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Abstract. Computing energy efficient broadcast trees is one of the most promi-
nent operations in wireless networks. For stations embedded in the Euclidean
plane, the best analytic result known to date is a 6.33-approximation algorithm
based on computing an Euclidean minimum spanning tree. We improve the anal-
ysis of this algorithm and show that its approximation ratio is 6, which matches a
previously known lower bound for this algorithm.

1 Introduction

Multi-hop wireless networks [14]] require neither fixed, wired infrastructure nor prede-
termined interconnectivity. In particular, ad hoc networks [11,/17]] are the most popular
type of multi-hop wireless networks. An ad hoc wireless network is built of a bunch of
radio stations. The links between them are established in a wireless fashion using the
radio transmitters and receivers of the stations.

In order to send a message from a station s to a station ¢, station s needs to emit
the message with enough power such that ¢ can receive it. In the model, the power P;
required by a station s to transmit data to station ¢ must satisfy the inequality

Py
dist(s, t)™

The term dist(s, t) denotes the distance between s and ¢, and o > 1 is the distance-
power gradient, and v > 1 is the transmission-quality parameter. In an ideal environ-
ment (i.e. in the empty space) it holds that o = 2 but it may vary from 1 to more than 6
depending on the environment conditions of the location of the network (see [[19]]).

In ad hoc networks, a power value is assigned to each station. These values, ac-
cording to Equation (), determine the so-called range of each station. The range of a
station s is the area in which stations can receive all messages sent by s.
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Using the ranges, one can determine the so-called transmission graph G = (S, A).
The vertex set S is the set of stations, and the directed edge from s to ¢ is in A if and
only if ¢ is within the range of s.

All stations in the range of a station ¢ can receive messages sent by i. The minimal
range needed for station ¢ to establish all its out-going connections in G is therefore

rg(i) := max dist(i, ). )
j€Ta(i)
where I'¢(%) denotes the set of out-neighbors of station ¢ in G. The total power needed
to establish all connections in G is therefore

power(G) := ny cra(8)®, 3)

icV

Since the value of v does not influence the relative quality of the solutions, we
assume y = 1 for the rest of the paper. In this paper we address the following problem:

Problem 1 (Energy Efficient Broadcast Tree Problem (EEBT)). Let S be a set of sta-
tions represented by points from the Euclidean plane. That is, the distance function
becomes dist(s, t) := |st|, where |st| is the Eulidean distance between s and ¢. One of
the stations is called the source station s. The goal is to find the transmission graph G
which minimizes power(G) and contains a directed spanning tree rooted at s (a branch-
ing from s).

The relevance of this problem is due to the fact that any transmission graph satis-
fying the above property allows the source station to perform a broadcast operation.
Broadcast is a task initiated by the source station to transmit a message to all stations
in the wireless network: This task constitutes a major part of real life multi-hop radio
networks [1}12L/7].

The EEBT Problem is known to be N"P-hard [4][3]]. Furthermore, if the dist func-
tion is arbitrary, the problem cannot be approximated with a logarithmic factor unless
P = NP [10Q]. The currently best approximation algorithm for the EEBT Problem is
as follows.

Algorithm 1 (MSTALG). The input of the algorithm is a set of stations S repre-
sented by points in the Euclidean plane. One of the stations is designated as the source.
The algorithm first computes the Euclidean minimum spanning tree (EMST) of the point
set S. Then the EMST is turned into a directed EMST by directing all the edges such
that there exists a directed path from the source station to all other stations.

In [21]], Wan, Calinescu, Li, and Frieder claimed that MSTALG is a 12-approxi-
mation. Unfortunately, there is a small error in their paper. The correct analysis yields
an approximation ratio of 12.15, as stated by Klasing, Navarra, Papadopoulos, and
Perennes in [13]]. Independently, Clementi, Crescenzi, Penna, Rossi, and Vocca showed
an approximation ratio of 20 for MSTALG [4]. Recently, Flammini,Klasing, Navarra,
and Perennes [8] showed that MSTALG is a 7.6-approximation algorithm. And even
more recently, Navarra proved an approximation ratio of 6.33 [18]. In this paper, we
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show that MSTALG is a 6-approximation for all &« > 2. This matches the lower
bound given in [4]] and [21]].

Experimental studies reported in [6,/15] show that for most instances, the approxi-
mation ratio of MSTALG is much better than 6. In [16]], exact algorithms for EEBT
have been studied. The EEBT problem falls into the class of so-called range assign-
ment problems: Find a transmission range assignment such that the corresponding
transmission graph G satisfies a given connectivity property II, and power(G) is min-
imized (see for example [12,[7]). In [5], the reader may find an exhaustive survey on
previous results related to range assignment problems.

