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ABSTRACT
We introduce the distributed gradient clock synchronization
problem. As in traditional distributed clock synchroniza-
tion, we consider a network of nodes equipped with hardware
clocks with bounded drift. Nodes compute logical clock val-
ues based on their hardware clocks and message exchanges,
and the goal is to synchronize the nodes’ logical clocks as
closely as possible, while satisfying certain validity condi-
tions. The new feature of gradient clock synchronization
(GCS for short) is to require that the skew between any
two nodes’ logical clocks be bounded by a nondecreasing
function of the uncertainty in message delay (call this the
distance) between the two nodes. That is, we require nearby
nodes to be closely synchronized, and allow faraway nodes
to be more loosely synchronized. We contrast GCS with
traditional clock synchronization, and discuss several prac-
tical motivations for GCS, mostly arising in sensor and ad
hoc networks. Our main result is that the worst case clock
skew between two nodes at distance d from each other is
Ω(d + log D

log log D
), where D is the diameter1 of the network.

This means that clock synchronization is not a local prop-
erty, in the sense that the clock skew between two nodes
depends not only on the distance between the nodes, but
also on the size of the network. Our lower bound implies,
for example, that the TDMA protocol with a fixed slot gran-
ularity will fail as the network grows, even if the maximum
degree of each node stays constant.

Categories and Subject Descriptors: F.2.0 [Theory of
Computation]: analysis of algorithms and problem complexity—
general
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1. INTRODUCTION
Consider the classical distributed clock synchronization

problem. A set of nodes communicate over a reliable net-
work with bounded message delay. Each node is equipped
with a hardware clock with bounded drift, that is, a timer
running at roughly the rate of real time. Each node contin-
uously computes logical clock values based on its hardware
clock, and on messages exchanged with other nodes. The
goal is to synchronize the nodes’ logical clocks as closely
as possible. To rule out trivial algorithms, the logical clocks
must satisfy some validity conditions, for example, that they
remain close to real time. This problem has been the subject
of extensive research. Previous work in the area has focused
on minimizing the clock skew between nodes and minimizing
the amount of communication used by the synchronization
algorithm [9, 2], on tolerating various types of failures of the
nodes and the network [9], and on proving lower bound re-
sults about clock skew and communication costs [5, 7, 6]. In
this paper, we introduce a new property for clock synchro-
nization algorithms (CSA for short), the gradient property.
Define the distance between two nodes to be the uncertainty
in message delay between the nodes. Informally, the gradi-
ent property requires that the skew between two nodes forms
a gradient with respect to the distance between the nodes.
That is, nearby nodes should be closely synchronized, while
faraway nodes may be more loosely synchronized.

We first contrast gradient clock synchronization with tra-
ditional clock synchronization. Let D be the diameter of
the network. Then there exists a well-known lower bound
result [5] saying that, for any CSA, the worst case clock skew
between some pair of nodes in the network is Ω(D). Most
CSAs (e.g., [9]) achieve a worst case skew of O(D). How-
ever, these CSAs allow O(D) skew between any two nodes.
In particular, to our knowledge, in all existing CSAs, there
exist executions in which a pair of nodes at O(1) distance
from each other have O(D) skew. Thus, current CSAs do
not satisfy the gradient property, because nearby nodes are
not always well synchronized.

We now discuss some motivation for studying the gradi-
ent property. In many highly decentralized networks, such
as sensor and ad hoc networks, applications are local in na-
ture. That is, only nearby nodes in the network need to co-
operate to perform some task, and nodes that are far away
interact much less frequently. Hence, only nearby nodes
need to have highly synchronized clocks. As nodes get far-

320



ther apart, they can tolerate greater clock skew. Thus, for
these applications, the maximum acceptable clock skew be-
tween two nodes forms a gradient in their distance.

As an example, consider first the data fusion [8] problem
in a sensor network. A group of distributed sensors col-
lect data, then try to aggregate their data at one node to
perform some signal processing on it. In order to conserve
energy, the sensors form a communication tree. Starting
from the leaves, each sensor sends its data to its parent sen-
sor. When a parent sensor has received data from all its
children, it “fuses” the data, that is, constructs a summary
representation of the data, and sends the summary to its
own parent. Since sensors typically measure real-world phe-
nomena, times are associated with the sensor measurements.
When fusing data, the children of a parent node must syn-
chronize their clocks, so that the times of their readings
are consistent and a fused reading will make sense. Hence,
nearby nodes, which may be children of the same parent,
need to have well synchronized clocks. But faraway nodes,
which are not children of the same parent, can tolerate more
poorly synchronized clocks.

Next, consider the target tracking problem in a sensor
network. Suppose two sensor nodes want to measure the
speed of an object. Each node records the time when the
object crosses within its vicinity. Then the nodes exchange
their time readings, and compute t, the difference in their
readings. The amount of error in t is related to the clock
skew between the nodes. The object’s velocity is computed
as v = d

t
, where d is the known Euclidean distance between

the nodes. Suppose the nodes do not need to compute v
exactly, but only to an accuracy of 1%. Since v = d

t
, then

the larger the Euclidean distance is between the nodes, the
more error is acceptable in t, while still computing v to
1% accuracy. Thus, the acceptable clock skew of the nodes
forms a gradient2.

