ,  N ;  a).\/xin the ( p ,  N )  plane.  In  Fig. 13, the  optimal 
values  of N ,  N * ,  and  the  maximum values  of Z ( p ,  N ;  a ) G ,  
Z * a ,  are  piotted  for  various  values of capture  parameter 
cy. I t  can  be  seen  that  the  expected  progress  decreases  rapidly 
as a increases,  which  does  not  agree  with  the  result  shown  in 
Fig. 6. This  comes  from  the  present  assumption  that  there is 
no  fixed  transmission  radius.  However,  for  small a, the re- 
sults that  N* = 7 and Z * f l s  0.05 agree  with  the  previous 
results.  Therefore,  we  may  conclude  that 7 is  suitable  for 
the  number  of  known  terminals  when  the  MFN  routing is 
adopted. 
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Fig. 13. The optimal transmissions for ALOHA with capture and 
without transmission  radius. 

VII. CONCLUSION 
We have  solved  for  the  maximum  expected  progress  per 

hop, (Z ) ,  provided  by  the  optimal  transmission  probability 
( p )  and  transmission  radius  (expressed in terms of the  number 
of terminals  in  the  range, N ) ,  in  some  models  of  randomly 
distributed  packet  radioterminals  (with  average  density x) under 
the  assumption of heavy  traffic  (all  terminals  always  have 
ready  packets).  The  quantity  Zfihas  been  used  consistently 
as the  dimensionless  objective  function  for  optimization 
problems  with  respect t o  p and N. Major  conclusions  about 
the  performance  of  each  model  are as follows. 

The  optimal  transmission  with  slotted ALOHA without 
capture is attained  by N = 7.72 and p = 0.1  13  which gives 
Z f i  = 0.043 1.  Therefore,  each  terminal  transmits  once  in 
every  nine  slots on  the average  with  the  transmission  radius 
covering  just  about  eight,nearest  neighbors  in  the  direction  of 
packet's  final  destination.  The  Probability of success of such 
a  transmission is nearly  equal to l/e.  The  expected  progress 
per  transmission is about  two  thirds of Rle,  where R is the 
optimal  transmission  radius (N = XnR2). 

FM capture  improves  the  performance of slotted  ALOHA 
systems  due to  the  more  limited  area of possibly  interfering 
terminals  around  the  receiver.  The  expected  progress  in  a 
system  with  perfect  capture  (optimized  with N = 7.1 and p = 
0.1 7) is about 36 percent  greater  than  that  in  the  system  with- 
out  capture.  The  probability  of  successful  transmission is also 
higher  than  l/e.  A  model  which is more  amenable  to  imple- 
mentation  (each  terminal  knows  the  positions  of  only  a  fixed 
number of its  neighbors)  has  shown  similar  results. 

The slotted  nonpersistent CSMA provides  a  nominal  im- 
provement  in  performance  over  the  ALOHA  system ( 16  per- 
cent  improvement  in  the  optimized  expected  progress  for  the 
zero  propagation  delay),  which is not  as large an  improvement 
as  we  have  obtained  in  the  single-hop  case.  The  reason  for  this 
is the large  area of "hidden"  terminals  (about half of  the  inter- 
fering  area)  which  cannot  hear  the  transmission,  and  the  long 
vulnerable  period  (twice  as  long as the  packet  transmission  time) 
due  to  those  terminals.  The  performance of (slotted  non- 
persistent) CSMA  is comparable  to  that  of  ALOHA  with  good 
FM  capture  (capture  ratio  about  1.5  dB).  The  degradation 
occurs as the  ratio of propagation  delay  to  the  transmission 
time  increases. 

As  an  example  of  an  inhomogeneous  terminal  distribution, 
the  effect of a  gap  of  width b in an  otherwise  uniformly 
Poissondistributed  terminal  population on the  optimal  trans- 
mission  has  been  considered.  The  expected  progress of a  packet 
residing at  the  terminal on the  bank  and  destined to cross 
the  gap is evaluated  with  parameter (3 = A b 2 ,  called  gap  in- 
tensity.  For  fixed h, the  existence of the  gap  heips  the  prog- 
ress  for (3 < 2, because  some of the possibly  interfering 
terminals  are  removed  by  the  gap.  The  maximum  in  the 
optimized  expected  progress  occurs  at  about 0 = 1.  Thus, to 
cross  most  gaps  wider  than  the  average  interterminal  distance, 
one  had  better  not  use  a  large  transmission  radius,  but  should 
more  sensibly  use a separate  channel or wire. 

