
Optimal Clock Synchronization

T. K. SRIKANTH AND SAM TOUEG

Cornell University, Ithaca, New York

Abstract. We present a simple, efficient, and unified solution to the problems of synchronizing,
initializing, and integrating clocks for systems with different types of failures: crash, omission, and
arbitrary failures with and without message authentication. This is the first known solution that achieves
optimal accuracy-the accuracy of synchronized clocks (with respect to real time) is as good as that
specified for the underlying hardware clocks. The solution is also optimal with respect to the number
of faulty processes that can be tolerated to achieve this accuracy.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability-.uQtolerance; D.4.7
[Operating Systems]: Organization and Design-real-time systems

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Authentication, Byzantine failures, clock synchronization

1. Introduction
An important problem in distributed computing is that of synchronizing clocks in
spite of faults. Given “hardware” clocks whose rate of drift from real time is within
known bounds, synchronization consists of maintaining logical clocks that are
never too far apart. Processes maintain these logical clocks by computing periodic
adjustments to their hardware clocks.

Although the underlying hardware clocks have a bounded rate of drift from real
time, the drift of logical clocks can exceed this bound. In other words, while
synchronization ensures that logical clocks are close together, the accuracy of these
logical clocks (with respect to real time) can be lower than that specified for
hardware clocks. This reduction in accuracy might appear to be an inherent
consequence of synchronization in the presence of failures. The rate of drift of
faulty hardware clocks can be beyond the specified bounds, and correct logical
clocks can be forced to drift with them. Furthermore, variation in message delivery
times introduces uncertainty in evaluating values of clocks of other processes.
All previous synchronization algorithms exhibit this reduction in clock accuracy
[3,4, 7, g-121.

In this paper we show that accuracy need not be sacrificed in order to achieve
synchronization. We present the first synchronization algorithm where logical
clocks have the same accuracy as the underlying physical clocks. We show that no

This is an expanded version of a paper presented at the Fourth Annual ACM Symposium on Principles
of Distributed Computing, Minaki, Canada, Aug. 1985. This work was supported in part by the National
Science Foundation under grant MCS 83-03 135.
Authors’ address: Department of Computer Science, Cornell University, Ithaca, NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0004-54 11/87/0700-0626 $0 1.50

Journal of the Association for Computing Machinery, Vol. 34, No. 3. July 1987, pp. 626-645.

Optimal Clock Synchronization

synchronization algorithm can achieve a better accuracy, and therefore our algo-
rithm is optimal in this respect.

In previous results a different algorithm has been derived for each model of
failure. In contrast, ours is a unified solution to clock synchronization for several
models of failure: crash, omission, or arbitrary (i.e., “Byzantine”) failures with and
without message authentication. With simple modifications the solution also
provides for initial clock synchronization and the integration of new clocks.

To overcome the overwhelming difficulty of developing an optimal synchroni-
zation algorithm in a system with arbitrary failures, we first assume that the system
provides message authentication [2, 71. With this assumption we are able to derive
an algorithm that is both simple and efficient. We then replace signed communi-
cation with a broadcast primitive that achieves those properties of message authen-
tication required by the algorithm [141. This automatically results in an equivalent
algorithm for systems with arbitrary failures without digital signatures. This solution
is then simplified for crash and omission failures.

We show that to achieve optimal accuracy, fewer than half the clocks in the
system can be faulty. With arbitrary failures and in the absence of authentication,
synchronization can be achieved only if fewer than a third of the clocks in the
system are faulty [3]. For all the models of failure that we consider, our algorithms
are optimal with respect to the number of faulty clocks they can tolerate.’

The solution presented in this paper is simple and efficient, and can be easily
implemented [I]. Its message complexity is similar to those previously published.
Further comparisons with previous results are presented in Section 8.

The paper is organized as follows: We describe the system model in Section 2.
In Section 3 we describe an authenticated synchronization algorithm that achieves
optimal accuracy, and we derive bounds on the number of faults that can be
tolerated to achieve this accuracy. In Section 4 we present a broadcast primi-
tive that achieves properties of authenticated broadcasts and use it to get a
nonauthenticated synchronization algorithm. Initialization and integration
are described in Section 5. Crash and omission models of failure are con-
sidered in Section 6. In Section 7 we describe how processes can maintain
a single continuous clock. Discussion and concluding remarks are presented
in Sections 8 and 9.

2. The Model

We consider a system of distributed processes that communicate through a reliable,
error-free, and fully connected point-to-point message system (relaxing the connec-
tivity requirement is discussed in Section 8). Each process has a physical “hardware”
clock and computes its logical time by adding a locally determined adjustment to
this physical clock.

The notation used here closely follows that in [7]. Variables and constants
associated with real time are in lowercase, and those corresponding to the logical
time of a process are in uppercase. The following assumptions are made about the
system:

Al. The rate of drift of physical clocks from real time is bounded by a known
constant p > 0. That is, if Ri(t) is the reading of the physical clock of process
i at time t, then for all t2 L tl,

(1 + p)-‘(t2 - tl) I Ri(tl) - Ri(tl) 5 (1 + p)(tz - tl).

I The authenticated algorithm in [7] can overcome an arbitrary number of failures. However, the
accuracy of the synchronized clocks is not optimal.

628 T. K. SRIKANTH AND S. TOUEG

Thus, correct physical clocks are within a linear envelope of real time.
We also see that the rate of drift between clocks is bounded by dr =
Lo+PY(l +p).

A2. There is a known upper bound t&l on the time required for a message to be
prepared by a process, sent to all processes and processed by the recipients of
the message.

A process is faulty if it deviates from its algorithm or if its physical clock violates
assumption A 1; otherwise it is said to be correct. Faulty processes may also collude
to prevent correct processes from achieving synchronization. We use the term
correct clock to refer to the logical clock of a correct process.

Resynchronization proceeds in rounds, a period of time in which processes
exchange messages and reset their clocks. To simplify the presentation and analysis,
we adopt the standard convention that a process i starts a new logical clock, denoted
C!, after the kth resynchronization. In practice, this introduces some ambiguity as
to which clock a process should use when an external application requests the time.
In Section 7 we remove this ambiguity by showing how each process can maintain
a single continuous logical clock. Define beg k and end k to be the real time at which
the first and last correct process, respectively, start their kth clocks. The period
[begk, endk] is the kth resynchronization period.

Given the above assumptions, a synchronization algorithm is one that satisfies
the following conditions for all correct clocks i and j, all k L 1, and t E
[endk, endk+l]:

(1) Agreement. There exists a constant &ax such that

1 Cf@) - C;(t) 1 5 D,,.

(2) Accuracy. There exists a constant y such that, for any execution of the
algorithm,

(1 + y)-9 + a 5 Cf(t) I (1 + y)t + b

for some constants a and b that depend on the initial conditions of this
execution.

The agreement condition asserts that the maximum deviation between correct
logical clocks is bounded. The accuracy condition states that correct logical clocks
are within a linear envelope of real time.

Note that y is a bound on the rate of drift of logical clocks from real time and
hence is a measure of their accuracy with respect to real time. We are interested in
synchronization algorithms that minimize y. In Theorem 2 we show that y cannot
be smaller than p, the bound on the accuracy of physical clocks. Therefore we are
interested in algorithms satisfying the following conditions:

(3) Optimal accuracy. For any execution of the algorithm, for all correct clocks i,
all k 2 1, and t E [endk, endk+‘],

(1 + &‘t + a 5 C;(t) s (1 + ,o)t + b

for some constants a and b that depend on the initial conditions of this
execution.

