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ABSTRACT
Making effective use of the vast amounts of data gathered by large-
scale sensor networks will require scalable, self-organizing, and
energy-efficient data dissemination algorithms. Previous work has
identified data-centric routing as one such method. In an asso-
ciated position paper [23], we argue that a companion method,
data-centric storage (DCS), is also a useful approach. Under DCS,
sensed data are stored at a node determined by the name associated
with the sensed data.

In this paper, we describe GHT, a Geographic Hash Table system
for DCS on sensornets. GHT hashes keys into geographic coordi-
nates, and stores a key-value pair at the sensor node geographically
nearest the hash of its key. The system replicates stored data lo-
cally to ensure persistence when nodes fail. It uses an efficient
consistency protocol to ensure that key-value pairs are stored at the
appropriate nodes after topological changes. And it distributes load
throughout the network using a geographic hierarchy. We evaluate
the performance of GHT as a DCS system in simulation against two
other dissemination approaches. Our results demonstrate that GHT
is the preferable approach for the application workloads predicted
in [23], offers high data availability, and scales to large sensornet
deployments, even when nodes fail or are mobile.

Categories and Subject Descriptors:
H.3.4 [Systems and Software]: Distributed Systems

General Terms:
Algorithms, Design, Performance

1. INTRODUCTION
A sensornet is a distributed sensing network comprised of a large

number of small devices, each with some computational, storage
and communication capability. Such networks can operate in an
unattended mode to record detailed information about their sur-
roundings. They are thus well suited to applications such as lo-
cation tracking and habitat monitoring [4, 18]. As these networks
scale in size, so will the amount of data they make available. The
great volume of these data and the fact that they are spread across
the entire sensornet create the need for data-dissemination tech-
niques capable of extracting relevant data from within the sensor-
net. Moreover, communication between nodes requires the expen-
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diture of energy, a scarce commodity for most sensornets. Thus,
making effective use of sensornet data will require scalable, self-
organizing, and energy-efficient data dissemination algorithms.

The utility of a sensornet derives primarily from the data it gath-
ers; the identity of the individual sensor node that records the data
tends to be less relevant. Accordingly, sensornet researchers have
argued for communication abstractions that are data-centric. Un-
der this model, data are “named” and communication abstractions
refer to these names rather than to node network addresses [1, 9].
The directed diffusion [10] data-centric routing scheme has been
shown to be an energy-efficient data dissemination method for sen-
sornet environments. In an associated position paper [23], we sug-
gest that a companion method, data-centric storage (DCS), will also
be useful. Under the DCS approach, the particular node that stores
a given data object is determined by the object’s name. Hence all
data with the same general name (e.g., “elephant sightings”) will
be stored at the same sensornet node (not necessarily the node that
originally gathered the data). The advantage of DCS then is that
queries for data with a particular name can be sent directly to the
node storing these named data, thereby avoiding the query flooding
typically required in data-centric routing proposals.

This paper outlines what we believe are three canonical dissem-
ination methods, one of which is data-centric storage. The three
methods have very different performance characteristics. Which
one is appropriate for a particular setting will depend on the nature
of the sensornet and its use. Consequently, we stress that our point
here is not that data-centric storage is always the method of choice,
but rather that under some conditions it will be preferable. In fact,
we expect that future sensornets will embody all of these (or simi-
lar) data-centric dissemination methods, and that users will choose
which to use according to the task at hand.

This paper serves two aims. Our first is to identify the circum-
stances where DCS is the preferred dissemination method. In a
related position paper [23], we lay out the context for this com-
parative study with a lengthy discussion of sensornet dissemination
algorithms and the settings in which they might be used. For com-
pleteness, we begin our paper with a brief review of this discussion.
This review also provides the needed context for the later compar-
ative simulations.

Our second aim is to present design criteria for scalable, ro-
bust DCS, and a DCS system that meets those criteria, the Geo-
graphic Hash Table (GHT). GHT is inspired by the new generation
of Internet-scale Distributed Hash Table (DHT) systems such as
Chord, CAN, Pastry, and Tapestry [6, 21, 24, 25]. In these systems,
a data object is associated with a key and each node in the system
is responsible for storing a certain range of keys. A name-based
routing algorithm allows any node in the system to locate the stor-
age node for an arbitrary key. This enables nodes to put and get
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files based on their key, thereby supporting a hash-table-like inter-
face. GHT uses the GPSR geographic routing algorithm [13] as
the underlying routing system to provide a similar hash-table-like
functionality in sensornets.

Our paper has 7 sections. We start with a brief discussion of
data dissemination in sensornets in Section 2 and elaborate on the
DCS problem in Section 3. Section 4 presents the detailed design
of GHT which we evaluate in Section 5. We discuss related work
in Section 6 and conclude with a short discussion of future work in
Section 7.

2. CONTEXT
In this section we first state our basic assumptions about the class

of sensornets we consider. We then describe some basic concepts
used in organizing sensornet data and outline possible approaches
to data dissemination in sensornets.

2.1 Assumptions and Metrics
Projected sensornet designs in the literature [5] differ greatly in

their characteristics and intended use. In this paper, we focus on a
class of sensornets that is most relevant to the data dissemination
issues we address.

We consider large-scale sensornets with nodes that are spread out
over an area whose approximate geographic boundaries are known
to the network operators. We assume that nodes know their ge-
ographic location. This can be achieved through the use of GPS
or some other approximate but less burdensome localization tech-
nique [3, 8, 19, 20, 22]. This assumption is critical for our proposed
data-centric storage algorithm. However, we think it is a reasonable
assumption because in many cases the sensornet data are useful
only if the location of their source is known.

We assume that the sensornet is connected to the outside world
through a small number of access points, hence getting data from
a sensornet node to the outside world requires routing the data
through the sensornet to the access point. This assumption is not re-
quired by our DCS mechanism per se but is key to our comparison
of the different dissemination mechanisms.