What kind of gradient can be achieved by a clock synchro-
nization algorithm? When the network contains two nodes
at distance d from each other, the tightest possible worst-
case synchronization between the nodes is O(d). If there are
more nodes, arranged in an arbitrary topology, is there a
synchronization algorithm that ensures that the clock skew
between all pairs of nodes is linear in their distance at all
times? We show that no such algorithm exists. Our main re-
sult is that given any clock synchronization algorithm, there
exists an execution in which two nodes that are distance d
apart, for an arbitrary d, have Ω(d + log D

log log D
) clock skew,

where D is the diameter of the network. An implication of
this result is that an application, such as TDMA [4], that re-
quires a fixed maximum skew between nearby nodes, cannot
scale beyond networks of a certain diameter. We conjecture
that the lower bound is nearly tight, and that there exist
CSAs that achieve O(d + log D) skew between nodes that
are d distance apart.

The rest of this paper is organized as follows. Section
2 describes previous work on clock synchronization and its
relation to our work. Section 3 defines our model for clock
synchronization, and section 4 formally defines the gradient

2Note that here we are assuming the Euclidean distance
between two nodes corresponds to the uncertainty in their
message delay. This is the case if, for example, there are
multiple network hops between the nodes, with the number
of hops proportional to the Euclidean distance between the
nodes.

clock synchronization problem. We give an overview of the
proof of the lower bound in section 5. We prove two lemmas
in sections 6 and 7, then prove the main theorem on GCS
in section 8. Finally, we conclude in section 9 with some
remarks and open problems.

2. RELATION TO PREVIOUS WORK
To our knowledge, this work is the first theoretical study

of gradient clock synchronization and lower bounds for the
problem. Many other lower bounds have been proven for
clock synchronization. The two most important parameters
in these lower bounds are the uncertainty in message delay,
and the rate of clock drift3.

Lundelius-Welch and Lynch [5] proved that in a complete
network of n nodes where the distance between each pair of
nodes is d, nodes cannot synchronize their clocks to closer
than d(1 − 1

n
). Biaz and Welch [1] extended the previous

result to show that the best synchronization in a network of
diameter D is D

2
. Both papers assume nodes have perfect

(non-drifting) clocks. Patt-Shamir and Rajsbaum [7] proved
lower bounds on clock skew in terms of a synchronization
graph, which is a graph over the events of an execution,
with edge weights related to the times of the events. While
their results are somewhat similar in spirit to our distance-
based lower bound, the problem they considered is “one-
shot” synchronization, where several nodes try to output
a signal as closely together in real time as possible. The
clock skew in this context is the real time difference between
when different nodes output the signal. In contrast, clock
skew in our context is defined as the difference in the nodes’
logical clock values at any real time. Thus, our work is
not directly comparable to [7]. Ostrovsky and Patt-Shamir
[6] also proved lower bounds using synchronization graphs.
However, their work deals with external synchronization, in
which nodes try to synchronize to a common source time.
Our works deals with gradient synchronization. Accurate
external synchronization does not in general imply accurate
gradient synchronization.

Srikanth and Toueg [9] gave an optimal clock synchro-
nization algorithm, where optimal means that the maximum
skew between any pair of nodes is as small as possible given
the hardware clock drift. Their algorithm ensures that any
pair of nodes have O(D) clock skew, where D is the diameter
of the network. However, it does not guarantee a gradient in
the clock skew, because even nodes that are O(1) distance
apart can have O(D) skew. We now explain how this can
happen. Because Srikanth and Toueg’s algorithm is com-
plicated, we consider a simplified version of their algorithm
based on the same idea, which illustrates how their algo-
rithm violates the gradient property. The algorithm works
as follows. Nodes periodically broadcast their clock values,
and any node receiving a value sets its clock value to be the
larger of its own clock value and the received value. Now,
consider an execution consisting of three nodes x, y and z,
arranged in a line topology. Let the distance between x and
y be D, for some constant D, let the distance between y and
z be 1, and let the distance between x and z be D + 1. By
making the message delay D between x and y and 1 between
y and z, and by making x’s hardware clock rate higher than
y’s, which is in turn higher than z’s, we can create an exe-

3The clock drift rate is defined as a constant 0 ≤ ρ < 1,
such that at all times, the rate of increase of each node’s
hardware clock lies within the interval [1 − ρ, 1 + ρ].
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cution in which x’s clock is D higher than y’s clock, which
in turn is 1 higher than z’s clock. Now, extend this execu-
tion by changing the message delay between x and y to be
0, but keeping the delay between y and z 1. Then, when y
receives a message from x, y will realize its clock is D lower
than x’s clock, and so y will increase its clock by D. How-
ever, because the message delay between y and z is still 1,
z receives x’s message one second later than y does. Thus,
there is a one second interval during which y has increased
its clock by D, but z has not increased its clock. During this
one second interval, y’s clock is D + 1 higher than z’s clock,
even though y and z have distance 1. Thus, this execution
violates the gradient property.

Elson et al. [2] studied time synchronization in a sensor
network. Their algorithm, RBS, relies on physical properties
of the radio broadcast medium to reduce message delay un-
certainty to almost 0. RBS works as follows: A beacon node
initially broadcasts a signal to all other nodes. Each node
records its clock value when it receives the signal. Then, in a
second phase, each node broadcasts its recorded clock value,
and computes its clock skew with respect to another node
as the difference between that node’s recorded value and its
own recorded value. Since the broadcast is done by radio,
it takes about the same amount of time to reach all nodes,
so the uncertainty in message delay is close to 0. Our lower
bound result still applies in the RBS setting, but it gives a
rather small bound because the diameter of the network is
small. However, in principle, as the network expands, our
lower bound becomes more relevant.