Optimal Clock Synchronization 629

3. The Authenticated Algorithm

The following is an informal description of a synchronization algorithm for systems
with n processes of which at most f are faulty. The algorithm requires that n L
2f+ 1 and that messages are authenticated. Informally, authentication prevents a
faulty process from changing a message it relays, or introducing a new message
into the system and claiming to have received it from some other process.

Let P be the logical time between resynchronizations. A process expects the kth
resynchronization, for k L 1, at time kp on its logical clock. When Ckl(t) = kP it
broadcasts a signed message of the form (round k), indicating that it is ready to
resynchronize. When a process receives such a message fromf+ 1 distinct processes,
it knows that at least one correct process is ready to resynchronize. It is then said
to accept the message, and decides to resynchronize, even if its logical clock has
not yet reached kP. A process resynchronizes by starting its kth clock, setting it to
kP + (Y, where (Y is a constant. To ensure that clocks are never set back, cr is chosen
to be greater than the increase in Ck-’ since the process sent a (round k) message.
After resynchronizing, the process also relays the f + 1 signed (round k) messages
to all other processes to ensure that they also resynchronize. The algorithm is
described in Figure 1. We show that it achieves agreement and accuracy. We later
modify it to achieve optimal accuracy.

3.1 PROOF OF CORRECTNESS: AGREEMENT. We first show that the algorithm
achieves the agreement property. Define readyk to be the earliest (real) time at
which any correct process sends a (round k) message. We assume that the clocks
C” of correct processes are synchronized; that is, at ready’ all correct processes are
using clock Co and, for all correct processes i and j, 1 G(ready *) - Cy(ready ‘) 1 5
D . In Section 5 we describe an algorithm for achieving this initial synchroniza-
tiz: For ease of presentation, we assume that the maximum permitted deviation
between correct logical clocks, D,,, is a given constraint.

LEMMA 1. The kth resynchronization period is bounded in size. That is, there
exists a constant dmin such that, for k L 1, endk - begk 5 dmin.

PROOF. Let p be the first correct process to start its kth clock. By definition,
this occurs at begk. Process p must have receivedf+ 1 signed (round k) messages.
Since it relays all these messages, every correct process receives them and accepts
the message (round k) by time begk + tdel. Hence every correct process starts its
kth clock by time begk + &I. By setting dmin = t&l, we get endk 5 begk + dmi,. Cl

LEMMA 2. At the end of the kth resynchronization period, correct clocks difler
by at most dmin(1 + p). That is, for k 2 1 and for all correct processes i and j,
1 C?(endk) - Cf(endk) I I d,&l + p).

PROOF. By Lemma 1, endk - begk 5 dmi,. Therefore the last correct process to
start its kth clock does so within dmin of the first correct clock doing so, and in this
period, the first clock could have drifted by at most pdmin. Thus, at endk, the
difference between correct clocks is at most dmi,(1 + p). El

LEMMA 3. No correct process starts its kth clock until at least one correct process
is ready to do so, that is, begk I ready k for k 2 1.

PROOF. The first correct process to start its kth clock does so only when it
accepts a (round k) message, that is, only when it receives (round k) messages
from at least f + 1 processes. Since at least one correct process must have sent
a (round k) message, begk L readyk. 0

630 T. K.SRIKANTH ANDS.TOUEG

cobegin
if Ck-‘(t) = kP

+ sign and broadcast (round k) fi
/I

/* ready to start d */

if accepted the message (round k) /* receivedf+ 1 signed (round k) messages */
+ C”(t) := kP + a; /* start Ck */

relay all f + 1 signed messages to all fi
coend

FIG. 1. An authenticated algorithm for clock synchronization for process p for round k.

Assume that the following conditions hold for some k 1 1.

S 1. By readyk, all correct processes have already started clock Ck-‘.
S2. For correct processes i andj, 1 Cf-‘(readyk) - C,“-‘(readyk)l I D,,.

With these assumptions we prove the following lemmas:

LEMMA 4. All correct processes start their kth clocks soon after one correct
process is ready to do so. Specifically, endk - readyk I (1 + p)D,, + tdel.

PROOF. The first correct process to send a (round k) message does so at readyk.
By S2, the slowest correct clock is no more than D,, behind. Hence every correct
process sends a (round k) message no later than (1 + p)D,, after readyk, and
therefore every correct process starts its kth clock within a further t&l. Thus endk
- readyk I (1 + p)Dmax + t&l. [7

By Lemma 4, the real time that elapses from the time a correct process sends
a (round k) message (when Ck-’ reads kP) to the time it starts Ck (setting it to
kP + (Y) is at most (1 + p)Dmax + t&l. Therefore, if LY L [(1 + p)D,, + t&](1 -I- p),
then no correct process sets its logical clock backward. Henceforth we assume that
(Y satisfies this relation.

LEMMA 5. The period between resynchronizations is bounded. Specifically,
endk” - endk I (P - (Y)(I + p) + t&l.

PROOF. Every correct process that sends a (round k + 1) message does so no
later than the time (k + 1)P on its clock, that is, no later than (P - a)(1 + p) after
endk. Every process starts its k + 1st clock within a further t&l, thus proving the
lemma. Cl

We now assume that P satisfies the following two relations: D,, L [P(1 + p) +
&l]dr + dmi,(1 + p) and P > dmin(1 + p) + (Y. With these assumptions we prove the
following lemmas:

LEMMA 6. The maximum deviation between the kth logical clocks of correct
processes i and j is bounded. That is, for t E [endk, endk+‘], 1 C:(t) - C!(t) I I
D ?PlQX*

PfWOF. By Lemma 2, correct logical clocks are at most d&l + p) apart
at endk. By Lemma 5, endk” - endk I (P - cy)(1 + p) + t&l, and clocks of
correct processes can drift apart at a rate dr in this interval. Thus, in the interval
[endk, endk+‘],

1 C:(t) - CT(t) I I [(P - a)(1 + p) + &]dr + dmi,(l + p)
I [P(I + P) + tdel]dr + dmi,(1 + p) I D,,

since P satisfies the relation D max I [P(1 + p) + tkl]dr + dmi,(1 + p). 0

Optimal Clock Synchronization 631

LEMMA 7.
begk+‘.

Synchronization periods do not overlap. That is, endk c readyk+’ =

PROOF. The first correct process to send a (round k + 1) message does so no
earlier than at real time begk + (P - a)/(1 + p). Therefore readyk+’ 2 begk +
(P - cu)/(1 + p). Hence, by Lemma 1, readyk+’ L endk - dmin + (P - a)/(1 + p).
By Lemma 3, ready k+’ I begk+‘. Thus endk c readyk+’ 5 begk+‘, since P satisfies
P>dmi,(l +p)+a. 0

From the proofs of Lemmas 6 and 7, we see that D,, cannot be made arbitrarily
small. The proof of Lemma 6 shows that II,,,, 2 [(P - cr)(l + p) + &Jdr +
dmin(1 + p). From Lemma 7 we see that P - (Y L dm,(l + p). Therefore the
smallest possible D,, that this algorithm can achieve is given by D,, z
dmin(1 + p)3 + tdeldr. Dolev et al. have shown that the real time between when
clocks read the same value cannot be guaranteed to be better than t&2 [3]. Hence,
when optimal accuracy is required, D,, must be at least (1 + p)-‘&l/2.

