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Abstract. We consider the problem of computing an optimal range assignment
in a wireless network which allows a specified source station to perform a broad-
cast operation. In particular, we consider this problem as a special case of the
following more general combinatorial optimization problem, called Minimum
Energy Consumption Broadcast Subgraph (in short, MECBS): Given a weighted
directed graph and a specified source node, find a minimum cost range assign-
ment to the nodes, whose corresponding transmission graph contains a spanning
tree rooted at the source node. We first prove that MECBS is not approximable
within a sub-logarithmic factor (unless P=NP). We then consider the restriction of
MECBS to wireless networks and we prove several positive and negative results,
depending on the geometric space dimension and on the distance-power gradient.
The main result is a polynomial-time approximation algorithm for the NP-hard
case in which both the dimension and the gradient are equal to 2: This algorithm
can be generalized to the case in which the gradient is greater than or equal to the
dimension.

1 Introduction

Wireless networking technology will play a key role in future communications and the
choice of the network architecture model will strongly impact the effectiveness of the
applications proposed for the mobile networks of the future. Broadly speaking, there
are two major models for wireless networking:single-hopandmulti-hop. The single-
hop model [22], based on the cellular network model, provides one-hop wireless con-
nectivity between mobile hosts and static nodes known asbase stations. This type of
networks relies on a fixed backbone infrastructure that interconnects all base stations
by high-speed wired links. On the other hand, the multi-hop model [15] requires nei-
ther fixed, wired infrastructure nor predetermined interconnectivity.Ad hocnetworking
[12] is the most popular type of multi-hop wireless networks because of its simplicity:
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Fig. 1.A Range Assignment and Its Corresponding Directed Transmission Graph.

Indeed, anad hocwireless network is constituted by a homogeneous system ofmobile
stations connected by wireless links. In ad hoc networks, to every station is assigned a
transmission range: The overall range assignment determines a transmission (directed)
graph since one stations can transmit to another stationt if and only if t is within the
transmission range ofs (see Fig. 1).

The range transmission of a station depends, in turn, on the energy power supplied
to the station: In particular, the powerPs required by a stations to correctly transmit
data to another stationt must satisfy the inequality

Ps

d(s, t)α
> γ (1)

whered(s, t) is the Euclidean distance betweens andt, α ≥ 1 is thedistance-power
gradient, andγ ≥ 1 is thetransmission-qualityparameter. In an ideal environment (i.e.
in the empty space) it holds thatα = 2 but it may vary from 1 to more than 6 depending
on the environment conditions of the place the network is located (see [19]). The fun-
damental problem underlying any phase of a dynamic resource allocation algorithm in
ad-hoc wireless networks is the following: Find a transmission range assignment such
that (1) the corresponding transmission graph satisfies a given propertyπ, and (2) the
overall energy power required to deploy the assignment (according to Eq. 1) is mini-
mized.

A well-studied case of the above problem consists in choosingπ as follows: The
transmission graph has to be strongly connected. In this case, it is known that: (a) the
problem is not solvable in polynomial time (unlessP=NP) [6,14], (b) it is possible
to compute a range assignment which is at most twice the optimal one (that is, the
problem is 2-approximable), for multi-dimensional wireless networks [14], (c) there
exists a constantr > 1 such that the problem is notr-approximable (unlessP=NP),
for d-dimensional networks withd ≥ 3 [6], and (d) the problem can be solved in
polynomial time for one-dimensional networks [14]. Another analyzed case consists
in choosingπ as follows: The diameter of the transmission graph has to be at most
a fixed valueh. In this case, while non-trivial negative results are not known, some
tight bounds (depending onh) on the minimum energy power have been proved in [7],
and an approximation algorithm for the one-dimensional case has been given in [5].
Other trade-offs between connectivity and energy consumption have been obtained in
[16,21,24].
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In this paper we address the case in whichπ is defined as follows:Given a source
stations, the transmission graph has to contain a directed spanning tree rooted ats.
This case has been posed as an open question by Ephremides in [10]: Its relevance is
due to the fact that any transmission graph satisfying the above property allows the
source station to perform abroadcastoperation. Broadcast is a task initiated by the
source station which transmits a message to all stations in the wireless network: This
task constitutes a major part of real life multi-hop radio network [2,3].