Finally, we assume that energy is a scarce commodity for sensor-
net nodes [18] and so the data dissemination algorithms should seek
to minimize communication in order to extend overall system life-
time. While the mapping between communication and energy con-
sumption is complicated – depending greatly on the precise hard-
ware involved and the packet transmission pattern – in what follows
we will focus on two simplified metrics of energy consumption:

Total usage: The total number of packets sent in the sensornet

Hotspot usage: The maximal number of packets sent by any par-
ticular sensornet node

2.2 Sensornet Data
In this section, we present our terminology for the different types

of sensornet data and describe the operations we envisage will be
used to extract relevant data from a sensornet.

2.2.1 Observations and Events
We use the term observations to refer to the low-level readings

from these sensors and the term events to refer to pre-defined con-
stellations of low-level observations. For example, detailed tem-
perature and pressure readings might constitute observations, while
a particular combination of temperature and pressure observations
might define an “elephant-sighting” event.

Typically, the large volume of observations prohibits communi-
cating them directly to the outside world. Events are thus derived

by processing the low-level observations within the network and
users can then query for events. Once events have been detected,
users might want to access the low-level observations related to a
particular event. This is easily accommodated by having each event
notification include the event’s location, so that to gather additional
data one need only download the required observations from the
relevant sensors.

2.2.2 Tasks, Actions, and Queries
Users send instructions (by flooding or some other global dis-

semination method) to sensornet nodes to run certain local identi-
fication tasks. These tasks could be simple, such as taking temper-
ature readings, or complex, such as identifying an animal from a
collection of sensor readings. In essence, one can think of tasks as
downloaded code.

Once an event has been identified, nodes can take a number of
different actions. For example, actions might instruct a node on
where to store information for a particular event.

When event information is stored within the sensornet, queries
are used to retrieve this information from the network. How queries
are executed will depend on the actions nodes take upon event de-
tection.

2.3 Approaches to Data Dissemination
Data dissemination starts by flooding the tasks to the entire sen-

sornet. The tasks specify which events to detect, how to detect
them, and what actions to take upon detection. Upon detecting an
event, there are three basic actions a node can take which lead di-
rectly to three canonical data dissemination methods. These three
methods have a very different cost structure. In this section, we first
describe these canonical methods and then compare their costs ana-
lytically; in Section 5 we use simulation to perform a more detailed
comparison.

In the discussion that follows, we assume that tasks are long-
lived (i.e., that the tasking instructions remain in force for long
periods of time) and so the initial cost of issuing tasks is domi-
nated by the ensuing data processing.1 In evaluating communica-
tion costs we use the asymptotic cost of O(n) message transmis-
sions for floods and O(

p
n) for point-to-point routing where n is

the number of sensornet nodes.

2.3.1 Canonical Methods
When an event occurs, the detecting node has only three options

for where the event information can be stored: at external storage
outside the sensornet, within the sensornet at the detecting node
or within the sensornet at a node other than the detecting node.
These three storage actions lead to the following canonical data
dissemination methods:

External Storage (ES): Upon detection of events, the relevant data
are sent to external storage where they can be further pro-
cessed as needed. This entails a cost of O(

p
n) for each event

(to ship the information to the access point). There is no cost
for user queries since the event information is already exter-
nal.2

Local Storage (LS): Event information is stored locally (at the de-
tecting node) upon detection of an event; this incurs no com-
munication costs. Queries are flooded to all nodes at a cost

1Of course, there are situations where tasks are short-lived; for
these, the cost of flooding tasks dominates all other costs, so it
won’t matter much which of the approaches are used.
2If queries can be generated by internal nodes, they will incur a
cost of O(

p
n) to reach the external storage.
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of O(n). Responses are sent back to the source of the query
at a cost of O(

p
n).

Data-Centric Storage (DCS): Here, after an event is detected the
data are stored by name (i.e., at a storage node that need not
be the same as the detecting node) within the sensornet. The
communication cost to store the event is O(

p
n). Queries are

directed to the node that stores events of that name, which
returns a response, both at a cost of O(

p
n).

The three approaches above certainly do not exhaust the design
space; see [23] for variants and combinations of the above.

2.3.2 Approximate Communication Costs
We now compare the performance of these methods using a sim-

ple analytical model. The cost structure for the canonical methods
is described by several parameters. We consider a sensornet with n
nodes equipped to detect T event types. We let Dtotal denote the to-
tal number of events detected, Q denote the number of event types
for which queries are issued, and Dq denote the number of events
detected for the types of events queried for. We assume there is no
more than one query for each event type, so there are Q queries in
total.

In comparing costs, we also consider the case where users only
care about a summary of the events rather than a listing of each
event; e.g., one might just want a count of the number of elephants
seen rather than a listing of each elephant sighting.

We compare costs using approximations for both the total num-
ber of packets in the sensornet and the packets arriving at the access
point.3 We assume that the packet count at the access point is a
good estimate of the hotspot usage, since we expect that the access
point to be the most heavily used area of the sensornet. With this
setup, the costs are as follows:

External Storage:
Total: Dtotal

p
n Hotspot: Dtotal

Local Storage:
Total: Qn+Dq

p
n Hotspot: Q+Dq

Data-Centric Storage:
Total: Q

p
n+Dtotal

p
n+Dq

p
n (list)

Total: Q
p

n+Dtotal
p

n+Q
p

n (summary)
Hotspot: Q+Dq (list) or 2Q (summary)

where (list) indicates a full listing of events is returned (requiring a
packet for each event) and (summary) indicates only a summary of
events is returned (requiring only one packet).

These calculations support a few relatively obvious points. First,
all other parameters being fixed, as n gets large the local storage
method incurs the highest total packet count. Second, external stor-
age always incurs a lower total message count than data-centric
storage, but the ratio 1+ Q+Dq

Dtotal
is unlikely to be large if there are

many events detected (and, if there is at least one event detected of
each type, this ratio is bounded by 3). Third, if Dq �Q and events
are summarized, then data-centric storage has the lowest load (of
all three methods) on the access path. Fourth, if events are listed
and Dtotal � Dq then data-centric storage and local storage have
significantly lower access loads than external storage.

We conclude that data-centric storage is preferable in cases where
(a) the sensornet is large, (b) there are many detected events and not
all event types are queried, so that Dtotal �max[Dq;Q]. This per-
formance advantage increases further when summaries are used.
3While we assume a single access point, our discussion extends
easily to cases where there are a few access points.