LEMMA 8. The algorithm in Figure 1 achieves agreement.

PROOF. If assumptions Sl and S2 hold for some k 2 1, then Lemma 6 states
that the agreement condition is satisfied for k. We now show, by induction on k,
that Sl and S2 hold for all k 2 1, and therefore agreement is satisfied for all k 1 1,
As stated earlier, our initialization algorithm will guarantee that S 1 and S2 are true
for the base case, k = 1.

Assume that Sl and S2 are true for some k. By Lemma 7, endk c readyk+l I
begk+‘. Thus, at readyk+‘, all correct processes use their kth clocks. From
Lemma 6 it follows that, at t = readyk+’
I c:<t> - C,k(t) I = &ax.

and for correct processes i and j,
ThusSlandS2aretruefork+ 1. Cl

3.2 PROOF OF CORRECTNESS: ACCURACY. We now show that the algorithm
achieves accuracy.

LEMMA 9. For any execution of the algorithm of Figure 1, there exists a constant
b, such that, for all correct processes i, all k 2 1, andfor t E [endk, endk+‘],

(1 + ,o)t + b.

PROOF. Let E(to) be the set of executions of the algorithm in which ready1 =
to. Consider an execution e E E(t0) in which for all k z 1, readyk = begk, and the
clock of correct process j, Cj”, is started by begk. In execution e the physical clock
of process j runs at the maximum possible rate, that is, (1 + p) with respect to real
time. It is clear that execution e is possible,

Since Cf is started at begk for each k, it is started at least as early as any other
correct Cf in execution e. Furthermore, between begk and begk+‘, Cf increases at
the maximum possible rate. Hence Cf is an upper bound on the kth logical clocks
of all correct processes in execution e. That is, for t E [endk, endk+‘], C;(t) 5 C?(t),
for any other correct process i.

We now show that Cjk is an upper bound on the kth logical clock of any correct
process in any execution in E(to). To prove this, WC first show that, for any k 2 1,
readyk in execution e is at least as early as readyk in any other execution
e’ E E(to). The proof is by induction on k.

For k = 1, ready’ = to for all executions in E(to). Assume, for some k > 1,
that readyk in execution e is no later than readyk in execution e’. In execution e,

632 T.K.SRIKANTH ANDS.TOUEG

begk = readyk, the kth logical clock of process j is started at begk, and process j
runs at the maximum possible rate. Therefore readyk+’ = readyk + (P - a)/(1 +
p). It is easy to show that, in any execution, readyk+’ I readyk + (P - a)/(1 + p).
Therefore readyk+’ in execution e is at least as early as that in execution e’.

In execution e, begk = readyk for all k 2 1. By Lemma 3, in any execution, begk
2 readyk for all k 2 1. Therefore the kth logical clock of process j is started no
later than that of any other correct process in any execution in E(Q. Since process
j also runs at the maximum possible rate, C; is an upper bound on the kth logical
clocks of all correct processes in all executions in E(t,-J.

We now estimate an upper bound for CF. For process j, the interval of real time
between consecutive resynchronizations is (P - a)/(1 + p). In this period its logical
time increases by P. Therefore, for all k r 1 and for t E [endk, endk+‘],

C?(t) - Cj((to)
t - to =&(l +P)*

Since Cj(to) = P + (Y, a constant

c;(t) 5 + (1 + P)t + b, -a

where b is a constant that depends on to. Cl

LEMMA 10. For any execution of the algorithm of Figure 1, there exists a
constant a, such that, for all correct processes i, all k L 1, and for t E [end k, end k+‘],

p _ (y + iel,(l + p)l (1 + d-‘t + a 5 CXO.

PROOF. Let F(t0) be the set of executions of the algorithm in which end’ = to.
Consider an execution e E F(to) where, for all k 1 1, correct process j accepts the
(round k) message t del in real time after Cf-’ reads kP. Also, CT is started at endk
for all k 1 1. In e the physical clock of process j runs at the minimum possible
rate, that is, at (1 + p)-’ with respect to real time. Such an execution is clearly
possible. It is easy to show that Cf is a lower bound on the kth logical clocks of all
correct processes in execution e. That is, for t E [endk, endk+‘], C?(t) 5 C!(t), for
any other correct process i.

Cf is also a lower bound on the kth logical clocks of all correct processes in any
execution in F(to). In execution e we have endk+’ = endk + (P - (Y)(1 + p) + t&l.
The proof follows by Lemma 5 and an easy induction on k.

We now estimate a lower bound for Cj. For process j, (P - CX)(1 + p) + t&l is the
interval of real time between consecutive resynchronizations. In this period, its
logical time increases by P. Therefore, as in Lemma 9, for all k 2 I and t E [endk,
endk+‘],

cm = (p
P

- a)(1 + L’) + tdel
t+a

for some constant a that depends on to. Cl

THEOREM 1. The algorithm in Figure 1 is a synchronization algorithm. With
this algorithm correct processes send a total of O(n2) signed messages per resyn-
chronization.

Optimal Clock Synchronization 633

PROOF. By Lemma 8, the algorithm achieves agreement. To show accurcy let

(1 + Y) = $J (1 + PI.

From Lemma 9, C;(t) 5 (1 + -y)t + b. Note that

P-a
p (1 + p)-’ I p

P
- a + [fdel/(l + P)l

(1 + p)-‘.

Hence, from Lemma 10, (1 + T)-‘t + a s C;(t), and accuracy is achieved.
In each resynchronization round, each correct process broadcasts at most one

message with its own signature and one message containing the f + 1 signed
messages it needs to relay. Thus correct processes send a total of O(n2) messages
per resynchronization. Cl

Hence the number of messages and bits exchanged for each resynchronization is
comparable to that in [7].

3.3 ACHIEVING OPTIMAL ACCURACY

3.3.1 A Bound on Accuracy. We first show that, for any synchronization
algorithm, the accuracy of synchronized logical clocks cannot exceed that of the
underlying hardware clocks.

THEOREM 2. For any synchronization algorithm, even in the absence of faults,
the bound on the rate of drift of logical clocks from real time is at least as large as
the bound on the rate of drift of physical clocks.

PROOF. Consider an algorithm that satisfies agreement and accuracy. For
simplicity, assume that all physical clocks are set to 0 at time t = 0, that is,
Ri(0) = 0 for all i. Then, all correct physical clocks satisfy the relation

(1 + p)-‘t I Ri(t) 5 (1 + p)t.

Consider an execution of the algorithm in which all processes in the system are
correct and the physical clock of each process runs at the maximum possible rate.
That is, for all processes i, R:‘)(t) = (1 + p)t, where superscripts denote execution
numbers. Further, assume the transmission delay for each message is exactly d,
with d 5 t&l/(1 + p)‘. By accuracy, in this execution, for all correct processes i and
for some constant b(l),

C!“(t) 5 (1 + T)t + b(l). I (1)

Now consider a second execution in which all processes are still correct, but have
their physical clocks running at the minimum possible rate. That is, for all processes
j, Rj2’(t) = (1 + p)-‘t. Let the transmission delay for each message be d(1 + P)~.
Again, by accuracy, in this execution for all correct processes i and for some
constant a”),

(1 + T)-‘t + ac2) 5 C$(t). (2)

Assume that, for each process i, the initial state is the same in both executions.
That is, in both executions, a process starts executing the algorithm at the same
reading of its physical clock. In the second execution, physical clocks and the speed
at which messages are delivered are slowed down by the same factor, (1 + P)~, with
respect to the first execution. Therefore, from within the system, both executions

634 T. K. SRIKANTH AND S. TOUEG

appear identical to every process. Hence, considering a particular process i, the
rate at which its logical time advances with respect to its physical time must be the
same in both executions. In particular, if Rl’)(t,) = Rj2)(t2) for some tl and t2, then
Cj’)(t,) = c$2)(t2).