The Optimization Problem.The broadcast range assignment problem described above
is a special case of the following combinatorial optimization problem, called MINI -
MUM ENERGY CONSUMPTION BROADCAST SUBGRAPH (in short, MECBS). Given
a weighted directed graphG = (V, E) with edge weight functionw : E → R+, a
range assignmentfor G is a functionr : V → R+: Thetransmission graphinduced by
G andr is defined asGr = (V, E′) where

E′ =
⋃

v∈V

{(v, u) : (v, u) ∈ E ∧ w(v, u) ≤ r(v)}.

The MECBS problem is then defined as follows: Given asource nodes ∈ V , find a
range assignmentr for G such thatGr contains a spanning tree ofG rooted ats and
cost(r) =

∑
v∈V r(v) is minimized.

Let us consider, for anyd ≥ 1 and for anyα ≥ 1, the family of graphsNα
d , called

(d-dimensional) wireless networks, defined as follows: A complete (undirected) graph
G belongs toNα

d if it can be embedded on ad-dimensional Euclidean space such that the
weight of an edge is equal to theαth power of the Euclidian distance between the two
endpoints of the edge itself. The restriction of MECBS to graphs inNα

d is denoted by
MECBS[Nα

d ]: It is then clear that the previously described broadcast range assignment
problem in the ideal 2-dimensional environment is MECBS[N2

2].

Our Results.In this paper, we analyze the complexity of the MINIMUM ENERGY CON-
SUMPTION BROADCAST SUBGRAPH problem both in the general case and in the more
realistic case in which the instances are wireless networks. In particular, we first prove
that MECBSis not approximable within a sub-logarithmic factor, unlessP=NP (see
Sect. 2). Subsequently, we consider MECBS[Nα

d ], for anyd ≥ 1 and for anyα ≥ 1,
and we prove the following results (see Sect. 3):

– For anyd ≥ 1, MECBS[N1
d] is solvable in polynomial time: This result is based

on a simple observation.
– MECBS[Nα

d ] is not solvable in polynomial time (unlessP=NP), for anyd ≥ 2
and for anyα > 1: This negative result uses the same arguments of [6].

– For any α ≥ 2, MECBS[Nα
2 ] is approximable within a constant factor: This is

the main result of the paper. A major positive aspect of the approximation algo-
rithm lies on the fact that it is just based on the computation of a standard minimum
spanning tree (shortly,MST). In a network with dynamic power control, the range
assigned to the stations can be modified at any time: Our algorithm can thus take ad-
vantage of all known techniques to dynamically maintainMSTs (see, for example,
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[9,11,18]).MSTs have already been used in order to develop approximation algo-
rithms for range assignment problems in wireless networks: However, we believe
that the analysis of the performance of our algorithm (which is based on computa-
tional geometry techniques) is rather interesting by itself.

Finally, in Sect. 4 we first observe that our approximation algorithm can be gener-
alized in order to deal with MECBS[Nα

d ], for anyd ≥ 2 and for anyα ≥ d: However,
we also prove that the approximation ratio grows at least exponentially with respect to
d. We then briefly consider the behavior of our approximation algorithm when applied
to MECBS[Nα

d ] with α < d and we summarize some questions left open by this paper.

Prerequisites.We assume the reader to be familiar with the basic concepts of compu-
tational complexity theory (see, for example, [4,20]) and with the basic concepts of the
theory of approximation algorithms (see, for example, [1]).

2 The Complexity of MECBS

In this section, we prove that the MINIMUM ENERGY CONSUMPTION BROADCAST

SUBGRAPH problem is not approximable within a sub-logarithmic factor (unlessP=
NP). To this aim, we provide a reduction from MIN SET COVER to MECBS. Recall
that MIN SET COVER is defined as follows: given a collectionC of subsets of a finite
setS, find a minimum cardinality subsetC′ ⊆ C such that every element inS belongs
to at least one member ofC′. It is known that, unlessP=NP, MIN SET COVER is not
approximable withinc logn, for somec > 0, wheren denotes the cardinality ofS [23]
(see, also, the list of optimization problems contained in [1]).

Theorem 1. If P 6= NP, thenMECBS is not approximable within a sub-logarithmic
factor.