Theorem 1. Let S be a set of points from the unit disk around the origin, with the
additional property that the origin is in S. Let ey, e, ..., eg—1 be the edges of the
Euclidean minimum spanning tree of S. Then

IS|—1

W)= 3 Jeil? <6.
=1

Theorem/[Ilis the main theorem of this paper. Together with the next lemma, it proves
that MSTALG is a 6-approximation algorithm for the EEBT problem.

The problem of giving upper bounds for u(S) has already been looked at inde-
pendently of the EEBT problem. Already in 1968, Gilbert and Pollack [9] gave a upper
bound of 87/+/3, based on a technique very similar to the one used by Wan et al in [21].
In 1989, Steele gave a bound of 16 based on space filling curves [[20].

Lemma 1. A bound on 11(S) automatically implies the same bound on the approxima-
tion ratio of MSTALG for o > 2.

Up to a few differences concerning the station at the origin of the unit disk, this
lemma has already been proven in [21] to obtain the 12.15-approximation. We therefore
skip its proof. For the case o < 2, Clementi et al have shown that the MST algorithm
does not provide a constant approximation ratio [4].

We now sketch the proof of the u(S) < 12.15 bound given in [21]. It works as
follows. The cost of each edge e of the MST is represented by a geometric shape called
diamonds, shown in Figure [Tl on the bottom left. Diamonds consist of two isosceles

Fig. 1. Proof idea of previous bounds
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Fig. 2. A worst case example for MSTALG

triangles with an angle of 27. The area of a diamond for an edge e with length |e| is
A - |ef?, with A\ = v/3/6. Diamonds are considered being open sets. It can be shown
that if one puts these diamonds along the edges of an MST as shown in the middle of
Figure [I] they do not intersect. It can further be shown that the area of the polygon
shown on the right of Figure[Tlis an upper bound on the area that can be covered by the
diamonds along the MST edges. The area of this polygon is 12.15\. Therefore one can
conclude p(S) < 12.150/\ = 12.15.

Similar bounds can be obtained using diametral disks (u(S) < 40) or half disks
(1(S) < 20) [3]]. In both cases, one has to give an upper bound on the area generated
by these shapes. In the case of diametral disks, this is done using the fact that in any
point, at most five diametral disks can intersect. This gives only a very crude bound,
which leads to a very crude bound on p(.S). On the other hand, open half disks do
not intersect. But since they are smaller than diamonds, the bound provided by them is
worse.

Concerning lower bounds on y(S), there is a point set S that attains 1(S) = 6. It
is a regular 6-gone with one point in the middle. A lower bound on the approximation
ratio of MSTALG is shown in Figure [2| [21}/4]. The length of the edges of the MST
shown in Figure 2l are € and 1 — &, respectively. We have opt(S) = 1 and power(G) =
€2 +6 - (1 — ¢)2. Hence for e — 0, the ratio between the two becomes 6. This lower
bound holds for all values of «. Our analysis will give a matching upper bound for this
lower bound for o > 2. As already stated earlier, MSTALG does not have a constant
approximation ratio for the case o < 2 [4].

2  The Main Idea of the Proof of Theorem 1

Among the shapes that do not intersect, diamonds seem to be the best possible geomet-
ric shape for this kind of analysis. For a better bound, we need to use larger shapes and
we need to deal with the intersection of the shapes more accurately. The shapes used for
our new bound are pairs of equilateral triangles. As depicted in Figure 3] the equilateral
triangles intersect heavily. We will give a quite accurate bound on the area generated by
them.
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Fig. 3. The total area of the equilateral triangles on the left is bounded by the hatched area in the
middle. The point set that maximizes the hatched area is the star shown on the right

A high level description of the proof of our bound is the following. Consider a point
set S with n points. Hence, the MST will have n — 1 edges and therefore, there will be
2(n — 1) equilateral triangles representing the cost of the MST. Let Ayst be the total
area generated by these triangles.

In order to obtain an upper bound on Ays, let ¢ be the number of edges of the
convex hull of S. By triangulating .S, we end up with a planar graph G with n vertices,
e edges, and f facets. Let ¢ be the number of triangles of the triangulation. Then the
following three equations hold.

f =t+1
dt+c = 2e
n+f—e= 2

The first one simply states that the number of facets is equal to the number of tri-
angles plus the infinite facet. For the second one, we add up the number of edges of all
facets. For triangles, this is 3, whereas for the infinite facet, it is c. Since every edge is
part of exactly two facets, this sums up to 2e. The last equation is the Descartes-Euler
polyhedral formula [22]]. If we solve the system for ¢, we obtain ¢t = 2(n — 1) — c.
Hence, if we add c equilateral triangles along the convex hull of .S as depicted in the
center of Figure B the number of triangles becomes equal to the number of triangles
generated by the MST, as shown on the left side of the figure. Let Apgr; be the total
area of the triangles within the convex hull of S plus the ¢ additional triangles along the
convex hull.