Since R!‘)(t) = (1 + p)t and Rj2)(t) = (1 + p)-‘t, it follows that, if t2 = (1 + p)2tl,

then Ri’)(tl) = RP)(t2) and therefore @(tl) = Cj2)(t2). Therefore, from eqs. (1)
and (2), (1 + T)tl + b(‘) L (1 + y)-‘(1 + p)2tl + u(2) for all tl. This implies
that y 1 p. 0

3.3.2 An Algorithm for Optimal Accuracy. We now describe a modification to
our algorithm to achieve optimal accuracy. In the algorithm of Figure 1, correct
processes start their kth clocks as soon as they accept a (round k) message. However,
there iS an UnCertainty Of tdel in the time it takes for COKeCt processes t0 accept
a message. It is this uncertainty that introduces a difference in the logical time
between resynchronizations. For the fastest clock, the logical time between
resynchronizations is P - a! (Lemma 9), and for the slowest clock, this interval
is P - (Y + tdel/(1 + p) (Lemma 10). Informally, we can compensate for this as
follows: If a process accepts a (round k) message early, it delays the starting of
the kth clock by tdel/2(1 + p). If it accepts the message late, it advances
the starting of the kth clock by tdel/2(1 + p). Thus, in the cases described in
both Lemmas 9 and 10, the logical time between resynchronizations becomes
P - (Y + /3, where B = tdel/2(1 + p). This is used to show that the drift of logical
clocks is bound above by

P
P- a+Bu +P)

and below by

By slowing down the logical clocks by a factor of P/P - a! + 8, we obtain an
algorithm where the rate of drift of logical clocks is optimal: bounded by (1 + p)
above and by (1 + p)-’ below.

More precisely, suppose process i accepts (round k) at time t, and let T = C!-‘(t).
If T 5 kP + /3, we say the (round k) message was accepted early. Process i delays
the starting of C: by setting it to kP + cr when Ct-’ reads min(T + 8, kP + 8). In
this case, the start of Cf is delayed by at most /3, but never beyond the time when
Cf-’ reads kP + 8.

If T > kP + /3, we say (round k) was accepted late. Process i advances the starting
of C!, by setting it to kP + a! when C?’ reads T’ = max(T - 8, kP + 8). Note
that C! must be started when Cf-’ reads T’ c T, that is, “in the past.” This is
achieved by setting Cf to kP + LY + (T - T’) when Cf-l reads T. That is, C! is set
to min(Cf-‘(t) + (Y - /3, kP + (Y + /3) at time t. In this case, the start of C! is
advanced by at most /3, but never started before C!-’ reads kP + 8.

The definitions of readyk, begk, and endk are the same as before: readyk is the
earliest time at which a correct process sends a (round k) message, and begk and
endk are the earliest and latest times at which some correct process starts its kth
clock (setting it to kp + LY).

We first show that this modified algorithm achieves agreement by showing that
Lemmas l-8 still hold.

Optimal Clock Synchronization 635

PROOF OF LEMMA 1. The first correct process to start its kth clock can start it
@ in logical time (or /3(1 + p) in real time) before it accepts a (round k) message.
Every correct process accepts (round k) within t&l of the first correct process
accepting it and starts its kth clock within a further @(1 + p). Therefore endk -
begk 5 tdel + 2/3(1 + p) = 2tdel. Therefore Lemma 1 is satisfied with dmin = 2&l. 0

PROOF OF LEMMA 2. Same as in Section 3. 0

PROOF OF LEMMA 3. Consider any correct process i. By definition, Cf-‘(ready7
I kP. Let process i accept the (round k) message at real time t. Note that t L
readyk. If Cf’(t) 5 kP + /?, then process i delays the starting of the kth clock. If
C:-‘(t) > kP + p, process i starts its kth clock no earlier than at real time t’ such
that Cf’(t ‘) = kP + p. Clearly, t ’ L readyk. Hence no correct process starts its kth
clock before readyk. Cl

PROOF OF LEMMA 4. Every correct process that broadcasts a (round k) message
does so by real time tl = readyk + (1 + p)Dmax. Therefore every correct process
accepts (round k) by t2 = tl + t&l. For any correct process i, Cf-‘(t,) 2 kP, and
hence Cf’(t2) L kP + tdel/(1 + p) = kP + 2/I. Thus, with the modified algorithm,
every correct process starts its kth clock at real time t < t2. Therefore endk - readyk
5 (1 + p)&ax + tdel. 0

PROOF OF LEMMA 5. Consider any correct process i. Process i accepts
a (round k + 1) message by real time t = endk + (P - a)(1 - p) + tdel. Also,
C:(t) r kP + tdel/(1 + p). Therefore process i starts its k + 1st clock by real
time t, proving the lemma.

PROOFS OF LEMMAS 6, 7, AND 8. Same as in Section 3. 0

Thus the modified algorithm achieves agreement. To show that the modified
algorithm achieves optimal accuracy, we first evaluate the bounds on the drift of
logical clocks from real time.

LEMMA 9’. For any execution of the modified algorithm, there exists a constant
d, such that for all correct processes i, all k L 1, and t E [endk, endk+‘],

Cb(t) 5 p-;+BU +p)t+d.

PROOF. Let @to) be the set of executions of the algorithm in which
ready’ = to. Consider an execution e E E(to) in which, for all k 2 1, correct process
j broadcasts and accepts (round k) at readyk. In execution e the physical clock of
process j runs at the maximum possible rate, that is, (1 + p) with respect to real
time.

Process j accepts (round k) at readyk when CT-l reads kP (i.e., early). There-
fore C$ is started at real time t such that C!-‘(t) = kP + ,8, that is, when
t = readyk + p/(1 + p). Note that no correct physical clock increases by more
than /3 between readyk and t.

Consider another correct process i. By definition of readyk, @‘(ready9 5 kP,
and therefore C!-‘(t) zz kP + /3. Suppose process i accepts (round k) when C:-’
reads Ti. This must occur after readyk, and therefore, at time t, C;-‘(t) 5 Ti + /3.

636

We consider two cases:

T.K.SRIKANTH ANDS.TOUEG

(1) If Ti 5 kP + @, then process i starts Cf at real time t ’ when Cf-‘(t ‘) =
min(Ti + /3, kP + p). Since both C:-‘(t) 5 Ti + /? and C!-‘(t) I kP + /3, then
t 5 t’.

(2) If Ti > kP + /3, process i starts C: at real time t ’ when Cf-‘(t ‘) = max(Ti - p,
kP + Is). Therefore, Cf-‘(t’) h kP + ,f3 z C:-‘(t) and t’ L t.