3. MODEL
We consider an arbitrary, fixed set of nodes, with each

node modeled as a timed automaton [3]. We assume that
all the nodes start executing at the same time. We assume
all nodes can communicate reliably with each other. We let
di,j be the uncertainty in the message delay between nodes i
and j. In particular, a message sent from i to j takes at least
0 time, and at most di,j time, to arrive at j. We call di,j

the distance between i and j, and we denote the diameter of
the network by D = maxi,j di,j . Since our results are stated
in terms of the diameter of the network, we need to define
a unit distance. Thus, we assume that mini,j di,j = 1.

Given an execution α of the system, we say the duration
of α, written as �(α), is the real time duration of α. Let α(t)
denote the state of α at real time t, before any events occur
at t. If π is an event in α, we let Tα(π) denote the real time
when π occurs.

Each node i is equipped with a hardware clock. We define
the value of the hardware clock in terms of its rate of change.
Specifically, we denote i’s hardware clock rate at real time
t of an execution α by hα

i (t). We define i’s hardware clock

value at time t in α to be Hα
i (t) =

R t

0
hα

i (r)dr. We assume
all the hardware clocks have bounded drift. That is, we
assume that there exists a constant ρ, where 0 ≤ ρ < 1,
such that for any execution α the following holds.

Assumption 1. ∀i∀t : 1 − ρ ≤ hα
i (t) ≤ 1 + ρ.

Each node uses its hardware clock and the messages it re-
ceives from other nodes to compute its logical clock. Denote
the logical clock value of node i at time t in an execution
α by Lα

i (t). Because i computes L·
i(·) based only on read-

ings from H ·
i(·) and on messages i has received, i cannot

distinguish between two executions in which the same ac-
tions occur at the same readings of Hi, in the same order.
More precisely, let α and β be two executions, and suppose
that the same set of actions occur in α and β, in the same
order. For each action π at node i in α, let π′ denote the
corresponding action in β. Then, if for every such π we have
Hα

i (Tα(π)) = Hβ
i (Tβ(π′)), i behaves the same in α and β.

We will use this indistinguishability principle in proving our
lower bound.

4. GRADIENT CLOCK SYNCHRONIZATION
In this section, we formally define the gradient clock syn-

chronization property. Before proceeding, we first describe
a validity condition which we require any CSA to satisfy.
Let A be a CSA, and consider any execution α of A. Then
we require the following.

Requirement 1 (Validity). ∀i∀t∀r > 0 : r
2
≤ Lα

i (t +
r) − Lα

i (t).

This requirement says that the rate of increase of each
node’s logical clock must be at least 1

2
, at all times. Note

that the value 1
2

was chosen for simplicity, and can be re-
placed by an arbitrary positive constant. Almost all existing
CSAs satisfy this validity requirement (e.g., [5, 9, 2]). One
motivation for the requirement is to rule out some trivial
CSAs that circumvent our lower bound, for example, an al-
gorithm that initializes every node’s logical clock to 0, and
never increases any node’s logical clock. Another motivation
is that many applications using synchronized clocks require
that the clocks do not increase too slowly. For example, if a
sensor node is using its logical clock to timestamp readings
of physical events, then the clock should increase at roughly
the rate of real time.

Now, we define the gradient property. Let f : R
+ → R

+

be any nondecreasing function. We say a CSA A satisfies the
f-gradient clock synchronization (f-GCS for short) property
if, given any set of nodes and distances between the nodes,
A ensures that the difference in logical clock values between
any two nodes i and j is at most f(di,j) at all times. More
precisely, A satisfies the following.

Requirement 2 (Gradient Property). Let n be any
positive integer, and let N be any network with nodes 1, . . . , n,
and distances between the nodes {di,j | 1 ≤ i, j ≤ n}. In ev-
ery execution α of A in N , we have

∀t∀i, j : |Lα
i (t) − Lα

j (t)| ≤ f(di,j)

5. OVERVIEW OF LOWER BOUND ON GCS
In this section, we give an overview of our proof that

f(d) = Ω(d + log D
log log D

), for any f -GCS algorithm. Let A be
an arbitrary f -GCS algorithm. To prove the lower bound,
we show the following:

1. For every real number d ≥ 1, there exists a network
containing two nodes at distance d from each other,
such that the two nodes have Ω(d) clock skew in some
execution of A in the network. This implies f(d) =
Ω(d). The reason why we only consider d ≥ 1 is be-
cause we defined 1 as the minimum distance between
any two nodes, for each network.

2. For every integer D ≥ 1, there exists a network of
diameter D and an execution of A in the network, such
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that two nodes at distance 1 from each other in the
network have Ω( log D

log log D
) clock skew in the execution.

This implies f(1) = Ω( log D
log log D

).

The executions are created by adversarially controlling the
hardware clock rates and message delays of the nodes, and
by using indistinguishability type arguments.

We first show that f(d) = Ω(d). This result is folklore,
and it follows from the type of indistinguishability argument
used, for example, by Lundelius-Welch and Lynch in [5]. We
only sketch the proof. Let i and j be two nodes which are
distance d apart, for some d ≥ 1. Then i and j cannot
distinguish between the following two executions:

1. Nodes i and j have equal clock values. Message delay
from i to j is 0, and message delay from j to i is d.

2. Node i’s clock value is d less than node j’s clock value.
Message delay from i to j is d, and message delay from
j to i is 0.