The main idea of the proof is to show that Ayjst < Argy. To get an intuitive
understanding of it, consider a point set .S obtained from the hexagonal grid for which
all edges of the triangulation of its convex hull have the same length. In this case, all
triangles that are involved in AygT and Argy are congruent. Furthermore, since their
number is equal, it holds AyisT = Arri. Intuitively, if the edges of the triangulation
have different lengths, Ayt will be smaller compared to Arg; since the MST will be
composed mainly of small edges.
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We then conclude the proof by showing that Atg; is maximized by the star config-
uration depicted on the right of Figure Bl The area of the star is 6. Therefore we get
w(S) < 6A/\=6.

3 A Sketch of the Proof of Theorem 1

First, we introduce some notations. The area of an equilateral triangle with side length
s will be denoted by A(s). The area of a triangle with edge lengths a, b, and c is
denoted by A(a, b, c). Every edge can be partitioned lengthwise into two half edges.
Both half edges are incident to the same vertices, but each of them is incident to only
one facet. Slightly abusing notations, we call the largest side of an obtuse triangle its
hypothenuse.

Consider the two triangles incident to an edge e. Let a and (3 be the two angles
opposite ¢ in the two triangles. We will call 3 the opposite angle of .

Consider the MST of S and the Delaunay triangulation of the convex hull of S. Re-
member that the MST edges are also edges of the Delaunay triangulation. Now choose
any edge e of the triangulation. Consider the unique cycle that is formed by adding e to
the MST. This cycle and its (finite) interior is called a pocket. The triangles of the De-
launay triangulation within a pocket are called pocket triangles. The area of a pocket
is the total area of all pocket triangles. The edge e is called the door of the pocket.
All MST edges of the cycle are called border edges. Those in the interior are called
interior edges. If ¢ is an MST edge, the pocket will be called an empty pocket. Here,
e is a border edge and the door at the same time. Empty pockets have area 0.

Note that the door of a pocket is incident to exactly one pocket triangle. If this
triangle is obtuse and the door is its hypothenuse, the pocket is called an obtuse pocket,
otherwise we call it an acute pocket.

The MST-triangles of a pocket P is the following set of triangles. Every half edge
which is part of the MST and incident to a pocket triangle of P generates an MST-
triangle. An MST-triangle of a half edge of length [ is an equilateral triangle with side
length .

Obviously, both half edges of an interior edge belong to the pocket. On the other
hand, only one half edge of a border edge belongs to the pocket. The MST-area of a
pocket is the sum of the areas of all the MST-triangles. The MST-area of an empty
pocket is A(e).

Figure[shows a pocket. The door of the pocket is the dashed line. Its border consists
of all the edges of the MST connecting the two end points of the pocket. The largest of
these edges is denoted by b;. There are four inner edges. Note that the inner edges have
two MST-triangles attached, one for each half edge, whereas the border edges have only
one. The area of the pocket consists of the interior of the pocket. Because b, is part of
the MST whereas the door is not, b; is never longer then the door.

Lemma 2. In a acute pocket with largest border edge b, the difference between MST-
area and pocket area is bounded by /\(|b|).

The proof of Lemma [2]is quite complicated. We therefore only give a sketch of it
towards the end of this section. Using this lemma, one can prove Lemmal[3l Due to lack
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o b1
Fig. 4. A pocket with its MST-triangles on the left and the pocket triangles on the right. Note that
there are 22 MST-triangles and 21 pocket triangles

7

to space, also this proof is omitted here. Lemma [3in turn leads directly to the proof of
Theorem[1l

Lemma 3. Consider a pocket formed by an edge e. Then its MST-area can be bounded
by the area of the pocket plus the area of a set of equilateral triangles whose side lengths
are bounded by 1 and add up to |e|.

Proof of Theorem [I Consider the pockets whose doors are the edges of the convex
hull of S. The sum of the MST-areas of all these pockets is equal to the total MST-area
generated by S. Using Lemma 3, we can conclude that the total MST-area is bounded
by the area of a so-called sun. A sun is defined by a convex set 7" from the unit disk,
with the additional property that all edges of the convex hull are bounded by 1. The
area of a sun is the convex hull of 7" plus, for each edge e of the convex hull of 7', the
area of an equilateral triangle with side length |e|.