However, if the number of events is large compared to the sys-
tem size, Dtotal > Q

p
n, and event lists (rather than summaries) are

used, then local storage may be preferable.

3. THE DCS PROBLEM
We have argued for the utility of a DCS service for sensornets.

Now we will define the data-centric storage problem in more de-
tail: the storage abstraction DCS provides, the design goals a ro-
bust, scalable DCS system must meet, and our geographic hashing
approach to DCS architecture that meets these design goals.

3.1 Storage Abstraction
Like the many distributed hash table systems before it [6, 21,

24, 25], DCS provides a (key, value)-based associative memory.
Events are named with keys. Both the storage of an event and its
retrieval are performed using these keys. DCS is naming-agnostic;
any naming scheme that distinguishes events that users of the sen-
sornet wish to identify distinctly suffices. The two operations DCS
supports are:

Put(k;v) stores v (the observed data) according to the key k, the
name of the data.

Get(k) retrieves whatever value is stored associated with key k.

3.2 Design Criteria for Scalable, Robust DCS
The challenge in any design for a DCS system is to meet scal-

ability and robustness criteria despite the system’s fundamentally
distributed nature. Sensornets represent a particularly challenging
environment for a distributed storage system:

Node failures may be routine; exhaustion of battery power and
permanent or transient failure in a harsh environment are problems
in any realistic sensornet deployment.

Topology changes will be more frequent than on traditional wired
networks. Node failures, node mobility, and received signal strength
variations in real radio deployments each independently cause neigh-
bor relationships among nodes to change over time.

System scale in nodes may be very great. Sensor nodes may
be deployed extremely densely (consider the limit case of smart
dust [11]), and may be deployed over a very wide physical region,
such that the total number of devices participating in the DCS sys-
tem may be on the order of 106 or more nodes.

Energy constraints will often be severe; nodes will operate from
battery power.

These challenges suggest several specific, important design crite-
ria for ensuring scalability and robustness in the distributed storage
system we envision:

Persistence: a (k;v) pair stored in the system must remain avail-
able to queriers, despite sensor node failures and changes in the
sensor network topology.

Consistency: a query for k must be routed correctly to a node
where (k;v) pairs are currently stored; if this node changes (e.g., to
maintain persistence after a node failure), queries and stored data
must choose a new node consistently.

Scaling in database size: as the number of (k;v) pairs stored in
the system increases, whether for the same or different ks, storage
should not concentrate at any one node.

Scaling in node count: as the number of nodes in the system
increases, the system’s total storage capacity should increase, and
the communication cost of the system should not grow unduly. Nor
should any node become a concentration point of communication.

Topological generality: the system should work well on a broad
range of network topologies.
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3.3 GHT: A Geographic Hash Table
The DCS system architecture we describe in this paper to meet

the above-enumerated design criteria is GHT, a Geographic Hash
Table (GHT). The core step in GHT is the hashing of a key k into
geographic coordinates. Both a Put() operation and a Get() oper-
ation on the same key k hash k to the same location. A key-value
pair is stored at a node in the vicinity of the location to which its
key hashes. Choosing this node consistently is central to building
a GHT. If we assume a perfectly static network topology and a net-
work routing system that can deliver packets to positions, such a
GHT will cause storage requests and queries for the same k to be
routed to the same node, and will distribute the storage request and
query load for distinct k values evenly across the area covered by a
network.

The service provided by GHT is similar in character to those
offered by other distributed hash table systems [6, 21, 24, 25].
However, as is the case with those systems, much of the nuance
to the GHT system design arises specifically to ensure robustness
and scalability in the face of the many sorts of failures possible in a
distributed system. GHT uses a novel perimeter refresh protocol to
provide both persistence and consistency when nodes fail or move.
This protocol replicates stored data for key k at nodes around the
location to which k hashes, and ensures that one node is chosen
consistently as the home node for that k, so that all storage requests
and queries for k can be routed to that node. Yet the protocol is
efficient; it typically uses highly local communication, especially
on networks where nodes are deployed densely. By hashing keys,
GHT spreads storage and communication load between different
keys evenly throughout the sensornet. When many events with the
same key are stored, GHT avoids creating a hotspot of communica-
tion and storage at their shared home node by employing structured
replication, whereby events that hash to the same home node can
be divided among multiple mirrors.

4. ALGORITHMS
We proceed now to describe the algorithms that comprise GHT.

GHT is built atop GPSR [12, 13, 14], a geographic routing system
for multi-hop wireless networks. After briefly reviewing the fea-
tures of GPSR’s design relevant to GHT, we identify a previously
unexploited characteristic of GPSR that allows all packets destined
for an arbitrary location (unoccupied by a node) to be routed con-
sistently to the same node in the vicinity of that location. GHT
leverages this characteristic to route storage requests and queries
for the same key to the same node, despite the ignorance of the
hash function that maps keys into locations of the placement of
nodes in the network. We then describe algorithms and implemen-
tations of the perimeter refresh protocol and structured replication,
which allow GHT to achieve the DCS design criteria for scalability
and robustness discussed in the previous section.

4.1 GPSR
Under GPSR, packets are routed geographically. All packets are

marked with the positions of their destinations. All nodes know
their own positions, and the positions of the nodes a single hop
away from them. Using only this local knowledge, GPSR can route
a packet to any connected destination. There are two distinct algo-
rithms GPSR uses for routing: a greedy forwarding algorithm [7]
that moves packets progressively closer to the destination at each
hop, and a perimeter forwarding algorithm that forwards packets
where greedy forwarding is impossible.

The greedy forwarding rule is simple: a node x forwards a packet
to its neighbor y that is closest to the destination D marked in the
packet, so long as that neighbor is closer to D than x. Figure 1

shows an example of greedy forwarding; the dotted line represents
the radio range of node x, and the dashed line the circle centered at
D with radius xD.

Greedy forwarding fails when no neighbor is closer than x to the
destination. Figure 2 shows an example topology for greedy for-
warding failure. Here again, the dotted line shows x’s radio range
and the dashed line the circle centered at D of radius xD. The solid
lines show the links that exist, as dictated by radio range. Note
that two paths to D exist, but x cannot forward greedily on either of
them because both involve temporarily moving farther away than x
from the destination.

