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Abstract. We consider the problem of computing an optimal range assignment
in a wireless network which allows a specified source station to perform a broad-
cast operation. In particular, we consider this problem as a special case of the
following more general combinatorial optimization problem, called Minimum
Energy Consumption Broadcast Subgraph (in short, MECBS): Given a weighted
directed graph and a specified source node, find a minimum cost range assign-
ment to the nodes, whose corresponding transmission graph contains a spanning
tree rooted at the source node. We first prove that MECBS is not approximable
within a sub-logarithmic factor (unless P=NP). We then consider the restriction of
MECBS to wireless networks and we prove several positive and negative results,
depending on the geometric space dimension and on the distance-power gradient.
The main result is a polynomial-time approximation algorithm for the NP-hard
case in which both the dimension and the gradient are equal to 2: This algorithm
can be generalized to the case in which the gradient is greater than or equal to the
dimension.

1 Introduction

Wireless networking technology will play a key role in future communications and the
choice of the network architecture model will strongly impact the effectiveness of the
applications proposed for the mobile networks of the future. Broadly speaking, there
are two major models for wireless networkirgingle-hopand multi-hop The single-

hop modell[22], based on the cellular network model, provides one-hop wireless con-
nectivity between mobile hosts and static nodes knowbage stationsThis type of
networks relies on a fixed backbone infrastructure that interconnects all base stations
by high-speed wired links. On the other hand, the multi-hop madeél [15] requires nei-
ther fixed, wired infrastructure nor predetermined interconnectiiiyhocnetworking

[12] is the most popular type of multi-hop wireless networks because of its simplicity:
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Fig. 1. A Range Assignment and Its Corresponding Directed Transmission Graph.

Indeed, arad hocwireless network is constituted by a homogeneous systemobile
stations connected by wireless links. In ad hoc networks, to every station is assigned a
transmission range: The overall range assignment determines a transmission (directed)
graph since one stationcan transmit to another stationf and only if ¢ is within the
transmission range of(see Fig[l).

The range transmission of a station depends, in turn, on the energy power supplied
to the station: In particular, the powé}, required by a station to correctly transmit
data to another stationmust satisfy the inequality

Ps
d(s,t)>

> (1)

whered(s, t) is the Euclidean distance betweeandt, o > 1 is thedistance-power
gradient andy > 1 is thetransmission-qualitparameter. In an ideal environment (i.e.

in the empty space) it holds that= 2 but it may vary from 1 to more than 6 depending

on the environment conditions of the place the network is located[(see [19]). The fun-
damental problem underlying any phase of a dynamic resource allocation algorithm in
ad-hoc wireless networks is the following: Find a transmission range assignment such
that (1) the corresponding transmission graph satisfies a given propeatyd (2) the
overall energy power required to deploy the assignment (according {0 Eqg. 1) is mini-
mized.

A well-studied case of the above problem consists in choosiag follows: The
transmission graph has to be strongly connected. In this case, it is known that: (a) the
problem is not solvable in polynomial time (unleBsNP) [6/14], (b) it is possible
to compute a range assignment which is at most twice the optimal one (that is, the
problem is 2-approximable), for multi-dimensional wireless netwadrks [14], (c) there
exists a constant > 1 such that the problem is netapproximable (unlesB=NP),
for d-dimensional networks witld > 3 [6], and (d) the problem can be solved in
polynomial time for one-dimensional networks [14]. Another analyzed case consists
in choosingr as follows: The diameter of the transmission graph has to be at most
a fixed valueh. In this case, while non-trivial negative results are not known, some
tight bounds (depending dr) on the minimum energy power have been proved.in [7],
and an approximation algorithm for the one-dimensional case has been given in [5].
Other trade-offs between connectivity and energy consumption have been obtained in
[16/21].24].



On the Complexity of Computing Minimum Energy Consumption 123

In this paper we address the case in whicls defined as followsGiven a source
stations, the transmission graph has to contain a directed spanning tree rooted at
This case has been posed as an open question by Ephremides in [10]: Its relevance is
due to the fact that any transmission graph satisfying the above property allows the
source station to perform laroadcastoperation. Broadcast is a task initiated by the
source station which transmits a message to all stations in the wireless network: This
task constitutes a major part of real life multi-hop radio netwoik [2,3].