Using this idea, we can show that, by choosing message de-
lays and hardware clock rates appropriately, we can create
two indistinguishable executions in which a pair of nodes
that are distance d apart have d greater skew in one execu-
tion than in the other.

To show that f(1) = Ω( log D
log log D

), let D be an arbitrary
positive integer, and let N be a network with nodes 1, . . . ,D,
such that di,j = |i− j|, for 1 ≤ i, j ≤ D. We need two lem-
mas to prove the lower bound. The first lemma, which we
call the Add Skew lemma, states that given two arbitrary
nodes, and given an execution α of A such that a suffix of
α satisfies certain bounds on the hardware clock rates and
message delays of the nodes, we can find another execution
β such that the two given nodes have greater skew at the end
of β than at the end of α. The second lemma, which we call
the Bounded Increase lemma, states that in any execution
of A satisfying some bounds on the hardware clock rates
and message delays, no node can increase its logical clock
too quickly. The Bounded Increase lemma implies that in
any execution of A, the clock skew between two nodes can-
not decrease too quickly. Using these lemmas, we prove
the lower bound on f(1) by creating an execution in which
we repeatedly apply the Add Skew lemma to increase clock
skew between some nodes, while limiting the rate at which
the skew decreases between those nodes via the Bounded
Increase lemma. We show that we can increase the skew
faster than the skew decreases for long enough time so that
some pair of nodes i and i+1 have Ω( log D

log log D
) skew between

them by the end of the execution.
In the following two sections, we prove the Add Skew and

Bounded Increase lemmas. We prove the lower bound on
f(1) in section 8.

6. ADD SKEW LEMMA
In this section, we formally state and prove the Add Skew

lemma. We will sometimes talk about the message delay
between a pair of nodes during a time interval of an execu-
tion. By this, we mean the delay of a message sent between
the nodes, in either direction, that is received during that
time interval of the execution. This statement does not talk
about the delay of messages that are sent, but not received
in the interval.

Lemma 6.1 (Add Skew lemma). Let i, j be two nodes
with 1 ≤ i < j ≤ D. Let τ = 1

ρ
, γ = 1 + ρ

4+ρ
, S ≥ 0,

T = S+τ (j−i), and T ′ = S+ τ
γ

(j−i). Let α be an execution
of A of duration T , and suppose the following hold:

1. The message delay between any two nodes k1 and k2

during the time interval [S, T ] in α is |k1−k2|
2

.

2. Every node has hardware clock rate 1 during the time
interval [S, T ] in α. That is, ∀i∀t ∈ [S, T ] : hα

i (t) = 1.

Then there exists an execution β of A such that the following
are true:

1. Lβ
i (T ′) − Lβ

j (T ′) ≥ Lα
i (T ) − Lα

j (T ) + j−i
12

.

2. The message delay between any two nodes k1 and k2

during the time interval [0, S] is the same in α and
β. The message delay between k1 and k2 is within

[ |k1−k2|
4

, 3|k1−k2|
4

] during the time interval (S, T ′] in β.

This lemma says that given two arbitrary nodes i < j,
and given any execution α of A satisfying certain bounds
on message delays and hardware clock rates during the time
interval [S, T ], we can find an execution β such that nodes i
and j have j−i

12
greater clock skew at real time T ′ in β than

they do at real time T in α. That is, β “adds skew” between
nodes i and j, as compared to α. Furthermore, all message
delays during the time interval [0, S] are the same in α and
β, and they fall within certain bounds during the interval
(S, T ′] in β.

Proof. The basic idea is as follows. We create an execu-
tion β in which we speed up the hardware clocks of some
nodes. We adjust the message delays to and from these
nodes appropriately, so that execution β looks indistinguish-
able from α to all the nodes. In β, the nodes with sped up
hardware clocks will also have sped up logical clocks, which
allows β to add skew between nodes i and j.

We now define β. The actions of β are a subset of the
actions of α. That is, an action π occurs in β only if π
occurs α. Some actions occur at different real times in β
than they do in α. Some nodes have faster hardware clocks
in β than in α. The duration of β is T ′, whereas the duration
of α is T . First, we define Tk, for 1 ≤ k ≤ D, as follows

Tk =

8<
:

S if 1 ≤ k ≤ i
S + τ

γ
(k − i) if i < k < j

T ′ if j ≤ k ≤ D

Now, for 1 ≤ k ≤ D, define the hardware clock rate of node
k in β by

hβ
k (t) =


1 if t ∈ [0, Tk]
γ if t ∈ (Tk, T

′]

The hardware clock rates of the nodes in β are shown in
Figure 1.

For each action π which occurs in α, let κ(π) be the node
at which π occurs. Recall that Tα(π) is the time at which π
occurs in α. Define the time when π occurs in β by

Tβ(π) =


Tα(π) if Tα(π) ∈ [0, Tκ(π)]
Tκ(π) + 1

γ
(Tα(π) − Tκ(π)) if Tα(π) ∈ (Tκ(π), T

′]

We claim β satisfies the requirements of the lemma. This
is proven by the following three claims.

Claim 6.2. Executions α and β are indistinguishable to
all the nodes.
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Figure 1: The hardware clock rates of nodes 1, . . . ,D
in execution β. Thick lines represents the time in-
terval during which a node has hardware clock rate
γ. Node k runs at rate γ for τ

γ
time longer than node

k + 1, for k = i, . . . , j − 1.