Thus, in execution e, for any k L 1, the kth clock of process i is started no earlier
than that of process j. Between resynchronizations Cf runs at the maximum
possible rate. Therefore Cj” is an upper bound on the kth logical clock of all correct
processes in execution e. As in Lemma 9, we can also show that Cjk is an upper
bound on the kth clock of all correct processes in any execution in E&J.

Between every two successive resynchronizations, the logical clock of process j
is advanced by P, and the time that elapses on the logical clock ofj is P - (Y + 0.
(E.g., at the kth resynchronization, the clock is set to kP + cy, the k + 1st
resynchronization occurs when this clock reads (k + l)P + /3, and the new clock
is set to (k + l)P + (Y.) Since the clock of process j runs at (1 + p) with respect
to real time, the real time that elapses between two resynchronizations is
(P - (Y + p)/(l + p). Hence, for all k L 1 and t E [en&‘, en&+‘],

c;w 5 p _ E + @ (1 +p)t+d

for some constant d that depends on to. Cl

LEMMA 10’. For any execution of the modified algorithm, there exists a constant
c, such that for all correct processes i, all k 2 1, and t E [endk, endk+‘],

P
P-

(y + B (1 + p)-‘t + c 5 Cf(t>.

PROOF. Let F(to) be the set of executions of the algorithm in which end’ = to.
Define lastk to be the latest real time at which a correct process accepts (round k).
Consider an execution e E F(to) in which the first logical clock of a correct process
j, Cj is started at end ‘, and for all k L 1, process j accepts (round k) at lastk, and
tdel (in real time) after its logical clock reads kP. The physical clock of process j
runs at the minimum possible rate, that is, at (1 + p)-’ with respect to real time.
In the modified algorithm, since Cf-‘(lastk) = kP + 2fi, process j sets its kth clock
to kP + CY + p at lastk.

We now show that the logical clock of process j is as slow as that of any other
correct process in any execution in F(to). That is, we show that, for all k L 1
and t E [lastk, lastk+‘], C;(t) I C:(t) for any correct process i in any execution
in F(to). The proof is by induction on k.

For k = 1 note that C,! is started at end ’ = to, and process j runs at the minimum
possible rate. In any execution in F(to), for any other correct process i, C! is started
no later than at end ‘. Therefore, for t L end ‘, and specifically for t E [last’, last’],
we see that Cj(t) 5 C!(t). For the inductive step, assume that, for some k > 1 and
t E [lastk-‘, lastk], we have Cf-‘(t) 5 C!-‘(t) for any correct process i. Define Si to
be the real time such that Cp-‘(si) = kP + p, for any process i. Let ti and Ti be the
real and the corresponding logical time at which a process i accepts (round k).

Consider any correct process i in any execution in F(to). From the induction
hypothesis, it follows that si I sj for all correct i. Since sj = lastk - /3(1 + p),
lastk - Si 1 p(1 + p). By assumption, tj = lastk and Tj = kP + 2p. We consider two

Optimal Clock Synchronization 631

(1) If Ti I kP + p (i.e., ti I Si 5 sj), then Cf is set to kP + (Y no later than Si. Since
lastk - si 2 p(1 + p), C: increases by at least ,f3 between si and lastk. Therefore
Cf(lastk) 2 kP + a + /3 = Cf(lastk).

(2) If Ti > kP + p, then process i sets its kth clock to Cf(ti) = min(Ct-‘(ti) + a! -
B, kP + (Y + p). Since Cf and Cf-’ increase by the same amount between ti
and lastk, C!(lastk) = min(Cf-‘(ti) + cy - fl, kP + (Y + /3) + Cf’(lastk) -
CF-‘(ti). Since Cf-‘(lastk) L kP + 2& Cf(lastk) z kP + a + p = Cjk(lastk).

Thus Cf(lastk) 5 Cf(lastk). The physical clock of process j runs at the mini-
mum possible rate. Therefore, for t E [last”, lastk+*], CT(t) 5 C&t) for any correct
process i in any execution in F(C0).

The logical clock of process j is incremented by P over successive resynchroni-
zations. The real time that elapses between successive resynchronizations of pro-
cess j is (P - (Y + @)(1 + p). Thus, for any execution of the modified algorithm,
there exists a constant c (that depends on to), such that for all correct processes i,
all k 2 1, and t E [lastk, lastk+‘],

P
P-

(y + B (1 + p)-‘t + c I Cf(t).

Since for t E [endk, lastk] C!(t) L C!-‘(t), the above inequality also holds for
t E [endk, endk+‘]. Cl

By Lemmas 9’ and lo’, in any execution of the algorithm, for k 2 1 and
t E [endk, endk+‘], the logical clock of any correct process i is within the
envelope

h(l + $2 + c I C;(t) I cL(1 + p)t + d,

where ~1 = P/(P - (Y + /3), and c and d are constants depending on the initial
conditions of this execution. Therefore

(1 + $9 + 5 < a I(1 + p)t + ;.
CL- P

Hence, if correct processes slow down their logical clocks by this factor of II, that
is, process i uses L!(t) = Cf(t)/p as its logical time, optimal accuracy is achieved.
Also, since p > 1, agreement is still guaranteed. Process i continues to use Cp
for the synchronization algorithm.

THEOREM 3. With the modt@ation described above, the algorithm of Figure 1
achieves optimal accuracy.

PROOF. Follows from the above discussion. 0

3.4 BOUNDS ON FAULTS TOLERATED. Consider a system with a weak type of
failure: A process is faulty only by violating assumption Al (i.e., its physical clock
may run slower or faster than the specified bound). We now show that even with
this weak type of failure, optimal accuracy cannot be achieved unless fewer than
half the processes are faulty.

THEOREM 4. Any synchronization algorithm that achieves optimal accuracy
must have a majority of correct clocks.

PROOF. Assume that there exists a synchronization algorithm that achieves
optimal accuracy for systems with n I 2J We show that this is impossible by first

638 T. K. SRIKANTH AND S. TOUEG

considering a system with two processors pI and ~2, one of which can be faulty
(i.e., 12 = 2 andf= 1).

Since the algorithm achieves optimal accuracy, in any execution of the algorithm,
the logical clock of correct process i satisfies the following relation for all t L end’:

(1 + p)-9 f a 5 ci(t) 5 (1 + p)t + b,

where a and b are constants. Also, since the algorithm achieves agreement, there
exists a constant D,, such that, if pl and p2 are correct, then 1 C,(t) - G(t) 1 I
D,, for all t L end’.

We now consider three possible executions of the algorithm. In what follows,
superscripts correspond to execution numbers. For simplicity, we assume that all
physical clocks start at 0 at real time 0. Assume that the initial state of a given
process is the same in all executions. That is, a given process starts executing the
algorithm at the same reading of its physical clock.

Execution el. Both processes are correct. The physical clock of p1 runs at the
maximum rate possible and that of p2 at the minimum rate possible. That is,
R\‘)(t) = (1 + p)t and @j(t) = (1 + p)-‘t. The transmission time for each
message is exactly d, where d 5 t&(1 + P)~.

Execution e2. Process pl is correct, and the rate of its physical clock is given by
R\‘)(t) = (1 + P)-‘t. The clock of p2 is faulty and runs at Ri2)(t) = (1 + p)-3t, but p2
is otherwise correct and follows the algorithm. The transmission time of each
message is d(1 + P)~.