The Optimization ProblemThe broadcast range assignment problem described above
is a special case of the following combinatorial optimization problem, called M
MUM ENERGY CONSUMPTION BROADCAST SUBGRAPH (in short, MECBS). Given

a weighted directed grapi = (V, E) with edge weight functionv : £ — R*, a
range assignmerfor G is a functionr : V — RT: Thetransmission grapimduced by

G andr is defined a7, = (V, E’) where

E' = U {(v,u) : (v,u) € EAw(v,u) <7r(v)}.
veV

The MECBS problem is then defined as follows: Givesoairce node € V, find a
range assignmentfor G such thatG, contains a spanning tree 6f rooted ats and
cost(r) = >,y r(v) is minimized.

Let us consider, for ang > 1 and for anya. > 1, the family of graphd\§, called
(d-dimensional) wireless networkdefined as follows: A complete (undirected) graph
G belongstd\§ if it can be embedded ondédimensional Euclidean space such that the
weight of an edge is equal to tlheh power of the Euclidian distance between the two
endpoints of the edge itself. The restriction of MECBS to graphsgins denoted by
MECBSING]: It is then clear that the previously described broadcast range assignment
problem in the ideal 2-dimensional environmentis MECBZ[

Our Results.In this paper, we analyze the complexity of thenNMum ENERGY CON-
SUMPTION BROADCAST SUBGRAPH problem both in the general case and in the more
realistic case in which the instances are wireless networks. In particular, we first prove
that MECBSis not approximable within a sub-logarithmic factor, unléssNP (see
Sect[2). Subsequently, we consider MECB], for anyd > 1 and for anya > 1,

and we prove the following results (see SELt. 3):

— Foranyd > 1, MECBSIN!] is solvable in polynomial timeThis result is based
on a simple observation.

— MECBSIN¢] is not solvable in polynomial time (unleBsNP), for anyd > 2
and for anya > 1: This negative result uses the same arguments of [6].

— Foranya > 2, MECBS|Ng] is approximable within a constant factorhis is
the main result of the paper. A major positive aspect of the approximation algo-
rithm lies on the fact that it is just based on the computation of a standard minimum
spanning tree (shortly1sT). In a network with dynamic power control, the range
assigned to the stations can be modified at any time: Our algorithm can thus take ad-
vantage of all known techniques to dynamically maintastms (see, for example,
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[9111.18]).msTs have already been used in order to develop approximation algo-
rithms for range assignment problems in wireless networks: However, we believe
that the analysis of the performance of our algorithm (which is based on computa-
tional geometry techniques) is rather interesting by itself.

Finally, in Sect[# we first observe that our approximation algorithm can be gener-
alized in order to deal with MECBS8I;], for anyd > 2 and for anya > d: However,
we also prove that the approximation ratio grows at least exponentially with respect to
d. We then briefly consider the behavior of our approximation algorithm when applied
to MECBSN§] with o < d and we summarize some questions left open by this paper.

Prerequisites.We assume the reader to be familiar with the basic concepts of compu-
tational complexity theory (see, for examplel [4,20]) and with the basic concepts of the
theory of approximation algorithms (see, for example, [1]).

2 The Complexity of MECBS

In this section, we prove that the INiIMUM ENERGY CONSUMPTION BROADCAST
SUBGRAPH problem is not approximable within a sub-logarithmic factor (unkess
NP). To this aim, we provide a reduction fromiNl SET CoveR to MECBS. Recall
that MIN SET CovER is defined as follows: given a collecti@n of subsets of a finite
setS, find a minimum cardinality subsét’ C C such that every element i belongs
to at least one member 6. It is known that, unlesB=NP, MIN SET COVER is not
approximable withirclog n, for somec > 0, wheren denotes the cardinality f [23]
(see, also, the list of optimization problems containedlin [1]).