GPSR recovers from greedy forwarding failure using perimeter
mode, which amounts to forwarding packets using the right-hand
rule. Figure 3 demonstrates the right-hand rule: upon arriving on
an edge at node x, the packet is forwarded on the next edge coun-
terclockwise about x from the ingress edge. This process causes
packets to tour enclosed faces as shown; intuitively, it is useful for
circumnavigating regions where greedy forwarding fails, as in Fig-
ure 2. GPSR routes perimeter mode packets on a planar subgraph
of the network connectivity graph, in which there are no crossing
edges. A perimeter is a face of this planar graph. Bose et al. [2] also
present an algorithm that uses planar network subgraphs to recover
from greedy forwarding failure.

GPSR originates packets in greedy mode, but changes them to
perimeter mode when no neighbor of the forwarding node is closer
to the packet’s destination than the forwarding node itself. GPSR
returns a perimeter-mode packet to greedy mode when the packet
reaches a node closer to the destination than that at which the packet
entered perimeter mode (stored in the packet). As will be shown in
the next section, our GHT algorithms use perimeter mode in an-
other, novel, way to route packets that refer to the same storage key
to the same node.

4.2 The Home Node and Home Perimeter
GPSR was designed for a network model where a sender wishes

to transmit packets to a destination node with a known non-geographic
address; a sender must map the destination’s identifier to its cur-
rent location using a location database, such as GLS [16]. Under
GHT, however, the originator of a Put() or Get() packet does not
know the identifier of the node that is the eventual destination of
the packet. As sketched in Section 3.3, the originator of a Put()
or Get() for a key k hashes the name k into geographic coordinates
that are the destination of the packet for that operation. The hash
function is ignorant of the placement of individual nodes in the
topology; it merely spreads the different key names evenly across
the geographic region where the network is deployed. Thus, it is
quite likely that there is no node at the precise coordinates the hash
function produces. We define the home node for a GHT packet to
be the node geographically nearest the destination coordinates of
the packet. The home node serves as the rendezvous point for Put()
and Get() operations on the same key.

Because a GHT packet is not addressed to a specific node, but
rather only to a specific location, it is treated by GPSR as a packet
bound for a disconnected destination: no receiver ever sees the
packet addressed to its own identifier. We observe that GPSR will
route such a packet to the appropriate home node. GHT uses GPSR’s
perimeter mode to find these home nodes. Under GHT, the packet
enters perimeter mode at the home node, as no neighbor of the
home node can be closer to the destination. The packet then tra-
verses the entire perimeter that encloses the destination, before re-
turning to the home node [13]. We name this perimeter the home
perimeter. Under GHT, the home node knows to consume the
packet when it returns after this tour of the home perimeter.
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Figure 1: Greedy Forwarding Example: x
forwards to y, its neighbor closest to D.
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Figure 2: Void Example: x has no neigh-
bor closer to D.
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Figure 3: Right-hand Rule Example:
Packets travel clockwise around the en-
closed region.

With only the home node binding mechanism we’ve described
thus far, GHT will work on static network topologies. Note that
when the network topology changes after node failures, deploy-
ment of new nodes, or mobility, the identity of the home node and
membership of the home perimeter may change. But for any snap-
shot of the network topology, there exist a home node and enclosing
home perimeter for every location in the network. To offer persis-
tence and consistency under the topological dynamics that sensor-
nets are sure to exhibit, GHT needs a protocol to replicate key-value
pairs, and re-associate them with the appropriate home node when
the topology changes.

4.3 Perimeter Refresh Protocol
GHT uses the perimeter refresh protocol (PRP) to accomplish

replication of key-value pairs and their consistent placement at the
appropriate home nodes when the network topology changes. Re-
call that GHT routes all packets on a tour of the home perimeter that
encloses a destination location. PRP stores a copy of a key-value
pair at each node on the home perimeter.

PRP distinguishes between the home node and other nodes on
the home perimeter, the replica nodes. A node becomes a home
node for a particular key when the Put() packet arrives after com-
pleting its tour of the home perimeter. (This condition is detectable
because GPSR writes the identity of the first edge a packet takes
on a perimeter into the packet; the perimeter has been toured pre-
cisely when the packet arrives in perimeter mode and would be
forwarded next on the same directed edge written in the packet as
the first perimeter edge taken.)

PRP generates refresh packets periodically using a simple timer
scheme. Every Th seconds, the home node for a key generates a
refresh packet addressed to the hashed location of that key. The
refresh contains the data stored for that key, and is routed exactly
as are Get() and Put() packets in GHT. Thus, the refresh packet will
take a tour of the current home perimeter for that key, regardless of
changes in the network topology since that key’s insertion.

When a refresh packet arrives at a node, there are two possibil-
ities: either the receiver is closer to the destination than the origi-
nator, in which case the receiver consumes the refresh packet and
initiates its own; or the receiver is not, in which case it forwards the
refresh packet in perimeter mode. In both cases, the receiver ap-
pends any additional key-value pairs it has stored for that key to the
refresh packet. When a refresh packet returns to its originator, and
that node was not previously the home node for that key, it con-
sumes the refresh packet, and transitions to being the home node
for that key. That is, the new home node sets its own refresh timer,
and subsequently originates refreshes for that key. This mechanism
provides the design goal of consistency: it ensures that the node
closest to a key’s hash location will become the home node for that
key and store that key’s data after topological changes.

When a replica node receives a refresh packet it didn’t originate,
it caches the data in the refresh, and sets a takeover timer for that
key, Tt . This timer is reset every time a refresh for that key from
another node arrives. Should the timer expire, the replica node initi-
ates a refresh for that key and its data, addressed to the key’s hashed
location. The replica nodes and takeover timer provide persistence
when nodes fail. When the home node for a key fails, its replica
nodes will note the absence of refreshes for that key from its home
node, and step forward to initiate refreshes. A replica node may or
may not itself be the new home node; the GHT routing procedure
causes the refresh to reach the new home node.