Execution e3. Process p2 is correct, and its physical clock is given by R13)(t) =
(1 + p)t. The clock of p1 is faulty and runs at Ri3)(t) = (1 + p)3t, but pl is otherwise
correct. All messages now take d/(1 + p)’ to be delivered.

We see that all three executions are possible. Since optimal uccurucy is achieved
and pl is correct in el , its logical clock satisfies the relation C’,“(t) 5 (1 + p)t + b(l).
Since R’,‘)(t) = (1 + p)t, we see that C\‘)(t) 5 R?(t) + b(l). Similarly, in execution
e2, we see that RP)(t) + a’ 2, 5 C\‘)(t). But the two executions look identical to pl,
and hence the relation between its logical and physical clocks must be the same
in both executions. Therefore, to satisfy the two relations above, we see that
fork= 1,2,

R?(t) + d2) 5 C\@(t) I R\“‘(t) + b”‘.

Therefore, in execution el , there exists a time T such that for all t L T

(1 + ,o)t + uC2) I Cc,‘)(t) 5 (1 + ~)t + b(?

Similarly, by considering executions el and e3, in both of which p2 is correct, we
see that there exists a time 7 ’ such that for all t 2 7 ’

(1 + P)-lt + a”’ 5 C:‘)(t) 5 (1 + P)-‘t + bc3).

From these two relations, it follows that in execution el , for any given D,,, there
is some time t’ such that, for all t L t’, the deviation between the two correct
logical clocks is greater than D,,, which violates the agreement condition.

This can be generalized to any system of n ~2 processes, where n zz 2f: Partition
the processes into two sets P, and P2, with not more thanfprocesses in either set.
By constructing executions similar to those above, we can prove that no synchro-
nization algorithm can achieve optimal accuracy if n % 2f: Cl

Optimal Clock Synchronization 639

The authenticated algorithm of Figure 1 requires n > 2f processes. By The-
orem 3, this algorithm can be modified to achieve optimal accuracy. From
Theorem 4, it follows that the modified algorithm is also optimal in the number
of faults tolerated.

4. Synchronization without Authentication
4.1 SIMULATING AUTHENTICATED BROADCASTS. The proofofcorrectness and

the analysis of the authenticated algorithm rely on the following properties of the
message system:

Pl. Correctness. If at least f + 1 correct processes broadcast (round k) messages
by time t, then every correct process accepts the message by time t + tdel.

P2. Unforgeability. If no correct process broadcasts a (round k) message by
time t, then no correct process accepts the message by t or earlier.

P3. Relay. If a correct process accepts the message (round k) at time t, then every
correct process does so by time t + t&l,

As seen earlier, implementing authentication using digital signatures provides
these three properties. However, the correctness of the algorithm does not depend
on this particular implementation, and any other implementation providing these
properties can be used instead. A broadcast primitive to simulate authentication
is described in [141. By replacing authenticated broadcasts in the algorithm of
Figure 1 with this primitive, we get a logically equivalent nonauthenticated
algorithm having the properties of the authenticated algorithm. However, the
number of messages sent by correct processes is O(n’) per resynchronization.

We now modify this broadcast primitive to achieve the three properties described
above at a cost of only O(n2) messages per resynchronization. The primitive is
presented in Figure 2 and requires n 2 3f+ 1. With this primitive, each broadcast
now requires two phases of communication. Therefore, t&l, the upper bound on
the time required for a message to be prepared by a process, sent to all processes,
and processed by the correct processes accepting it, must be reevaluated. Let 7 be
the maximum transmission delay between any two processes. Then, t&l > 27.

THEOREMS. The broadcast primitive achieves properties of correctness, unforge-
ability, and relay. The number of messages sent by correct processes is O(n2) per
resynchronization.

PROOF

Correctness. Since at least f + 1 correct processes broadcast (round k) by time t,
every correct process receives at least f + 1 (init, round k) messages by time t + 7
and sends (echo, round k). Hence, by time t + 27, every correct process receives
at least 2f + 1 (echo, round k) messages. That is, every correct process accepts
(round k) by time t + tdel.

Unforgeability. Since no correct process sends an (init, round k) message by
time t, a correct process could have received (init, round k) messages from at most
f processes and (echo, round k) messages from at most f processes. Thus no correct
process sends an (echo, round k) message by time t. Hence no correct process
accepts (round k) by time t.

Relay. Since a correct process accepts (round k) at time t, it must have received
at least 2f + 1 (echo, round k) messages. Every correct process receives at least

640 T.K.SRIKANTH ANDSTOUEG

To broadcast a (round k) message, a correct process sends (init, round k) to all.

for each correct process:
if received (init, round k) from at leastf+ 1 distinct processes

+ send (echo, round k) to all;
0 received (echo, round k) from at leastf+ 1 distinct processes

+ send (echo, round k) to all;
ii
if received (echo, round k) from at least 2f+ 1 distinct processes

-+ accept (round k) fi

FIG. 2. A broadcast primitive to achieve properties Pl, P2, and P3.

cobegin
if C?‘(t) = kP

+ broadcast (round k) fi
I/

/* ready to start Ck */
/* using the primitive in Figure 2 */

if accepted the message (round k) /* according to the primitive */
+ c”(t) := kP + a fi /* start Ck */

coend

FIG. 3. A nonauthenticated algorithm for clock synchronization for process
p for round k.

f+ 1 of these within another 7 and sends an (echo, round k) if it has not already
done so. Hence, by t + 27 (i.e., by t + tdeI), every process accepts a (round k)
message.

Since each correct process sends at most two messages for each resynchronization
round (an init and an echo), the total number of messages sent by correct processes
is at most 2n2 per round. Cl

4.2 A NONAUTHENTICATED ALGORITHM FOR CLOCK SYNCHRONIZATION. Re-
placing signed communication with our broadcast primitive extends the synchro-
nization algorithm of Figure 1 to one for systems without authentication. The relay
property of the primitive implies that we need not explicitly relay messages since
the primitive does this automatically. Since the primitive requires n > 3f the
nonauthenticated algorithm also has this limit on the number of faulty processes.
It has been shown that, if authentication is not available, then synchronization is
impossible unless n > 3f[3, 51.

As in Section 2, we assume that clocks are initially synchronized such that, at
ready’, all correct processes are using C” and these clocks are at most D,, apart.
The nonauthenticated algorithm is described in Figure 3.

THEOREM 6. The nonauthenticated algorithm in Figure 3 achieves agreement
and accuracy. Correct processes send O(n*) messages per resynchronization.

PROOF. By properties Pl-P3 of the primitive of Figure 2, it is easy to see that
the proofs of Lemmas l-10 and Theorem 1 hold. Also, by Theorem 5, correct
processes send O(n2) messages for each resynchronization round. Cl

Thus the number of messages sent by correct processes for each resynchronization
is similar to that in [lo].

In Section 3.3 we showed how the authenticated algorithm could be modified to
achieve optimal accuracy. Translating this modified algorithm with our broadcast
primitive results in a nonauthenticated algorithm that achieves optimal accuracy.

641

broadcast (round 0); /* using the primitive in Figure 2 */

if accepted the message (round 0) /* according to the primitive */
+ C”(f) := a ii /* start Co */

FIG. 4. A nonauthenticated algorithm for achieving initial synchronization.

send (joining) to all processes;
accept a (round i) message for some i; /* received f + 1 signed (round i) messages ‘/

if accepted the message (round i + 1) /* wait for round i + 1 */
+ C’+‘(t) := (i + 1)P + LY fi /* start Ci+’ */

FIG. 5. A nonauthenticated algorithm used by a process to join the system.