Proof (Sketch).Let x be an instance of the MIN SET COVER problem. In the full ver-
sion of the paper, we show how to construct an instancey of MECBS such that there
exists a feasible solution forx whose cardinality is equal tok if and only if there ex-
ists a feasible solution fory whose cost is equal tok + 1. This clearly implies that
if MECBS is approximable within a sub-logarithmic factor, then MIN SET COVER

is approximable within a sub-logarithmic factor: The theorem hence follows from the
non-approximability of MIN SET COVER. ut
One interesting feature of the reduction used in the previous proof is that it also allows
us to show that MECBS is not approximable within a constant factor (unlessP=NP),
when the problem is restricted to undirected graphs.

3 The Restriction to Wireless Networks

In this section we analyze the complexity of the MINIMUM ENERGY CONSUMPTION

BROADCASTSUBGRAPHproblem restricted to wireless networks, that is, MECBS[Nα
d ]

with d, α ≥ 1. First of all, observe that ifα = 1 (that is, the edge weights coincide with
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the Euclidian distances), then the optimal range assignment is simply obtained by as-
signing tos the distance from its farthest node and by assigning 0 to all other nodes.
We then have that the following result holds.

Theorem 2. For anyd ≥ 1, thenMECBS[N1
d] is solvable in polynomial time.

It is, instead, possible to prove the following result, whose proof is an adaptation of
the one given in [6] to prove theNP-hardness of computing a minimum range assign-
ment that guarantees the strong connectivity of the corresponding transmission graph
(the proof will be given in the full version of the paper).

Theorem 3. For anyd ≥ 2 and for anyα > 1, MECBS[Nα
d ] is not solvable in poly-

nomial time (unlessP= NP).

Because of the above negative result, it is reasonable to look for polynomial-time algo-
rithms that compute approximate solutions for MECBS restricted to wireless networks.
We now present and analyze an efficient approximation algorithm for MECBS[Nα

2 ], for
anyα ≥ 2. In what follows, given a graphG ∈ Nα

2 , we denote byG1/α the graph ob-
tained fromG by setting the weight of each edge to theαth root of the weight of the
corresponding edge inG: Hence,G1/α ∈ N1

2, that is, there exists an embedding of
G1/α on the plane such that the Euclidean distanced(u, v) between two nodesu andv
coincides with the weight of the edge(u, v) in G1/α.

The Approximation Algorithm MST-ALG. Given a graphG ∈ Nα
2 and a

specified source nodes, the algorithm first computes aMST T of G (observe
that this computation does not depend on the value ofα). Subsequently,
it makesT downward oriented by rooting it ats. Finally, the algorithm
assigns to each vertexv the maximum among the weights of all edges of
T outgoing fromv. Clearly, the algorithm runs in polynomial time and
computes a feasible solution.

3.1 The Performance Analysis of the Approximation Algorithm

The goal of this section is to prove that, for any instancex = 〈G = (V, E), w, s〉 of
MECBS[Nα

2 ] with α ≥ 2, the range assignmentr computed by MST-ALG satisfies the
following inequality:

cost(r) ≤ 10α/2 · 2αopt(x), (2)

whereopt(x) denotes the cost of an optimal range assignment. First notice that

cost(r) ≤ w(T ),

where, for any subgraphG′ of G, w(G′) denotes the sum of the weights of the edges in
G′. As a consequence of the above inequality, it now suffices to show that there exists
a spanning subgraphG′ of G such thatw(G′) ≤ 10α/2 · 2αopt(x). Indeed, since the
weight ofT is bounded by the weight ofG′, we have that Eq. 2 holds.

In order to prove the existence ofG′, we make use of the following theorem whose
proof is given in Sect. 3.2.
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Theorem 4. Let G ∈ Nα
2 with α ≥ 2 and letR be the diameter ofG1/α, that is, the

maximum distance between two nodes inG1/α. Then, for anyMST T of G,

w(T ) ≤ 10α/2Rα.

Let ropt be an optimal assignment forx. For anyv ∈ V , let

S(v) = {u ∈ V : w(v, u) ≤ ropt(v)}

and letT (v) be aMST of the subgraph ofG induced byS(v). From Theorem 4, it fol-
lows thatw(T (v)) ≤ 10α/2 · 2αropt(v). Consider the spanning subgraphG′ = (V, E′)
of G such that

E′ =
⋃

v∈V

{e ∈ E : e ∈ T (v)}.