Proof. Clearly, all actions occur in the same order in α
and β.

We now show that each node has the same hardware clock
value in α and β when any action occurs. If this holds, then
α and β are indistinguishable to all the nodes. Consider
any action π occurring at an arbitrary node k in α. For
brevity, let t0 = Tα(π). Suppose first that t0 ∈ [0, Tk].
Then by definition, we have Tβ(π) = t0. Now, we have

hα
k (t) = hβ

k(t) = 1 for all t ∈ [0, t0], so Hα
k (t0) = Hβ

k (t0).
Next, suppose that t0 ∈ (Tk, T ]. Then by definition,

Tβ(π) = Tk + 1
γ

(t0 − Tk). Now, we have hβ
k (t) = 1 for

t ∈ [0, Tk], and hβ
k (t) = γ for t ∈ (Tk, t0]. Thus, Hβ

k (Tk +
1
γ

(t0 − Tk)) = Hα
k (t0). ✷

Claim 6.3. The hardware clock rate of every node in β is
within the correct bounds.

Proof. The hardware clock rate of any node during the
time interval [0, S] is the same in α and β. The minimum
hardware clock rate of any node during time interval (S, T ′]
in β is 1, and the maximum clock rate is γ = 1+ ρ

4+ρ
< 1+ρ.

Thus, the claim follows. ✷

Claim 6.4. The message delay is the same in α and β
during the time interval [0, S]. During the interval (S, T ′] in
β, the message delay between any pair of nodes k1 and k2 is

within [ |k1−k2|
4

, 3|k1−k2|
4

].

Proof. Executions α and β are identical up to time S, so
the message delay during [0, S] is the same in α and β.

Next, consider a send action π1 in α, whose corresponding
receive action π2 occurred during (S, T ] in α. Let sα =
Tα(π1), tα = Tα(π2), sβ = Tβ(π1), and tβ = Tβ(π2). We
consider two cases. Either the message was sent from a
lower indexed node to a higher indexed node, or vice versa.

In the first case, let k1 be the sending node, and k2 >
k1 be the receiving node. By the first assumption of the
Add Skew lemma, we have tα − sα = k2−k1

2
. Define r1 =

max(sα − Tk1 , 0), r2 = max(tα − Tk2 , 0). We claim that
sβ = sα − r1(1− 1

γ
). Indeed, if r1 = 0, then sα ≤ Tk1 , so by

the definition of Tβ(·), we have sβ = sα = sα − r1(γ − 1).
If r1 > 0, then we have sβ = Tk1 + 1

γ
(sα − Tk1) = sα +

Tk1 − sα − 1
γ

(Tk1 − sα) = sα − r(1 − 1
γ

). Similarly, we

have tβ = tα − r2(1 − 1
γ

). Subtracting, we get tβ − sβ =

tα − sα + (r1 − r2)(1 − 1
γ

).
We now bound r1 − r2. Suppose first that r1 = 0. Then

sα ≤ Tk1 . So tα = sα + k2−k1
2

≤ Tk2 = Tk1 + τ
γ

(k2 − k1),

since τ
γ
≤ 1

2
. Thus, r2 = 0, and r1 − r2 = 0. Next, suppose

r1 > 0. Then

r1 − r2 = sα − Tk1 − max(tα − Tk2 , 0)

≤ sα − Tk1 − (tα − Tk2)

= Tk2 − Tk1 + sα − tα

=
τ

γ
(k2 − k1) − k2 − k1

2

≤ τ

γ
(k2 − k1)

Thus, we have

tβ − sβ = tα − sα + (r2 − r1)(1 − 1

γ
)

≤ tα − sα + (r2 − r1)(γ − 1)

≤ k2 − k1

2
+

τ

γ
(γ − 1)(k2 − k1)

= (k2 − k1)

„
1

2
+

τ

4τ + 2

«

≤ 3(k2 − k1)/4

where the first inequality follows because 1 − 1
γ

≤ γ − 1
for all γ, and the second equality follows by simplification.
Also, since r2 ≥ r2 and 1 ≥ 1

γ
, we have tα − sα ≤ tβ −

sβ. Thus, all messages sent from k1 to k2 in β have delay

between k2−k1
2

and 3(k2−k1)
4

. So, all message delays from
a smaller indexed node to a larger indexed node are within
the required bounds.

Next, we consider the case when a node k2 sends to a node
k1 < k2. Define r1 = max(tα−Tk1 , 0), r2 = max(sα−Tk2 , 0).
As above, we have sβ = sα − r2(1− 1

γ
), tβ = tα − r1(1− 1

γ
),

and so tβ − sβ = tα − sα + (r2 − r1)(1 − 1
γ

). Also as above,

we can show that r2 − r1 ≥ −(k2 − k1)( τ
γ

+ 1
2
). Plugging

this into the expression for tβ − sβ and simplifying, we get
that tβ − sβ ≥ k2−k1

4
. Since r2 ≤ r1, we also have tβ − sβ ≤

tα − sα. Thus, all messages sent from a larger indexed node
to a smaller indexed node have delay between k2−k1

4
and

k2−k1
2

. Together with the previous paragraph, this shows
that all messages received in β during (S, T ′] have delays
within the required bounds. ✷

Combining claims 6.2, 6.3 and 6.4, we get that β is an
execution of A. Finally, we show that β increases the skew
between nodes i and j.