All nodes that hold data for a key, both home nodes and replica
nodes, expire keys they cache when the death timer, Td , expires.
The death timer is reset every time a node receives a refresh mes-
sage for that key, whether from itself or from another node. Clearly,
Td > Th and Tt > Th. That is, a home node expires a key-value
pair after failing to receive back multiple refreshes it originates,
and a replica node waits for multiple home node refresh intervals
to elapse before stepping forward to send a refresh for it. These
choices of timer values make the PRP robust against episodic loss
of its refresh packets. In the GHT system we evaluate herein,
Td = 3Th, and Tt = 2Th.

Figures 4 through 6 show an example of the operation of the PRP.
Here, key k hashes to location L. After a Put() of (k;v), node a
becomes the home node, and sends a refresh to L containing (k;v).
Figure 4 shows the home perimeter enclosing L after this refresh
has returned to a. Suppose that node a fails. After time Tt elapses,
during which node d receives no refreshes from node a, node d
sends a refresh to L containing (k;v), as shown in Figure 5. This
refresh is delivered to node f , which becomes the new home node
for (k;v). Figure 6 shows the network after f has sent a refresh that
has returned to it, and the replicas it has recruited along the new
home perimeter about L.

It is important to note that the PRP typically generates very lo-
cal network traffic. On dense networks, perimeters are quite short
(most perimeters in a dense network are three hops in length). When
a home node moves, the refreshes it generates won’t have far to
travel before reaching the home perimeter, under reasonable as-
sumptions of mobility rate and radio range (that is, that a node
doesn’t move many radio ranges in a period shorter than Th).

The PRP also includes a join optimization, which improves per-
formance on dynamic topologies. When a node A senses a new
neighbor B, A sends B all those event entries from its local database
for which B is closer to the event destination than A, and for which
A is the closest of its neighbors to that event destination. This op-
timization trades off increased communication for more rapid re-
establishment of a consistent home node when nodes fail or move.
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Figure 7: Example of Structured Replication with a 2-level de-
composition.

4.4 Structured Replication
Thus far, GHT stores all events with the same key in the same

place. If too many events with the same key are detected, that key’s
home node could become a hotspot, both for communication and
storage. GHT employs structured replication (SR) to address this
scaling problem. In SR we augment event names with a hierarchy
depth and use a hierarchical decomposition of the key space (simi-
lar to that used in GLS [16]). Let us name the single location GHT
hashes a key name into the root of that key. Now, for a given root
r and a given hierarchy depth d, one can compute 4d � 1 mirror
images of r; d = 0 refers to the original GHT scheme without mir-
rors. For example, Figure 7 shows a d = 2 decomposition, and the
mirror images of the root point (3;3) at every level.

A node that detects an event now stores the event at the mir-
ror closest to its location, which is easily computable. Thus, SR
reduces the storage cost at one node for one key with n detected
events from O(

p
n) to O(

p
n=2d). GHT must now route queries to

all mirror nodes, however. It does so recursively; first it routes a
query to the root node, then from the root node to the three level-
1 mirror points. Each of these in turn forwards the query to the
three level-2 mirror points associated with them. This recursive

process continues until all mirrors are reached. Responses traverse
the same path as queries but in the reverse direction—up the hier-
archy toward the root. Thus, a single query incurs a routing cost
of O(2dpn) as compared with O(

p
n) for GHT without mirrors.

For an event i with Di detected instances and Qi queries the total
message cost of storing and retrieving this event information is ap-
proximately O(Qi2dpn+Di(

p
n=2d)) Thus, SR reduces the cost

of storage but increases the cost of queries. SR offers an interme-
diate solution between the local storage canonical method, where
storage is free but queries expensive, and GHT without SR, where
both are of moderate cost.4 We expect that SR will be useful for
frequently detected events. Note that the depth of the hierarchy (d)
can, and indeed should, be different for different event types.5

5. SIMULATION RESULTS
In this section, we first evaluate the performance of our proposed

mechanism (Section 5.1) in ns-2 simulations of relatively small
systems of between 50 and 200 nodes. These simulations include
detailed models of a wireless network’s MAC and physical layer.
After verifying the correct functioning of GHT and measuring its
performance on static networks, we then consider the system’s be-
havior in simulations with both failing nodes and mobile nodes, to
test the system in the harsh sensornet environment.

After confirming the viability of our design, we then (Section 5.2)
verify the scaling arguments from Section 2.3.2 with simulations of
much larger-scale systems of up to 105 nodes that, in the interest
of computational tractability, do not model radio details, node fail-
ures, or mobility.

5.1 Small-Scale Networks, Wireless Details
We implemented GHT in ns-2 [17], which supports detailed sim-

ulation of mobile, wireless networks using IEEE 802.11 radios. In
these simulations, we seek to demonstrate GHT’s robustness on
real radios and dynamic topologies, where node failures and mo-
bility cause changes in nodes’ neighbors, and changes in the node
closest to a key’s hashed coordinates.

By modeling the full 802.11 MAC layer and physical layer, ns-
2 allows evaluation of a system’s performance on a bandwidth-
limited, contention-prone wireless medium. Our simulations use
a modified 802.11 radio with a 40-m radio range, rather than the
250-m radio range of IEEE-compliant hardware; this choice mir-
rors that made in the evaluation of directed diffusion in [10], in the

4Choosing d such that 2d =
p

n costs the same as local storage.
5One might, for example, encode the hierarchy level in the event
name so that d is globally known for each event type.
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Node Density 1 node / 256 m2

Radio Range 40 m
GPSR Beacon Interval 1 s

GPSR Beacon Expiration 4.5 s
Planarization GG
Mobility Rate 0, 0.1, 1 m/s

Number of Nodes 50, 100, 150, 200
Simulation Time 300 s

Query Generation Rate 2 qps
Query Start Time 42 s
Refresh Interval 10 s

Event Types 20
Events Detected 10 / type

Table 1: GHT simulation parameters in ns-2 simulations.

interest of using parameters closer to those found in sensor radios.
Our radio model is realistic in its use of the 802.11 MAC protocol
for floor acquisition, and in its modeling of capture; these aspects
reflect the contention behavior of today’s commodity off-the-shelf
radios. However, we do not consider environmental noise or prop-
agation obstacles, and leave examination of their important effects
to a future implementation study.