Observe that the MST-area of S is j(S) - v/3/2. Hence we just need to prove that
the area of a sun is bounded by 6+/3/2, which is exactly the area of a sun produced by
a regular hexagon.

A point set 7' maximizing the area of its sun has all points on the unit circle. This
holds since by moving a point towards the unit circle, the area of the sun increases.
The area of a sun with all points on the unit circle can be partitioned as indicated in
Figure Each part consists of the triangle formed by the origin and an edge of the
convex hull, plus the corresponding equilateral triangle. The area of each part can be
expressed in terms of the angle p the first triangle forms at the origin. It is

f(p) :==sin (g) (cos (g) +2-sin (g) ?) = %sm(p) + /3 - sin (g)Q

Because we assumed that the edges of the convex hull are bounded by 1, the angle p
must be between 0 and Z. Note that f(%) = v/3/2. In order to prove that the sun area
is maximized by a regular hexagon, observe from Figure[5(b)]that f(p)/p, restricted to
the range 0 < p < %, is maximized for p = 3. g

In the remainder of this section, we describe the main ideas of the proof of Lemma 2]
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Fig. 5(a). A sun Fig. 5(b). f(p)/p = L0 VoinG o)
Lemma 4. In a pocket, the number of MST-triangles exceeds the number of pocket
triangles by one.

Proof. Let n, e, b, ¢, be the number of nodes, edges, border edges (not including the
door), and pocket triangles of a pocket. Let us first count the MST-triangles. Since the
edges of a pocket form a tree, there are n — 1 edges of the MST involved in the pocket.
Each border edge produces one MST-triangle, whereas each inner edges produces two.
Therefore their number is 2n — 2 — b. Let us now count the pocket triangles. The
Descartes-Euler polyhedral formula gives n + (¢ + 1) — e = 2, where the additional
1 is the face outside the pocket. By double counting the half edges, we obtain 2e =
3t + (b + 1). Here, the additional 1 stands for the door of the pocket. Solving for ¢, we
get that the number of pocket triangles ist = 2n — 2 — b — 1. g

The extended pocket area (EP-area) of a pocket is defined as the area of the pocket
triangles plus an additional equilateral triangle with side length b, where b is the longest
border edge of the pocket. This additional triangle is called door triangle. We call
the union of the pocket triangles and the door triangle EP-triangles. The net-area of
the pocket is defined as its EP-area minus its MST-area. Using the above definition,
Lemma 2] can be rewritten as

Lemma 2] (reformulated) The net-area of an acute pocket is non-negative.

Let V' C S be the set of vertices that are part of the pocket, i.e., all the vertices
that are inside or at the border of the pocket. Let G = (V, E) be the weighted graph
obtained by adding all the edges of the triangulation of the pocket, including the border
edges and the door. The weight of the edge e = uv, u,v € S, is denoted by w(e) and
its value is |uv|. Observe that the EP-, MST-, and net-area of a pocket are just a sum of
triangle areas. Therefore, using Heron’s formula [22]]

(a,b,c) \/—a4 —ct+2a2b% + 2a2c? + 2b%c2

for the area of a triangle with side lengths a, b, and ¢, their areas can all be expressed in
terms of the weighted planar graph G. What is more, defining EP-, MST-, and net-area
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in terms of weighted planar graphs allows to define them even if the planar graph does
not have an embedding in the plane. The next lemma takes full advantage of this fact.

Lemma 5. Let G’ be a graph obtained from G by setting all weights to the same value.
Then the net-area of G’ is 0.

Proof. If all weights of G’ are equal, all the triangles involved in the EP-area and the
MST-area of G” are equilateral and have the same side length. By Lemma[] the number
of EP-triangles is equal to the number of MST-triangles. Since both the EP-area and the
MST-area consist of the same number of congruent triangles, we can conclude that their
area is equal. O

We will now define a continuous process that turns G into a graph in which all
edges have the same weight. During the process, only the weights of the edges are
altered, whereas the combinatorial structure of G remains unchanged. The process is
designed in such a way that the net-area of (G decreases monotonically. This property,
together with Lemma[5] proves that the net-area of G is non-negative.

Let wpi, and wi.x be the length of the smallest and the largest edge in G. The
process will be described by a set of graphs G(m), m € R, wyin < M < Wypax. We
start with G = G(wpax) and end with G (wmiy ), in which all weights will be wyyp,.