Claim 6.5. Lβ
i (T ′) − Lβ

j (T ′) ≥ Lα
i (T ) − Lα

j (T ) + j−i
12

.

Proof. From the definition of Hβ
i (·), we have that Hβ

i (T ′) =
Hα

i (T ), and so because α and β are indistinguishable to i,
we have

Lβ
i (T ′) = Lα

i (T ) (1)
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Also, we have Hβ
j (T ′) = Hα

j (T ′), so that Lβ
j (T ′) = Lα

j (T ′).
Now, from the validity requirement in Section 4, we have
that Lα

j (T ) − Lα
j (T ′) ≥ 1

2
(T − T ′). Thus, we get

Lβ
j (T ′) ≤ Lα

j (T ) − 1

2
(T − T ′) (2)

Subtracting equation 2 from equation 1, we get

Lβ
i (T ′) − Lβ

j (T ′) ≥ Lα
i (T ) − Lα

j (T ) +
1

2
(T − T ′) (3)

We compute
T − T ′ = (S + τ (j − i)) − (S +

τ

γ
(j − i))

= τ (1 − 1

γ
)(j − i)

≥ 1

6
(j − i)

where the last inequality follows because ρ < 1. Plugging
this into equation 3, the claim follows. ✷

7. BOUNDED INCREASE LEMMA
In this section, we formally state and prove the Bounded

Increase lemma.

Lemma 7.1 (Bounded Increase lemma). Let α be an
execution of A of duration T ≥ τ , and let i be any node.
Suppose that the following hold:

1. Every node has hardware clock rate within [1, 1 + ρ
2
] at

all times in α.

2. The message delay between i and any node j is within

[ |i−j|
4

, 3|i−j|
4

] at all times in α.

Then, for any t ≥ τ = 1
ρ
, we have Lα

i (t+1)−Lα
i (t) ≤ 16f(1).

This lemma says that in any execution of A satisfying some
conditions about the hardware clock rates and message de-
lays, no node can increase its logical clock too quickly.

Proof. The idea is the following. Assume that i increases
its logical clock very quickly. Then we create another exe-
cution β in which we speed up i’s hardware clock. We make
β indistinguishable from α to all the nodes by adjusting
message delays appropriately. Because node i has a faster
hardware clock in β, it also has a faster logical clock. But
because i increases its logical clock so quickly, we can show
that in β, i has a large clock skew compared to a nearby
node, which violates the gradient property. Thus, i cannot
increase its logical clock too quickly.

Let j be a node such that di,j = 1. Suppose for con-
tradiction that there exists a t ≥ τ such that Lα

i (t + 1) −
Lα

i (t) > 16f(1). Then there exists t0 ∈ [t, t + 1] such that
Lα

i (t0 + 1
8
) − Lα

i (t0) > 2f(1). Define an execution β as
follows. β contains the exact same actions as α. Node i’s
hardware clock rate in β is defined by

hβ
i (t) =


hα

i (t) + ρ
4

if t ∈ [t0 − τ, t0]
hα

i (t) otherwise

The hardware clock rates of all nodes other than i are the
same in α and β.

Now, we define the real times when actions in β occur. If
π is an action of α at a node different from i, then π occurs
at the same real time in α and β. If π is an action of α at
i, then suppose π occurs when i’s hardware clock value is
H in α. We define π to occur at the real time t0 such that

Hβ
i (t0) = H . Note that with this implicit definition of β, we

have a priori that α and β are indistinguishable to all the
nodes, since all the nodes see the same actions at the same
values on their hardware clocks in α and β. Now, we show
that β is an execution of A.

First, we show that the hardware clock rates of all nodes
in β are within the correct bounds. This is clearly true,
since the minimum hardware clock rate of any node in β is
at least the minimum rate in α, and the maximum rate of
any node in β is 1 + ρ

2
+ ρ

4
≤ 1 + ρ.

Next, we show the message delays are within the correct
bounds. We first prove

Claim 7.2. ∀t ≤ T − 1
4

: Hβ
i (t) ≤ Hα

i (t + 1
4
).

Proof. Let s0 = t0 − τ . Since hβ
i (t) = hα

i (t) for all t ≤ s0,
the claim holds for all t ≤ s0. Now, suppose t ∈ (s0, t0].
Then

Hβ
i (t) = Hα

i (t) + (t− s0)
ρ

4

≤ Hα
i (t) + τ

ρ

4

= Hα
i (t) +

1

4

Since hα
i (r) ≥ 1 for all r, we have Hα

i (t + 1
4
) ≥ Hα

i (t) +
1
4
≥ Hβ

i (t), and so the claim holds t ∈ (s0, t0]. Lastly, for

t ∈ (t0, T − 1
4
], we have hβ

i (t) = hα
i (t), so by the same

reasoning as above, the claim also holds for those t. ✷

The above claim shows that any action π at node i which
occurs at real time t in α occurs no earlier than t − 1

4
in

β. Thus, since i’s message delay with any node j is within

[ |i−j|
4

, 3|i−j|
4

] in α, the delay of the same message is between

[ |i−j|
4

− 1
4
, 3|i−j|

4
+ 1

4
] ⊆ [0, |i−j|] in β. Thus, all the hardware

clock rates and message delays in β are within the correct
bounds, so β is an execution of A.

We need one more claim.

Claim 7.3. Hβ
i (t0) ≥ Hα

i (t0 + 1
8
).

Proof. From claim 7.2, we have Hβ
i (t0) = Hα

i (t0) + 1
4
.