In all our ns-2 simulations, there is a single querying node placed
in the upper-left corner of the simulated region. This node repre-
sents the access point where queries enter the sensor network. At
the start of a simulation, all events are inserted into the DHT once,
by sensors chosen uniformly at random; these are the sensors that
measured the inserted events. Queries are acknowledged and re-
tried until they succeed. At time 42 s, to allow the DHT to stabi-
lize, the querying node begins generating queries at a rate of 2 qps,
including both new and retransmitted queries.

Table 1 shows the parameters we used in our ns-2 simulations.
We present results that are averaged over multiple simulations; in
all cases, the variances of these runs are reasonable. Note that
node density remains constant in our simulations; as we increase
the number of nodes, we scale the region size such that node den-
sity does not change.6

In measuring GHT’s performance, we are concerned with the
availability of the data stored to queriers, and the load placed on
nodes participating in GHT, both in communication and storage of
events. To measure availability, we propose the metric of success
rate, measured after all events have been inserted into GHT: for a
workload of queries, we compute the mean over all queries of the
fraction of events returned in each response, divided by the total
number of events known to have been stored in the network for that
key. Because insertions and queries are both acknowledged, this
measurement focuses mainly on the ability of GHT to hold data
written to it.

To measure the storage load on nodes, we examine the maximum
number of events stored at any node, to capture the worst-case re-
quired storage; and the mean number of events stored across all
nodes in the network, to capture typical storage requirements. We
measure the communication load on nodes by counting the mean
number of messages forwarded by a node in a refresh interval, and
the mean number of refresh messages forwarded by a node in a re-
fresh interval; these message counts are averaged across all nodes
and refresh intervals in a simulation.

Note that we do not measure the routing protocol load placed on

6We do not investigate varying node densities in this work. Karp’s
thesis demonstrates the efficacy of perimeter-mode forwarding on
both dense and sparse networks [14].

Number Success Max Avg Total Refresh
of Nodes Rate (%) Storage Storage Msgs Msgs

50 100% 47.2 40.7 10.2 4.4
100 100% 11.9 10.0 2.6 1.1
150 99.8% 7.2 5.9 1.6 0.72
200 100% 5.8 4.6 1.2 0.53

Table 2: Performance of GHT on Static Networks. Results are
the means of three simulations.

f Success Max Avg Total Refresh
Rate (%) Storage Storage Msgs Msgs

0 83.3% 25.4 8.8 3.2 1.6
0.2 94.2% 24.9 10.3 3.4 1.8
0.4 97.3% 22.6 10.7 3.4 1.8
0.6 98.6% 17.4 10.3 3.1 1.6
0.8 99.7% 14.0 10.1 3.1 1.5
1.0 100% 16.2 14.5 3.9 1.6

Table 3: Performance of GHT. Stationary nodes, varied frac-
tion of nodes alternate between up and down states. Results
are the means of eight simulations.

the network by GPSR in our simulations; we are evaluating GHT,
not the underlying routing system, as is the practice in the evalua-
tion of DHT systems [6, 21, 24, 25]. GPSR generates a constant
volume of routing protocol traffic (beacons) per node, regardless
of system size in nodes [14]; this load is of lower order than that
generated by GHT, which sends packets on paths of length O(

p
n).

Moreover, there is no location database like GLS [16] used with
GHT, as GHT sends no traffic to node IDs.

5.1.1 Stable and Static Nodes
As one would expect, on static networks, where the topology

doesn’t change, GHT offers very nearly perfect availability of stored
events. At all network scales, essentially all queries are answered
with all events stored in the network. As the system scales in in-
creasing number of nodes, the unchanging number of events are
dispersed among a wider population of nodes, and thus both the
mean and maximum state requirements per node decrease. Sim-
ilarly, dispersion reduces the count of the mean number of for-
warded refresh messages; fewer nodes are on perimeters about a
point to which a (key, value) pair hashes, and so a smaller fraction
of nodes receives refresh messages for forwarding.

5.1.2 Static but Failing Nodes
We now demonstrate that GHT is robust in the presence of node

failures, despite the topology changes that result. All the results we
present in this section are for networks of 100 nodes.

Table 3 shows the performance of GHT under a failure model
where a configured fraction of nodes selected uniformly at random
alternate between failing and restarting. When a node fails, it loses
the contents of its database; it only reacquires its database contents
upon returning to operation and receiving refreshes from neighbors.
In these results, a node selected as unreliable remains up for a pe-
riod selected uniformly at random in [0;120] s, then goes down for
a period uniformly chosen in [0;60]. We denote by f the fraction
of nodes that remain up for the entire simulation.

As one would expect, the success rate decreases as f does. But
the decrease is slight, until all nodes cycle between available and
unavailable, at f = 0. The deterioration in the success rate is caused
by events that were not saved by the refresh mechanism when the
node holding them failed. Analysis of the simulation logs reveals
that the vast majority of queries and responses reach their destina-
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Up/Down Success Max Avg Total Refresh
Time (s) Rate (%) Storage Storage Msgs Msgs

60/30 75.1% 18.6 6.0 2.9 0.93
120/60 84.7% 29.6 9.8 3.5 1.8
240/120 94.7% 45.9 15.2 4.7 3.1
480/240 95.7% 53.2 17.5 5.3 3.7

Table 4: Performance of GHT. Stationary nodes, all alternate
between up and down states of varied lengths. Results are the
means of four simulations.

Motion Success Max Avg Total Refresh
Rate (m/s) Rate (%) Storage Storage Msgs Msgs

0.1 96.8% 18.6 10.4 19.2 1.45
1 96.3% 52.2 22.5 17.4 4.10

Table 5: Performance of GHT on mobile networks. 0.1 and 1
m/s mobility. Results are the means of four runs for the 0.1 m/s
case, and twelve runs for the 1 m/s case.

tion successfully in a single transmission. Note that the maximum
number of events stored at a node decreases as more nodes become
reliable, while the mean number of events stored across all nodes
increases; these trends reflect the increased uniformity of the dis-
tribution of events across nodes, as the number of simultaneously
available nodes increases.