APPENDIX 

DETERMINATION OF TRANSMISSION RATE FOR CSMA 

In this  Appmdix,  we  derive  the  relation  between  trans- 
mission  rate p and  channel-sensing  rate p for  slotted non- 
persistent CSMA. See  Section IV. As in [91 , we  assume 
that 

P' = PPI 

where PI is the  probability  that  the  channel  is  sensed  idle. 
Since  the  probability  of  an  empty  slot is given by  e-P'N, 
the  expected  value of the idle  period I (see  Fig. 7) is 

On the  other  hand,  the  transmission  period is 1 + a.  There- 
fore, 

I 0e-P 'N 

1 f a f l  1 f a - e - P ' N  
PI = - - 

Thus,  we  have  obtained  an  equation  which  determines p '  
in  terms  of p :  
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For  a < 1, we  have 

p f  = I-’ 

1 +- (I-”/a)N 

which  explicitly gives p‘ .  
Using the  optimal  values in this  case (N = 5.3 and p’/a = 

0.20), we  see  that  the  actual  transmission  rate  is 41 percent 
of the  sensing  rate. 

REFERENCES 

[ I ]  N.  Abrdmson.  ”The  throughput of packet  broadcasting  channels,’‘ 
IEEE Trans. Commun., vol.  COM-25,  pp. 117-128, Jan.  1977. 

[2] L.  Fratta  and  D.  Sant,  “Some  models of packet  radio  networks  with 
capture.“ in Proc. 5th In t .  Conf. Commun., Oct. 27-30.  1980. pp. 
155-161. 

[ 3 )  L.  Kleinrock  and  F.  A.  Tobagi.  ”Packet  switching in radio  chan- 
nels:  Part I-Carrier  sense multiple-access  modes and  their 
throughput-delay  characteristics.” IEEE Trans. Commun.. vol. 
COM-23.  pp. 1400-1416. Dec.  1975. 

[4]  L.  Kleinrock  and J .  A.  Silvester.  “Optimum  transmlssion radii for 
packet  radio  networks or why  six is a  magic  number,’’ in  Conf. 
R e c . .  Nut. Teiecommun. Conf., Dec.  1978,  pp. 4 . 3 . 1 4 . 3 . 5 .  

[ 5 ]  R.  Nelson.  “Channel  access  protocols for multi-hop  broadcast 
packet  radio  networks.“  Dep.  Comput.  Sci.,  School  Eng.  Appl. 
Sci. .  U n i v .  California, Los Angeles,  Eng.  Rep.  UCLA-ENG-8259, 

[6]  L. G .  Roberts.  “ALOHA  packet  system with  and  without slots  and 
capture,”  ARPA Network  Inform. Cen.,  Stanford Res.  Inst., 
Menlo Park, CA.  ARPA  Satellite  Syst.  Note  8  (NIC  11290).  June 
26, 1972:  reprinted in ACM SIGCOMM Comput.  Commun.  Rev., 
vol. 5 ,  pp. 2 8 4 2 .  Apr.  1975. 

[7] J .  A.  Silvester. “On the  spatial  capacity of packet  radio  networks,” 
Dep.  Comput.  Sci..  School  Eng.  Appl.  Sci.,  Univ.  California. Los 
Angeles.  Eng.  Rep.  UCLA-ENG-8021, May 1980. 

’ CSD-820731.  July  1982. 

[8] F. A.  Tobagi,  “Random  access  techniques for data  transmission 
over  packet  switched  radio  networks.”  Dep.  Comput.  Sci..  School 
Eng.  Appl.  Sci..  Univ.  California.  Los  Angeles,  Eng.  Rep. UCLA- 
ENG-7499,  Dec.  1974. 

[9]  F.  A.  Tobagi  and L. Kleinrock,  ”Packet  switching inradio chan- 
nels:  Part 11-The hidden  terminal  problem  in  carrier  sense  multi- 
ple-access  and busy  tone solution,” IEEE Trans. Commun.. vol. 
COM-23,  pp. 1417-1433,  Dec.  1975. 

* 

* 
Leonard Kleinrock (S’55-M’64-SM‘71-F’73), for a  photograph  and 
biography,  see  p.  47  of  the  January  1984  issue of this TRANSACTIONS. 