Also, Hα
i (t0 + 1

8
) ≤ Hα

i (t0) + (1 + ρ
2
) 1
8
≤ Hα

i (t0) + 1
4
, where

the first inequality follows because all hardware clock rates
in α are at most 1 + ρ

2
. Thus, Hβ

i (t0) ≥ Hα
i (t0 + 1

8
). ✷

Now, we prove the lemma. We have

Lβ
i (t0) ≥ Lα

i (t0 +
1

8
)

> Lα
i (t0) + 2f(1)

≥ Lα
j (t0) + f(1)

= Lβ
j (t0) + f(1)

The first inequality follows because α and β are indistin-
guishable, and by claim 7.3, we have Hβ

i (t0) ≥ Hα
i (t0 + 1

8
),

so that Lβ
i (t0) ≥ Lα

i (t0 + 1
8
). The second inequality follows

because of our choice of t0 at the beginning of the proof of
the lemma. The third inequality follows because A satisfies
the f -GCS property, so that it must ensure that nodes i and
j have logical clock skew which at most f(di,j) = f(1) at all
times. That is, we must have Lα

j (t0) − Lα
i (t0) ≤ f(1). The

final equality follows because node j has the same hard-
ware clock rate in α and β, so Lβ

j (r) = Lα
j (r), for all r.
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However, the above inequalities are a contradiction, because
they imply Lβ

i (t0) − Lβ
j (t0) > f(1), which violates the gra-

dient property. Thus, there does not exist a t ≥ τ such that
Lα

i (t + 1) − Lα
i (t) > 16f(1).

8. THE MAIN THEOREM
We can now prove the lower bound on f(1). Recall that

�(α) is the duration of an execution α. The following the-
orem states that there exists an execution of A, at the end
of which, a pair of nodes that are at distance 1 from each
other have logical clock skew which is Ω( log D

log log D
).

Theorem 8.1. There exists an execution α of A, and
nodes i, j with di,j = 1, such that Lα

i (�(α)) − Lα
j (�(α)) =

Ω( log D
log log D

). Therefore, f(1) = Ω( log D
log log D

).

Proof. The idea is to create an execution in which we
repeatedly apply the Add Skew lemma to increase the clock
skew between some nodes, while limiting how quickly the
skew between those nodes can decrease via the Bounded
Increase lemma. We show the skew increases faster than it
decreases for long enough time so that two nodes which are
distance 1 apart end up with Ω( log D

log log D
) clock skew.

We first define some constants we need. Let n0 = D − 1,
and nk =

nk−1
384τf(1)

for k ≥ 1. To avoid dealing with roundoff

errors, we assume that 384τf(1) is an integer, and that D−1
is a power of 384τf(1). These assumptions do not affect the
asymptotics of the theorem, but they simplify the proof.

We will create a series of executions α0, α1, . . ., and also
define nodes i0, i1, . . . and j0, j1, . . .. Before describing the
construction of αk, ik and jk, we first list some properties
which we will ensure hold about αk, ik and jk, for all k =
O( log D

log log D
).

Property 1. 1. jk − ik = nk.

2. ∆k ≡ Lαk
ik

(�(αk)) − Lαk
jk

(�(αk)) ≥ k
24
nk. That is, the

logical clock skew between nodes ik and jk at the end
of αk is at least k

24
.

3. The message delay between any two nodes i and j is
|i−j|

2
during the time interval [�(αk) − τnk, �(αk)] in

αk. The hardware clock rate of every node during this
interval in αk is 1.

4. The hardware clock rate of any node at any time in αk

is within [1, 1 + ρ
2
].

5. The message delay between any two nodes i and j is

within [ |i−j|
4

, 3|i−j|
4

] at all times in αk.

The plan for our construction is as follows. Assume that
we have constructed executions α0, . . . , αk, for some k, and
αk satisfies property 1. Then we show that αk satisfies the
preconditions of the Add Skew lemma, so that we can apply
the lemma to αk to obtain an execution βk which increases
the skew between some pair of nodes ik and jk. We then
extend βk to a longer execution αk+1, being careful to con-
trol the hardware clock rates and message delays during the
extension. We show that αk+1 satisfies the preconditions of
the Bounded Increase lemma, which allows us to conclude
that the skew between ik and jk did not decrease too much
during the extension. In particular, the Add Skew lemma
increased the skew twice as much as the skew decreased dur-
ing the extension. We then show αk+1 satisfies property 1,
which allows us to repeat the procedure.

We now describe the construction. Let α0 be any execu-
tion of A of duration τ (D − 1), such that

1. The hardware clock rate of any node at any time in α0

is 1.

2. The message delay between any two nodes i and j is
|i−j|

2
during all of αk.

Let i0 = 1, j0 = D. Assume without loss of generality that
Lα0

i0
(�(α0)) ≥ Lα0

j0
(�(α0)), i.e., that node 1’s logical clock

value is at least as large as node D’s, at the end of α0. If
this is not true, we can simply renumber the nodes in the
opposite order. Clearly, α0 satisfies all the conditions in
property 1.

Next, we describe how to construct execution αk+1, given
execution αk. We first claim

Claim 8.2. αk satisfies the preconditions of the Add Skew
lemma.