Table 4 shows the performance of GHT where f = 0 (that is,
where all nodes fail and restart repeatedly). Here, we vary the peri-
ods that nodes remain up and down. For an up/down time value of
x=y, a node remains up for a period chosen uniformly in [0;x], and
remains down for a period chosen uniformly in [0;y]. Simulation
times for this group of simulations only are not 300 s; we scale the
simulation time linearly with the up/down time; each simulation
lasts five times the length of a down time interval.

When nodes transition between up and down more frequently,
GHT’s ability to hold events is stressed more heavily, as the node
closest to an event’s destination position changes more frequently.
The success rate decreases very gradually at first, but progressively
more noticeably as the up/down periods shorten. The maximum
and average storage figures in these cases reflect that events dis-
appear from GHT when the join optimization and refreshes fail to
keep events alive in GHT.

5.1.3 Stable but Mobile Nodes
Table 5 shows how GHT performs on a mobile sensor network

of 100 nodes. In these simulations, nodes move using the random
waypoint model [17]; that is, in discrete steps, each to a point cho-
sen uniformly at random, at a rate chosen uniformly at random in
(0;M) m/s, where M is the maximum motion rate. They pause 60
s between motion steps. In these simulations, we use a timer to
cause GPSR to replanarize once every two seconds, which costs no
communication; only computation within a sensor node.

Under node mobility, GHT continues to offer robust persistence
for stored events, as demonstrated by the 96+% success rates in
Table 5. The cost of this robustness is in communication—note
the greater number of messages forwarded by GHT in the mobile
scenarios, vs. in the non-mobile ones. Under mobility, GPSR’s
perimeters change, and it’s possible for a packet walking a perime-
ter that changes underfoot to loop, until the packet exhausts its TTL
in hops [14]. We limit the TTL on refresh messages to ten hops in
the mobile simulations; they need not all walk the intended perime-
ter for refreshes to function properly, and the cost in congestion to
the network of forwarding them on far longer tours is significant.
In a more general implementation of GHT, a node can dynamically

determine the appropriate TTL to use, by periodically sending a re-
fresh with a small TTL, and expanding the TTL until the refresh
returns successfully. In these results, we elide this implementation
step, and fix the TTL at ten hops for refreshes. This value is longer
than the typical perimeter for the network density we simulate.

5.1.4 Discussion
As expected, GHT works well in sensornets with stable and static

nodes. But failures (and movement, in some cases) are inevitable,
and thus we are interested in the robustness of our design against
these factors. In our various robustness tests we subject our design
to very harsh environments. Our most generous run with failing
nodes uses mean cycle-times on the order of minutes, far worse
than we hope for most projected sensornet systems. And yet, as
long as the fraction of failing nodes isn’t overly high, or the cycle
times are tens of minutes, the system performs well. Similarly, the
extent and rate of movement in the mobile node case is significant;
nodes rest only a minute between movements, and the movements
are large excursions (half the size of the sensornet, on average), not
slight adjustments. Here, too, availability remains high.

Our GHT algorithm replicates a key-value pair at nodes in the
immediate vicinity of the home node. Localized replication of this
form is of little use if all the nodes in an area fail at the same time
(e.g., a fire destroys all nodes in a region). Resilience against these
clustered failures could be provided by storing each event multiple
times at dispersed locations (using multiple hash functions).

5.2 Comparative Study
The detailed ns-2 simulations verify the correctness and robust-

ness of the GHT system in a realistic wireless environment, includ-
ing MAC-layer behavior, packet loss, node dynamics, &c. How-
ever, they were limited to system sizes on the order of 100 nodes.
We now use less detailed simulations to compare the three canon-
ical mechanisms—external storage (ES), local storage (LS), and
data-centric storage (DCS)—in much larger systems. We built a
special-purpose simulator that assumes that nodes are stable and
stationary and that packet delivery to neighboring nodes is instan-
taneous and error-free. This simulator thus faithfully represents the
packet generation and forwarding behavior of the various canonical
mechanisms. We use this simulator to examine the number and pat-
tern of packet transmissions (as a measure of energy consumption)
as the size and nature of the sensornet and workload vary, to illumi-
nate the relative performance of the canonical data dissemination
algorithms. We do not count PRP packets in these simulations. The
length of a perimeter is purely determined by the density of the net-
work, and we only vary system scale in nodes, not density, in the
large-scale simulations.

We use two metrics to evaluate the performance: the total num-
ber of packets generated, and the hotspot usage, the maximum
number of packets transmitted by any single node. We don’t mea-
sure latency, as that is approximately the same across the algo-
rithms. Moreover, we assume that all other factors (such as the
fidelity of the data) are held fixed across the various algorithms.

The relevant system parameters are:
� n, the number of nodes in the system
� T , the number of event types
� Q, the number of event types queried for
� Di, the number of detected events of event type i

In this section we set T = 100 and Di = 100 for all i, and vary
n and Q. We present two basic tests. In test #1 we hold n fixed
(n = 10000) and vary Q. In test #2 we set Q = 50 and vary n; for
reasons we gave in Section 5.1, we hold the system density fixed
and increase the sensornet size as we increase n. All these results
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Figure 8: Total number of messages generated as Q, the number
of event types queried for, is increased. The number of nodes (n)
is held fixed at 10,000 nodes.
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Figure 9: The maximum number of messages sent by any single
node as Q, the number of event types queried for, is increased.
The number of nodes (n) is held fixed at 10,000 nodes.
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ber of nodes, is increased. The number of event types queried
for (Q) is held fixed at 50.
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Figure 11: The maximum number of messages sent by any sin-
gle node as n, the number of nodes, is increased. The number of
event types queried for (Q) is held fixed at 50.

are averaged across ten different topologies, and ten runs on each
topology. In each of these tests, we show the results ES, LS, and
the following three versions of DCS:

Normal DCS (N-DCS): A query returns a separate message for
each detected event

Summarized DCS (S-DCS): A query returns a single message re-
gardless of the number of detected events