Theorem 1. If P # NP, thenMECBS is not approximable within a sub-logarithmic
factor.

Proof (Sketch)Let x be an instance of the M SET CovER problem. In the full ver-
sion of the paper, we show how to construct an instancEMECBS such that there
exists a feasible solution far whose cardinality is equal tb if and only if there ex-

ists a feasible solution foy whose cost is equal tb + 1. This clearly implies that

if MECBS is approximable within a sub-logarithmic factor, thenNVISET COVER

is approximable within a sub-logarithmic factor: The theorem hence follows from the
non-approximability of MN SET COVER. O

One interesting feature of the reduction used in the previous proof is that it also allows
us to show that MECBS is not approximable within a constant factor (uirlebs?),
when the problem is restricted to undirected graphs.

3 The Restriction to Wireless Networks

In this section we analyze the complexity of theNNMum ENERGY CONSUMPTION
BROADCAST SUBGRAPHproblem restricted to wireless networks, thatis, MECBJ|
with d, o > 1. First of all, observe that if: = 1 (that is, the edge weights coincide with
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the Euclidian distances), then the optimal range assignment is simply obtained by as-
signing tos the distance from its farthest node and by assigning 0O to all other nodes.
We then have that the following result holds.

Theorem 2. For anyd > 1, thenMECBSIN'] is solvable in polynomial time.

Itis, instead, possible to prove the following result, whose proof is an adaptation of
the one given in [6] to prove thiP-hardness of computing a minimum range assign-
ment that guarantees the strong connectivity of the corresponding transmission graph
(the proof will be given in the full version of the paper).

Theorem 3. For anyd > 2 and for anya > 1, MECBS[N¢] is not solvable in poly-
nomial time (unlesP= NP).

Because of the above negative result, it is reasonable to look for polynomial-time algo-
rithms that compute approximate solutions for MECBS restricted to wireless networks.
We now present and analyze an efficient approximation algorithm for MEQB]S{or

anya > 2. In what follows, given a grapti’ € N, we denote by7'/* the graph ob-
tained fromG by setting the weight of each edge to thith root of the weight of the
corresponding edge i6": Hence,G'/* ¢ Ni, that is, there exists an embedding of
G'/* on the plane such that the Euclidean distafee v) between two nodes andv
coincides with the weight of the edge, v) in G*/.

The Approximation Algorithm MSsT-ALG. Given a graphG € Ng and a
specified source nodethe algorithm first computesxesT 7" of G (observe
that this computation does not depend on the value)ofSubsequently,
it makesT downward oriented by rooting it at Finally, the algorithm
assigns to each vertexthe maximum among the weights of all edges of
T outgoing fromw. Clearly, the algorithm runs in polynomial time and
computes a feasible solution.

3.1 The Performance Analysis of the Approximation Algorithm

The goal of this section is to prove that, for any instance (G = (V, E),w, s) of
MECBSNg] with o > 2, the range assignmentomputed by MT-ALG satisfies the
following inequality:

cost(r) < 10%/2 . 2%opt(x), (2

whereopt(z) denotes the cost of an optimal range assignment. First notice that
cost(r) < w(T),

where, for any subgrapfl’ of G, w(G") denotes the sum of the weights of the edges in
G’. As a consequence of the above inequality, it now suffices to show that there exists
a spanning subgraph’ of G such thatw(G’) < 10%/2 - 2%opt(z). Indeed, since the
weight of T" is bounded by the weight @¥’, we have that EQJ2 holds.

In order to prove the existence 6f, we make use of the following theorem whose
proof is given in Sec{_3]2.
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Theorem 4. LetG € N§ with « > 2 and letR be the diameter ofs'/*, that is, the
maximum distance between two node§'ii. Then, for anysT T of G,

w(T) < 10%/2R*.
Letrop: be an optimal assignment fer For anyv € V, let
Sw)={ueV:w,u) <rep(v)}

and letT'(v) be amsT of the subgraph ofy induced byS(v). From Theorerill4, it fol-
lows thatw(T'(v)) < 10%/2 . 2%, (v). Consider the spanning subgra@h= (V, E’)

of G such that
E' = U{eeE:eeT(u)}.
veV

It then follows that

w(G") < Z w(T(v)) < 10%/2 . 22 Z Topt(vV) = 10%/2 . 2%0pt(x).
veV veV

We have thus proved the following result.