5. Initialization and Integration

The algorithms presented in the previous sections can be used, with simple
modifications, to achieve initial synchronization and to integrate new processes
into the network.

Here we show how processes start their 0th clocks close to each other. A process
decides, independently, that it is time to start clock Co and broadcasts a (round 0)
message. On accepting a (round 0) message at real time t, it starts Co by setting
Co(t) = LY. The number of processes required and the rules for accepting messages
are as described in Sections 2 and 4, for the authenticated and nonauthenticated
systems, respectively. Since the authenticated and nonauthenticated algorithms are
equivalent, we illustrate only the nonauthenticated version here (Figure 4).

It is easy to see that all processes start Co within tdel of each other. Also no correct
process starts Co until at least one correct process is ready to do so. Once they have
started Co, processes run the resynchronization algorithm. At ready’, which by
definition is the time when the first correct process sends a (round 1) message,
every correct logical clock reads P or less. That is, every correct process is using
Co. By proofs similar to those in Lemmas 2 and 6, it can be seen that at ready’
correct clocks are no more than D,,, apart. Thus this algorithm justifies assump-
tions Sl and S2 for k = 1 in the proof of Lemma 8.

We now describe how a process joins a system of synchronized clocks. This
could be used by new processes to enter the system, or by processes that have
become unsynchronized (possibly due to failures) to reestablish synchronization
with the rest of the system. The algorithms are based on the idea in [lo], modified
to the context of our algorithms.

When a process p wishes to join the system, it sends a message (joining) to the
processes already in the system. It then receives messages from these processes and
determines the number i of the round being executed. Since p could have started
this algorithm in the middle of a resynchronization period, it waits for resynchro-
nization period i + 1 and starts its logical clock Ci+’ when it accepts a (round
i + 1) message. It is easy to prove that its clock is now synchronized with respect
to the clocks already in the system. Process p now begins to run the resynchro-
nization algorithm described earlier. We present only the nonauthenticated version
in Figure 5. This algorithm can also be modified as described in Section 3.3 to
ensure that optimal accuracy is achieved.

This integration scheme prevents a (possibly faulty) process joining the system
from affecting the correct processes already in the system. Hence we prefer this
“passive” scheme to that presented in [7]. However, with our method, a joining
process might have to wait longer than in [7] before its clock is synchronized.

642 T. K. SRIKANTH AND S. TOUEG

To broadcast a (round k) message, a correct process sends (hit, round k) to all.

for each correct process:
if received (init, round k) from at leastf+ 1 distinct processes

+ accept (round k);
send (echo, round k) to a&

II received (echo, round k) from any process
---, accept (round k);

send (echo, round k) to all;
fi

FIG. 6. A broadcast primitive to achieve properties PI, P2, and P3 for a
system with sr-omission failures.

6. Restricted Models of Failure
In the preceding sections we have assumed that faulty processes can exhibit arbitrary
behavior. Fault-tolerant algorithms have also been studied under simpler, more
restrictive models of failure. It is likely that, in certain applications, faults are not
as arbitrary as we have assumed so far. In such cases, developing algorithms for
the simpler model of failure could result in easier and less expensive solutions.

The most benign type of failure is that of crash faults, where processes fail by
just stopping [6, 81. Less restrictive models are omission, where faulty processes
occasionally fail to send messages [6], and sr-omission, where faulty processes fail
to send or receive messages [131. In this section we show how the algorithms
developed so far can be adapted to these models.

The algorithm of Figure 1 was shown to overcome arbitrary failures. The proof
relied on an authenticated message system providing properties Pl-P3. Consider
systems with sr-omission failures, where a process is faulty either because it
occasionally fails to send or receive messages, or because its physical clock does
not satisfy assumption Al (i.e., they violate the specified bounds on the rate of
drift from real time). For such systems we can achieve properties PI-P3 without
authentication, using the broadcast primitive of Figure 6. With this broadcast
primitive, the algorithm of Figure 3 is a synchronization algorithm for systems
with sr-omission faults. Since crash faults and omission faults are a proper subset
of sr-omission faults, the algorithm of Figure 3 can also tolerate these faults. As
explained in Section 3.3, this algorithm is easily modified to achieve optimal
accuracy. The primitive in Figure 6 requires n > 2f processes. A broadcast by a
correct process is accepted by all the correct processes within T, and hence t&l = 7.
In contrast, the primitive of Figure 2 requires y1> 3fprocesses and tdel = 27, but it
overcomes arbitrary failures.

As seen in Section 3.4, the lower bound proofs of Theorem 2 do not assume any
process or clock failures, and Theorem 4 holds even if only clocks fail. Thus our
synchronization algorithm is optimal in the number of faults that can be tolerated
for all the models of failure we consider.

Initial synchronization and integration of new clocks are achieved as in previous
sections.

1. Maintaining Continuous Clocks
To simplify the presentation and analysis, we adopted the standard convention
that a process starts a new logical clock after each resynchronization [7]. When a
new clock is started, it is set to a value greater than that shown by the previous
clock, thus ensuring that clocks are never set back. For some applications this

Optimal Clock Synchronization 643

scheme has two shortcomings. Since a process starts several clocks, there is
ambiguity as to which clock a process should use when an external application
requests the time. Moreover, setting the clock forward at each resynchronization
introduces a discontinuity in the logical time (when a process switches to a new
logical clock). As Lamport and Melliar-Smith noted in [9], an algorithm for
discontinuously resynchronizing clocks can be easily transformed into one where
logical clocks are continuous. This can be achieved by spreading out each resyn-
chronization adjustment over the next resynchronization period. In this section we
provide details on how to modify our algorithm so that each process can maintain
a single continuous logical clock. This also removes ambiguity as to which clock is
in use at any given time.

Each process i runs the algorithm described in Section 3, maintaining its logical
clocks CF. Let tf be the real time of the kth resynchronization of process i, that is,
the time at which process i starts the new clock CF. The logical time of process i is
given by

C!(t) = Cf(tf) + l&(t) - R&f) for tf 5 t 5 $+I,

where Ri(t) is the value of the physical clock of process i at time t. Let A; be the
forward adjustment that process i makes to its logical clock at the kth resynchro-
nization, namely, A? = Ct(tf) - Cf-‘(tf). We have the following:

C!(t) = Cf’(t~) + Af + Ri(t) - Ri(tf) for tf 5 t I tf+‘. (*I

Using the logical clocks, CF, we can define a single continuous clock Ci for
process i as follows:

Ci(t) = C:(t) for t 25 tf,
Ci(t) = Ci(tf) + Xf(t)Af + &(t) - Ri(tQ for tf I t I tP+‘,

where xf(t) = min(1, &(t) - Ri(tP)/P - a! - D,,).
We now show that, at the kth resynchronization, the continuous clock Cl matches

the logical clock Cf-‘. That is, for all k 2 1

Ci(tf) = CF-‘(tf). (**I

The proof is by induction on k. For k = 1 this is obvious from the definition of
Ci(t). Suppose (**) holds. From the definition of Ci(t), we have the following:

Ci(tf”) = Ci(tF) + X~(t:“)A~ + Ri(tf+‘) - Ri(tf).