Structured Replication DCS (SR-DCS): We assume an optimal
level of SR (as described in Section 4.4) to provide a lower
bound. We assume summarization in this case.7

5.2.1 Test #1: Varying Q

The results from varying Q are shown in Figures 8 and 9. For
low Q, LS has low total and hotspot usage, but both quantities in-
crease linearly in Q, making LS a poor choice for systems with
many queries. External storage has a very high hotspot load and a
medium level of total usage, both independent of Q. Both variants
of DCS that use summarization have low total and hotspot usage,
but note that structured replication in SR-DCS reduces the total us-
age significantly. The hotspot and total usage of DCS without sum-
marization (N-DCS) increases linearly in Q, but the slope of the
7We omit structured replication without summarization in the in-
terest of brevity.

total usage is much lower than that of LS (but has a higher offset).
These results suggest that for low Q all methods but ES perform
reasonably well, with LS and SR-DCS being the best. For high
Q, SR-DCS is the clearly superior choice, followed by S-DCS. If
summarization is not allowed, then the choice is between the lower
hotspot usage of N-DCS and the lower total usage of ES.
5.2.2 Test #2: Varying n

The results from varying n appear in Figures 10 and 11. All of
the methods have reasonably similar behavior for total usage, but
LS starts off (at low n) with the lowest value, and ends up (at high
n) with the highest value. S-DCS and SR-DCS have the lowest
hotspot usage by far, but among methods without summarization
DCS and LS have similar performance. ES has the worst hotspot
load. Thus, at all but the lowest values of n (lower than around
n = 1000) the DCS variants are the superior choices. Recall that
these simulations use Q = 50, and so these conclusions are similar
to those in test #1 above.

These performance results are remarkably consistent with the ap-
proximate formulae presented in Section 2.3.2; the only significant
deviations arise in cases where the hotspot usage does not occur at
the access point. These simulations, while idealizing wireless link
behavior, were true packet-level simulations of these algorithms in
systems as large as n = 100;000. The formulae of Section 2.3.2
suggest that DCS is particularly appropriate as system size grows
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and the number of events is far greater than the number returned
in queries (either because not all event types are queried for, or
because events are summarized in responses).

6. RELATED WORK
Directed diffusion [9, 10] is an example of data-centric routing—

routing based on the name of the data rather than on the identity of
the destination node. Unlike our proposed DCS mechanism, event
information in directed diffusion is stored locally at the detecting
node; as such, directed diffusion is closer to the local storage (LS)
model. Directed diffusion also provides additional mechanisms
for the reinforcement of high-quality data delivery paths and for
in-network aggregation (i.e., as the data is being routed to the re-
questor, it may be aggregated by intermediate nodes). Directed
diffusion doesn’t require geographic information; it uses flooding.

The Geographic Location System (GLS) used in GRID [16] can
be augmented to provide a DCS-like service. Geographic routing
delivers packets to locations, not addresses; thus, a packet sender
must be able to map a destination’s identifier to its geographic loca-
tion. GLS is a scalable location service that performs this mapping.
The location database is distributed across the nodes; each node
acting as the location server for a small number of other nodes.
The crux of the problem is that nodes must be able to find these
location server without knowing their geographic location. GLS
achieves this with a novel algorithm that uses a predefined hierar-
chical decomposition of the geographic space into nested grids and
a predefined ordering of node identifiers. Thus, what GLS enables
is routing to node identifiers. Moreover, an attempt to route to an
identifier Y for which no node exists terminates at the node with
identifier closest to Y as per the predefined ordering of identifiers.
Thus, we could use GLS to provide the DHT interface by hashing
event names to the node address space. The main drawback with
the above approach is that supporting the DHT interface requires
the location database to be built and maintained. While GLS pro-
vides this location database itself as a service, GHT avoids this level
of indirection and instead maps event names directly to locations.

The SCOUT [15] location tracking system might also be used
similarly. While SCOUT uses hierarchical addressing and routing
based on landmark routing, GHT uses GPSR, a flat routing algo-
rithm wherein nodes are addressed with geographic coordinates.

Although GHT was inspired by Distributed Hash Table systems
like Chord and CAN [6, 21, 24, 25], we did not adopt the rout-
ing algorithms used in these systems. These algorithms require
nodes to be interconnected in a fairly rigid manner. On the Internet,
node neighbor relationships are at the logical level; the underlying
IP routing system logically connects nodes that are not immediate
physical neighbors. It is not clear how (if at all) the node connectiv-
ity required by these DHT algorithms can be efficiently achieved in
a sensornet environment. GPSR allows us to achieve the required
hash-table functionality while working with only the true physical
connectivity between nodes.

7. CONCLUSION AND FUTURE WORK
This paper presented the design and evaluation of GHT, a DCS

system for sensornets built on geographic routing. We have pre-
dicted analytically and verified in simulations of networks of up to
100,000 nodes the cases where DCS offers reduced total network
load and hotspot network usage as compared with external stor-
age and local storage. Our analysis reveals that these benefits oc-
cur on sensornets comprised of large node populations, and where
many events are detected, but not all event types are queried. GHT
leverages the GPSR geographic routing system to offer an efficient

DCS service that maintains persistence of data when nodes fail or
move, while scalably spreading the load of (key, value) pairs evenly
throughout the sensornet.

Several avenues beg further investigation. Foremost among these
is the effect of varying node density. Under GHT, keys are uni-
formly hashed over the geographic space. Hence, as nodes are dis-
tributed increasingly non-uniformly, we expect the storage and for-
warding load across nodes to be correspondingly skewed. We are
investigating the consequent performance implications and devel-
oping mechanisms that can adapt to such non-uniformity.

To avoid hashing keys to points outside the sensornet, GHT re-
quires approximate knowledge of a sensornet’s boundaries.8 Our
work herein assumes foreknowledge of these boundaries (recorded,
e.g., when the network was first deployed). An open research prob-
lem is to devise scalable distributed algorithms to map these (pos-
sibly changing!) geographic boundaries.

Finally, our proposed design fundamentally requires that a node
know its own geographic position. While this assumption seems
reasonable for most sensornets, an open question is how one might
achieve DCS using only approximate geographic information, or
without any such information.
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