Theorem 5. For anya > 2, MECBSINg] is approximable withirl0%/2 . 22,

3.2 Proofof Theorenl2d

Given a graptG € Ng with o > 2, we identify the nodes off with the points cor-
responding to an embedding 6f/* on the plane: Recall that the Euclidean distance
d(u,v) between two points, v coincides with the weight of the edge, v) in G/,

Let us first consider the cage = 2 and lete, = (u;,v;) be theith edge inT,
fori =1,...,|V| — 1 (any fixed ordering of the edges is fine). We denotehythe
diametral open circlef ¢;, that is, the open disk whose centgis on the midpoint of
e; and whose diameter i§u;, v;). From Lemma 6.2 of [17], it follows thaD; contains
no point from the seV’ — {u;,v;}. The following lemma, instead, states that, for any
two diametral circles, the center of one circle is not contained in the other circle.

Lemma 1. Foranys, j € {1,...,|V| — 1} with¢ # j, ¢; is not contained irD;.

Proof. Suppose by contradiction that there exist two diametral citbleand D; such
thatc; is contained inD;. We will show that the longest edge betwegmande; can be
replaced by a strictly shorter one, still maintaining the connectivity:o8inceT is a
MsT the lemma will follow. Let us assume, without loss of generality, ttat;, v;) >

d(u;,v;). We first prove that

max{d(u;, u;),d(vi,v;)} < d(uj,v;) 3)

LetY ™ andY ~ be the half-planes determined by the line identifiedc-bgndc;:
Without loss of generality, we may assume thatndv; (respectivelyu; andu;)
are both contained iy + (respectivelyY ~), as shown in Fig[]2. Assume also that
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Fig. 2. The Proof of Lemma@l1.

d(vi,v;) > d(ui,u;) (the other case can be proved in a similar way). Ldie the
intersection point inY’~ between the two circumferences determinedllyand D;
(notice that, sincé); andD; are open disks, neithdp; nor D; containsz) and letz;
andz; be the points diametrically opposite tavith respect taz; andc;, respectively.
Clearly,d(v;, vj) < d(z;,x;). Eq.[3 easily follows from the following

Fact 1. d(m,,xj) < d(Uj,Uj).

Proof (of Factl).By definition, ¢; (respectivelyg;) is the median of the
segmentzz; (respectively,zz;). Thus, the trianglesA(xz;z;) and
A(zc;cg) are similar. From the hypothesis that € Dy, it follows that
d(c;,¢5) < d(z, ¢j). Thus, by similarity, it must hold that

d(xi,r;) < d(x,z5) = d(uy, vj)
and the fact follows. m|

As a consequence of Elgl 3, we can replac&jr; = (u;,v;) by either(u;, u;) or
(vs,v5) (the choice depends on the topology®, thus obtaining a better spanning
tree. O

We now use the above lemma in order to bound the number of diametral circles any
point on the plane belongs to.

Lemma 2. For any pointp on the planep is contained in at most five diametral circles.

Proof. Suppose by contradiction that there exist a pgirtovered by (at least) six
diametral circles. Then, there must exist two cirdlasand D, such that their respective
centers; andce, form with p an angles < /3 (see FiglB(a)). LeR; and R, denote
the diameters oD; and D-, respectively. Sincg < «/3, we have that

d(c1,c2) <max{d(c1,p),d(co,p)} < max{R1, Ry}

where the strict inequality is due to the fact that D, N D- and that bothD; and D,
are open disks. Hence, eitherc D, or ¢, € Dy, thus contradicting Lemnid 1. O
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(a) ()
Fig. 3. The Proof of LemmA&l2

Forany; with 1 <i < [V| -1, let D; denote the smallest closed disk that contains
D;. The last lemma of this section states that the union ofyadl is contained in a
closed disk whose diameter is comparable to the diamet@t ©f.