By induction hypothesis, Ci(tf) = Cf’(tF). It is also easy to see that $(t?‘) = 1,
since &($+I) - Ri(tf) L P - cY - D,,. Hence from (*) we have Ci(tf”) =
Cf(tf”), and the proof is complete.

We can easily show that the continuous clock Ci(t) satisfies both the agreement
and optimal accuracy properties. In fact, for all t L 0, 1 Ci(t) - C’(t) I I DA, I
Dmax + (Y. Furthermore, the optimal accuracy of Ci follows immediately from the
fact that 1 Ci(t) - C;(t) 1 is bounded by Af 5 Dmax + (Y, for all k and all
tk < t < tk+’ I- -*.

8. Discussion
The requirements of synchronization can also be stated as follows [3, 71: There
exist constants &in, P, D,,,,,, and ADJ, such that clocks are resynchronized
at logical times that are multiples of P, and for all correct clocks i and j and

644

all k 1 1:

Cl. Vt E [endk, endk+‘]

T. K. SRIKANTH AND S. TOUEG

1 C!(t) - Cj(t) 1 5 D,,,.

C2. If Cf is started at time t, then

0 5 C!(t) - C!-‘(t) 5 ADJ.

C3. 0 s endk - begk 5 dmi”.

These conditions assert that the maximum deviation between correct clocks is
bounded, the amount by which clocks are readjusted is bounded, and the size
of a resynchronization period is small. Our algorithms satisfy these conditions.
Lemmas 1 and 6 show that conditions Cl and C3 are satisfied. From Lemma 4,
we see that clocks are never set back. It is easy to show that the maximum
adjustment made is (Y + D,,,. Hence, by setting ADJ = cy + D,,,, condition C2
is also met.

A feature of our algorithm is that dminy P, and ADJ depend only on the system
parameters p and tdel, and on the constraint &,,. In the authenticated algorithm
in [7], the adjustment ADJ is proportional to the number of faulty processes. Our
solution does not use averaging, and for the nonauthenticated case, given D,,,, the
maximum permitted deviation between correct clocks, our algorithm needs about
half as many resynchronizations as in the best previous result [lo]. The minimum
value of D,,, that our algorithm can achieve depends only on p and tdel. In [9], the
minimum D,,, possible is proportional to the number of processes in the system.

In the preceding sections, we have assumed a completely connected network.
This assumption can be relaxed using well-known techniques. For an authenticated
system, node connectivity off+ 1 is sufficient. This ensures that there is at least
one fault-free path between every pair of correct processes. As in [7], by defining
t&I to be the maximum time to transmit a message between correct processes along
at least one fault-free path in the network, the results of Section 2 hold.

Similarly, a nonauthenticated system with node connectivity of 2f+ 1 provides
at least f+ 1 distinct fault-free paths between each pair of correct processes. Define
tdel to be twice the maximum time taken for a message to be relayed alongf + 1
fault-free paths. Again, the results proved earlier for the nonauthenticated system
hold.

9. Conclusion

In this paper we have presented a unified solution to the problems of synchronizing
clocks, initializing these clocks, and integrating new clocks, for systems with
different types of failures: crash, omission, and arbitrary failures with and without
message authentication. This solution was derived with the help of the methodology
described in [141.

This is the first known solution that achieves optimal accurucy, that is, the
accuracy of synchronized clocks (with respect to real time) is as good as that
specified for the underlying hardware clocks. The algorithms presented are also
optimal with respect to the number of faulty processes that can be tolerated to
achieve this accuracy.

In another paper [11, we describe some initial experimental results from an
implementation of this algorithm on a collection of workstations connected by a
local-area broadcast network. The version that we implemented overcomes arbi-
trary process and clocks faults. Our experience shows that these Byzantine faults

Optimal Clock Synchronization 645

are not necessarily expensive to overcome: The algorithm is simple, effkient, and
easy to implement. Our initial results indicate that it can form the basis of an
accurate, reliable, and practical distributed time service.

ACKNOWLEDGMENTS. We are grateful to Abha Moitra, Jennifer Lundelius, and
the referees for their helpful comments and suggestions.

REFERENCES

1. BECK, M., SRIKANTH, T. K., AND TOUEG, S. Implementation issues in clock synchronization. In
Proceedings of the Asilomar Workshop on Fault Tolerant Distributed Computing. Springer-Verlag,
New York. To be published.

2. DIFFIE, W., AND HELLMAN, M. New directions in cryptography. IEEE Trans. I$ Theory IT-22
(1976) 644-654.

3. D~LEV, D., HALPERN, J. Y., AND STRONG, R. On the possibility and impossibility of achieving
clock synchronization. In Proceedings oJthe 16th Annual ACM STOC (Washington DC., Apr.).
ACM, New York, 1984, pp. 504-5 11. (Also to appear in J. Comput. Syst. Sci.)

4. DRUMMOND, R. Impact of communication networks on fault-tolerant distributed computing.
Ph.D. dissertation, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y., 1986.

5. FISCHER, M., LYNCH, N., AND MERRITT, M. Easy impossibility proofs for distributed consensus
problems. In Proceedings of the 4th Symposium on the Principles OfDistributed Computing(Minaki,
Canada, Aug.). ACM, New York, 1985, pp. 59-70.

6. HADZILACOS, V. Byzantine agreement under restricted types of failures (not telling the truth is
different from telling lies). Tech. Rep. 19-83, Aiken Computation Laboratory, Harvard Univ.,
Cambridge, Mass., June 1983.

7. HALPERN, J. Y., SIMONS, B., STRONG, R., AND DOLEV, D. Fault-tolerant clock synchronization.
In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing
(Vancouver, Canada, Aug.). ACM, New York, 1984, pp. 89-102.

8. LAMPORT, L., AND FISCHER, M. Byzantine generals and transaction commit protocols. Opus 62,
SRI International, Menlo Park, Calif., Apr. 1982.

9. LAMPORT, L., AND MELLIAR-SMITH, P. M. Synchronizing clocks in the presence of faults. J. ACM
32, 1 (Jan. 1985) 52-78.

10. LUNDELIUS, J., AND LYNCH, N. A new fault-tolerant algorithm for clock synchronization. In
Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing (Vancou-
ver, Canada, Aug.). ACM, New York, 1984, pp. 75-88.

11. MAHANEY, S. R., AND SCHNEIDER, F. B. Inexact agreement: Accuracy, precision and graceful
degradation. In Proceedings of the 4th Symposium on the Principles of Distributed Computing
(Minaki, Canada, Aug.). ACM, New York, 1985, pp. 237-249.

12. MARZULLO, K. Maintaining the time in a distributed system. An example of a loosely-coupled
distributed service. Ph.D. dissertation, Dept. of Electrical Engineering, Stanford Univ., Stanford,
Calif., 1984.

13. PERRY, K. J., AND TOUEG, S. Distributed agreement in the presence of processor and communi-
cation faults. IEEE Trans. Softw. Eng. SE-12, 3 (Mar. 1986) 477-482.

14. SRIKANTH, T. K., AND TOUEG, S. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Tech. Rep. 84-623, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y.,
July 1984. (Also to appear in Distributed Computing, Springer-Verlag, New York.)

RECEIVED JUNE 1985; REVISED APRIL 1986; ACCEPTED JUNE 1986

Journal of the Association for Computing Machinery, Vol. 34, No. 3, July 1987.