The complete proof is quite involved and therefore deferred to the full version of this
paper. In the remainder of the paper, we sketch the proof for a special case. Namely, we
assume that all pocket triangles in G are acute. In this case, the process can be described
very easily: Let w(e) and w,, (e) be the weight of edge e in G and G(m) respectively.
Then w,, (e) = min(m, w(e)). That is, in every stage of the process, all maximal edges
are decreased simultaneously until all edges have the same weight.

During this process only maximal edges are decreased. Hence, the ordering of the
edges in terms of length remains unchanged during the process. Therefore the MST of
G remains valid in all G(m).

It is easy to see that during the process, the area of the pocket triangles of GG decrease
monotonically. This holds only because we assumed that the pocket triangles are acute.

We need to show that the net-area decreases. Hence, we have to show that in every
G(m), the decrease of the pocket area is at least as large as the decrease of the MST-
area. To do this, we will partition G(m) into so-called chains for which we will prove
that their total net-area decreases monotonically.

Consider a graph G(m) for fixed m. Chains are defined in terms of a graph Q. The
vertex set of () is the set of triangles in G(m) plus the door triangle. Each maximal
MST edge e of G(m) creates the following set of edges in Q. If we remove e, the MST
is divided into two subtrees. Let R(e) be the ring of triangles that separates the two
subtrees. For any pair of adjacent triangles in R(e), we add an edge in . Note that if
e is a border edge, the door triangle is also part of the ring and it is connected with the
triangle incident to e and the pocket triangle incident to the door, as shown on the right
of Figure 3l This completes the definition of the graph Q.

The chains are defined as the connected components of Q. Let @’ be a chain. We
can define the area, the MST-area, and the net-area of Q' as follows. The area of Q' is
equal to the sum of the areas of all triangles of ()’. Concerning the MST-area, note that
every MST half edge h of G(m) and its corresponding MST-triangle can be assigned
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Fig.6. Two chains in a graph G plus the door triangle. During the process, the chain on the left
appears when there are two maximal MST edges, whereas the one on the right appears when
there are three maximal MST edges. The maximal edges are the thick MST edges

to a unique chain, namely the one that contains the unique triangle A is incident to. The
MST-area of ()’ is equal to the sum of the areas of all MST-triangles belonging to the
chain. The net-area of ()’ is its area minus its MST-area. Since the net-area of a pocket
is equal to the sum of the net-areas of all its chains, all we have to do to complete the
proof is to show that the net-area of a chain decreases monotonically.

Remember that in G(m), only the maximal MST edge decrease. Therefore only the
MST-triangles of maximal MST edges decrease. In what follows, we will show that the
decrease of the area of the chain makes up for the decrease of these maximal MST-
triangles.

Some chains contain only a single triangle and no maximal MST-triangles. For these
chains, it is obvious that the net-area decreases. Let us now look at chains that contain
maximal MST-triangles. We need to consider two cases.

In case (i), we assume that the door triangle is not part of the chain. The border of
@’ is the cycle in G with smallest area that contains all the triangles of @’. The triangles
from @’ that are incident to a border edge are called border triangles. On the left of
Figure [0l the border triangles are shaded.

Let us now change Q' as follows. Let e be a maximal MST edge belonging to Q'.
Assume its two incident triangles are ¢; and go. Add two new vertices hy and ho to
Q’'. They represent the half edges of e. Then remove the edge ¢1¢2 from Q' and add
g1h1 and goho. If we do this for all maximal MST edges e, Q' becomes a tree. Let d;
be the number of vertices of Q' with degree i, let n and e be the number of vertices
and edges, respectively. From ¢ = n — 1 (since Q' is a tree), n = dy + do + d3 and
2e = 3d3 + 2ds + d; (by double counting), we get d3 = d; — 2.

The vertices of degree three represent equilateral triangles with side length m in
G(m). Let D3 be the set of these triangles. The vertices of degree one represent the
maximal MST half edges in G(m). Let D; be the set of their corresponding MST-
triangles. The area of the triangles in D; and D3 decreases in the same way. Hence, the
decrease of all but two triangles from D, is made up by the triangles in D3. To complete
the proof, one can show that the decrease of the border triangles of the chain makes up
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for the decrease of the remaining two maximal MST-triangles. Due to lack of space, we
skip this proof here.

For case (ii), assume that the door triangle belongs to Q’. Apply the edge splitting of
the previous case to Q’. This time, remove all the leafs adjacent to vertex representing
the door triangle. We can do the same analysis as in the previous case to find that if the
number of leafs in Q’ is d;, then the number of degree three vertices is d3 = d; — 2.
But this time, one of the leafs is the door triangle, which is an equilateral triangle with
side length m. Hence there are as many half edges as equilateral triangles. Hence, if m
decreases, the MST-area of the chain decreases at least as much as the area of the chain.
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