Lemma 3. LetD = |J,, ., D;. Then,D is contained into the closed disk whose diam-
eter is equal to,/2R and whose center coincides with the centebof

Proof. Consider any two points andy within D. It is easy to see that the worst case
corresponds to the case in which batlandy are on the boundary d. Consider the
closed disk whose diameter is equaldia;, y) and whose centef is on the midpoint
of the segmenty, and letz be any point on its boundary (see Hig. 4). It holds that
d(c, z) < v/2R/2, wherec is the center oD. Indeed, from the triangular inequality we
have that

d(e,z) < d(e,d)+d(c,z) =d(c, )+ d(z,y)/2.

Moreover, since the angte’y is equal tor /2,

d(c,)? +d(c,y)* = d(c,y)* = R?/4.

Thus,
2 _ 2
dle.2) < | T2 ey o,
The right end of this equation reaches its maximum wiieny) = /2R/2, which
impliesd(c, z) < v/2R/2. Hence the lemma follows. O

We are now able to prove Theorémn 4. In particular, we have to prove that

[V|-1
> d(ui,vi)* < 10R?, 4

i=1

where(u;, v;) is theith edge inT’, fori = 1,...,|V| — 1. Indeed, lefArea(D;) denote
the area ofD;. It then holds that

V-1 IV\ 1

Z d( uz,uz Z Area(D (5)



On the Complexity of Computing Minimum Energy Consumption 129

Fig. 4. The Proof of Lemma@l3.

By combining Lemm@&13 arid 2, we have that

[V|-1 2
> Area(D;) <5- |7 (@) = gwRQ. (6)

By combining Eqlb and 6 we obtain Eq. 4, which proves the lemma for2.
Finally, we consider the cage> 2. By using simple computations, we get

[V]-1 [V|-1

COSt(T‘) — Z d(uivvi)a — Z (d(ui7’l)i)2)a/2
i=1 1=1
Vi-1 o/

< Z d(us, v;)? < 10%/2R?,
=1
where the last inequality follows from Hg. 4. This completes the proof of Theldrem 4.

4 Further Results and Open Questions

Algorithm MsT-ALG can be generalized to higher dimensions. In particular, it is pos-
sible to prove the following result.

Theorem 6. There exists a functiofi : ' x R — R such that, for anyl > 2 and for
anya > d, MECBS|[NY] is approximable within factof (d, o).

The proof of the above theorem is again based on the computationsf af the input
graph: Indeed, the algorithm is exactly the same. Unfortunately, the following result
(whose proof is based on results if{ [8[13,25] and will be given in the full version of the
paper) shows that the functighin the statement of the theorem grows exponentially
with respect tal.

Theorem 7. There exists a positive constapsuch that, for anyl and for anyk, an
instancery, o of MECBSNY] exists such thabpt(z;4) = k¢ while the cost of the
range assignment computed s T-ALG is at leastk® - 27,
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One could also ask whether our algorithm approximates MEGIB5in the case
in whichd > 2 anda < d. Unfortunately, it is not difficult to produce an instance
x such thabopt(z) = O(n®/?) while the cost of the range assignment computed by
MST-ALG is £2(n), wheren denotes the number of vertices: For example, in the case
d = 2, we can just consider the two dimensional grid of side and the source node
positioned on its center.

Open Problems.Three main problems are left open by this paper. The first one is to
improve the analysis of BIT-ALG (or to develop a different algorithm with a better
performance ratio). Actually, we have performed several experiments and it turns out
that the practical value of the performance ratio o§ WALG (in the case in which

d = 2 anda = 2) is between 2 and 3. The second open problem is to analyze the
approximability properties of MECB8[;] whena < d: In particular, it would be very
interesting to study the three-dimensional case. As previously observeds theased
algorithm does not guarantee any approximation, and it seems thus necessary to develop
approximation algorithms based on different techniques. The last open problem is to
consider MECBS|I{], for any« > 1: In particular, we conjecture that this problem is
solvable in polynomial time.
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