It then follows that

w(G′) ≤
∑
v∈V

w(T (v)) ≤ 10α/2 · 2α
∑
v∈V

ropt(v) = 10α/2 · 2αopt(x).

We have thus proved the following result.

Theorem 5. For anyα ≥ 2, MECBS[Nα
2 ] is approximable within10α/2 · 2α.

3.2 Proof of Theorem 4

Given a graphG ∈ Nα
2 with α ≥ 2, we identify the nodes ofG with the points cor-

responding to an embedding ofG1/α on the plane: Recall that the Euclidean distance
d(u, v) between two pointsu, v coincides with the weight of the edge(u, v) in G1/α.

Let us first consider the caseα = 2 and letei = (ui, vi) be theith edge inT ,
for i = 1, . . . , |V | − 1 (any fixed ordering of the edges is fine). We denote byDi the
diametral open circleof ei, that is, the open disk whose centerci is on the midpoint of
ei and whose diameter isd(ui, vi). From Lemma 6.2 of [17], it follows thatDi contains
no point from the setV − {ui, vi}. The following lemma, instead, states that, for any
two diametral circles, the center of one circle is not contained in the other circle.

Lemma 1. For anyi, j ∈ {1, . . . , |V | − 1} with i 6= j, ci is not contained inDj .

Proof. Suppose by contradiction that there exist two diametral circlesDi andDj such
thatci is contained inDj. We will show that the longest edge betweenei andej can be
replaced by a strictly shorter one, still maintaining the connectivity ofT : SinceT is a
MST the lemma will follow. Let us assume, without loss of generality, thatd(uj , vj) ≥
d(ui, vi). We first prove that

max{d(ui, uj), d(vi, vj)} < d(uj , vj) (3)

Let Y + andY − be the half-planes determined by the line identified byci andcj :
Without loss of generality, we may assume thatvi and vj (respectively,ui and uj)
are both contained inY + (respectively,Y −), as shown in Fig. 2. Assume also that
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Fig. 2.The Proof of Lemma 1.

d(vi, vj) ≥ d(ui, uj) (the other case can be proved in a similar way). Letx be the
intersection point inY − between the two circumferences determined byDi andDj

(notice that, sinceDi andDj are open disks, neitherDi nor Dj containsx) and letxi

andxj be the points diametrically opposite tox with respect toci andcj , respectively.
Clearly,d(vi, vj) ≤ d(xi, xj). Eq. 3 easily follows from the following

Fact 1. d(xi, xj) < d(uj , vj).

Proof (of Fact 1).By definition,ci (respectively,cj) is the median of the
segmentxxi (respectively,xxj ). Thus, the triangles4(xxixj) and
4(xcicj) are similar. From the hypothesis thatci ∈ Dj, it follows that
d(ci, cj) < d(x, cj). Thus, by similarity, it must hold that

d(xi, xj) < d(x, xj) = d(uj , vj)

and the fact follows. ut

As a consequence of Eq. 3, we can replace inT , ej = (uj , vj) by either(ui, uj) or
(vi, vj) (the choice depends on the topology ofT ), thus obtaining a better spanning
tree. ut

We now use the above lemma in order to bound the number of diametral circles any
point on the plane belongs to.

Lemma 2. For any pointp on the plane,p is contained in at most five diametral circles.

Proof. Suppose by contradiction that there exist a pointp covered by (at least) six
diametral circles. Then, there must exist two circlesD1 andD2 such that their respective
centersc1 andc2 form with p an angleβ ≤ π/3 (see Fig. 3(a)). LetR1 andR2 denote
the diameters ofD1 andD2, respectively. Sinceβ ≤ π/3, we have that

d(c1, c2) ≤ max{d(c1, p), d(c2, p)} < max{R1, R2}

where the strict inequality is due to the fact thatp ∈ D1 ∩D2 and that bothD1 andD2

are open disks. Hence, eitherc1 ∈ D2 or c2 ∈ D1, thus contradicting Lemma 1. ut
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Fig. 3.The Proof of Lemma 2

For anyi with 1 ≤ i ≤ |V | − 1, let Di denote the smallest closed disk that contains
Di. The last lemma of this section states that the union of allDis is contained in a
closed disk whose diameter is comparable to the diameter ofG1/α.

Lemma 3. LetD =
⋃

ei∈T Di. Then,D is contained into the closed disk whose diam-

eter is equal to
√

2R and whose center coincides with the center ofD.

Proof. Consider any two pointsx andy within D. It is easy to see that the worst case
corresponds to the case in which bothx andy are on the boundary ofD. Consider the
closed disk whose diameter is equal tod(x, y) and whose centerc′ is on the midpoint
of the segmentxy, and letz be any point on its boundary (see Fig. 4). It holds that
d(c, z) ≤ √

2R/2, wherec is the center ofD. Indeed, from the triangular inequality we
have that

d(c, z) ≤ d(c, c′) + d(c′, z) = d(c, c′) + d(x, y)/2.

Moreover, since the anglecc′y is equal toπ/2,

d(c, c′)2 + d(c′, y)2 = d(c, y)2 = R2/4.

Thus,

d(c, z) ≤
√

R2 − d(x, y)2

4
+ d(x, y)/2.

The right end of this equation reaches its maximum whend(x, y) =
√

2R/2, which
impliesd(c, z) ≤ √

2R/2. Hence the lemma follows. ut
We are now able to prove Theorem 4. In particular, we have to prove that

|V |−1∑
i=1

d(ui, vi)2 ≤ 10R2, (4)

where(ui, vi) is theith edge inT , for i = 1, . . . , |V | − 1. Indeed, letArea(Di) denote
the area ofDi. It then holds that

|V |−1∑
i=1

d(ui, vi)2 =
4
π

|V |−1∑
i=1

Area(Di). (5)
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By combining Lemma 3 and 2, we have that

|V |−1∑
i=1

Area(Di) ≤ 5 ·

π

(√
2R
2

)2

 =

5
2
πR2. (6)

By combining Eq. 5 and 6 we obtain Eq. 4, which proves the lemma forα = 2.
Finally, we consider the caseα > 2. By using simple computations, we get

cost(r) =
|V |−1∑
i=1

d(ui, vi)α =
|V |−1∑
i=1

(
d(ui, vi)2

)α/2

≤

|V |−1∑

i=1

d(ui, vi)2




α/2

≤ 10α/2Rα,

where the last inequality follows from Eq. 4. This completes the proof of Theorem 4.

4 Further Results and Open Questions

Algorithm MST-ALG can be generalized to higher dimensions. In particular, it is pos-
sible to prove the following result.

Theorem 6. There exists a functionf : N ×R → R such that, for anyd ≥ 2 and for
anyα ≥ d, MECBS[Nα

d ] is approximable within factorf(d, α).

The proof of the above theorem is again based on the computation of aMST of the input
graph: Indeed, the algorithm is exactly the same. Unfortunately, the following result
(whose proof is based on results in [8,13,25] and will be given in the full version of the
paper) shows that the functionf in the statement of the theorem grows exponentially
with respect tod.

Theorem 7. There exists a positive constantγ such that, for anyd and for anyk, an
instancexk,d of MECBS[Nd

d] exists such thatopt(xk,d) = kd while the cost of the
range assignment computed byMST-ALG is at leastkd · 2γd.
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One could also ask whether our algorithm approximates MECBS[Nα
d ] in the case

in which d ≥ 2 andα < d. Unfortunately, it is not difficult to produce an instance
x such thatopt(x) = O(nα/d) while the cost of the range assignment computed by
MST-ALG is Ω(n), wheren denotes the number of vertices: For example, in the case
d = 2, we can just consider the two dimensional grid of side

√
n and the source node

positioned on its center.

Open Problems.Three main problems are left open by this paper. The first one is to
improve the analysis of MST-ALG (or to develop a different algorithm with a better
performance ratio). Actually, we have performed several experiments and it turns out
that the practical value of the performance ratio of MST-ALG (in the case in which
d = 2 andα = 2) is between 2 and 3. The second open problem is to analyze the
approximability properties of MECBS[Nα

d ] whenα < d: In particular, it would be very
interesting to study the three-dimensional case. As previously observed, theMST-based
algorithm does not guarantee any approximation, and it seems thus necessary to develop
approximation algorithms based on different techniques. The last open problem is to
consider MECBS[Nα

1 ], for anyα ≥ 1: In particular, we conjecture that this problem is
solvable in polynomial time.
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