Proof. Instantiate the node “i” in the Add Skew lemma
by ik, and instantiate “j” by jk. By induction, αk satisfies
property 1. By conditions 1 and 3 of the property, during the
time interval [�(αk)−τnk, �(αk)] = [�(αk)−τ (jk−ik), �(αk)]
of αk, all hardware clock rates are 1, and the message delay

between any nodes i and j is |i−j|
2

. Thus, αk satisfies the
preconditions of the Add Skew lemma. ✷

By applying the Add Skew lemma to αk, we obtain an
execution βk such that the following holds:

Lβk
ik

(�(βk)) − Lβk
jk

(�(βk)) ≥ ∆k +
jk − ik

12
(4)

≥ k

24
nk +

1

12
nk (5)

=
k + 2

24
nk (6)

Now, we extend βk to an execution which is nk+1τ (real
time) longer. That is, we take the execution βk, then let
algorithm A run for nk+1τ time, starting from the last state
in βk. During this extension, we set the hardware clock rates
of all nodes to be 1, and set the message delay between any

two nodes i and j to be |i−j|
2

. Also, for any message between
i and j which was sent but not received during βk, we set

the delay of that message to be |i−j|
2

. We call the extended
execution αk+1.

Claim 8.3. αk+1 satisfies the preconditions of the Bounded
Increase lemma.

Proof. We first show that the βk portion of αk+1 satisfies
the preconditions of the Bounded Increase lemma.

To prove that the hardware clock rate of any node is
within [1, 1+ ρ

2
] during βk, note that, by looking at the con-

struction of βk in the proof of the Add Skew lemma, we have
that βk and αk are identical up to time t0 = �(αk) − τnk.
So, since αk satisfies the fourth condition in property 1, the
hardware clock rate of any node is within [1, 1 + ρ

2
] up to

time t0 in βk. During the time interval (t0, �(βk)], the hard-
ware clock rate of any node in β is within [1, γ] ⊆ [1, 1 + ρ

2
],

because the Add Skew lemma sets a node’s hardware clock
rate to at most γ. Thus, the hardware clock rate of any
node is within [1, 1 + ρ

2
] during the β portion of αk.

To prove that the message delay between any two nodes i

and j is within [ |i−j|
4

, 3|i−j|
4

] during βk, we again use the fact
that αk and βk are identical up t0. Then, since αk satisfies

326



the fifth condition in property 1, we get that the message

delay between i and j is within [ |i−j|
4

, 3|i−j|
4

] in βk up to
time t0. In the interval (t0, �(βk)], we have, by the second
conclusion of the Add Skew lemma, that the message delay

is also within [ |i−j|
4

, 3|i−j|
4

].
Lastly, we show that the extension portion of αk+1 satis-

fies the preconditions of the Bounded Increase lemma. But,
this is clear by our definition of the hardware clock rates and
message delays during the extension. Thus, αk+1 satisfies
the preconditions of the Bounded Increase lemma. ✷

Claim 8.4. L
αk+1
ik

(�(αk+1)) − L
αk+1
jk

(�(αk+1)) ≥ k+1
24

nk.

Proof. We have �(αk+1) − �(βk) = nk+1τ = nk
384f(1)

. By

claim 8.3, αk+1 satisfies all the preconditions of the Bounded
Increase lemma, so by the Bounded Increase lemma, we have

L
αk+1
jk

(�(αk+1)) ≤ L
αk+1
jk

(�(βk)) + (�(αk+1) − �(βk))16f(1)

= L
αk+1
jk

(�(βk)) +
nk

24

Let Γ = L
αk+1
ik

(�(αk+1)) − L
αk+1
jk

(�(αk+1)). Then

Γ ≥ L
αk+1
ik

(�(βk)) − L
αk+1
jk

(�(αk+1))

≥ L
αk+1
ik

(�(βk)) − L
αk+1
jk

(�(βk)) − nk

24

=
k + 2

24
nk − 1

24
nk

=
k + 1

24
nk

The second inequality follows because αk+1 and βk are the
same up to time �(βk). The first equality follows from equa-
tions 4 to 6. ✷

Claim 8.5. There exists a node ik+1 and jk+1 = ik+1 +
nk+1 such that L

αk+1
ik+1

(�(αk+1))−L
αk+1
jk+1

(�(αk+1)) = ∆k+1 ≥
k+1
24

nk+1.

Proof. By claim 8.4, we have L
αk+1
ik

(�(αk+1))− L
αk+1
jk

(�(αk+1))

≥ k+1
24

nk. Thus, by a pigeon-hole type argument, we have
that there exists ik+1 ≥ ik and jk+1 = ik+1 +nk+1 such that
L

αk+1
ik+1

(�(αk+1)) − L
αk+1
jk+1

(�(αk+1)) = ∆k+1 ≥ k+1
24

nk+1. ✷

Claim 8.6. Execution αk+1 satisfies all the conditions of
property 1.

Proof. Claim 8.5 shows that αk+1 satisfies the first condi-
tion of property 1. Conditions 2 and 3 are satisfied, because
we constructed αk+1 as an extension of βk such that condi-
tions 2 and 3 hold within the last nk+1τ portion of αk+1.
Conditions 4 and 5 hold by claim 8.3. ✷

Claim 8.7. For any k with nk ≥ 1, there exists a node i
such that Lαk

i (�(αk)) − Lαk
i+1(�(αk)) ≥ k

24
.

Proof. By condition 2 of property 1, we have that Lαk
ik

(�(αk))−
Lαk

jk
(�(αk)) ≥ k

24
nk. So, by a pigeon-hole type argument,

there must exist an i with ik ≤ i < jk such that Lαk
i (�(αk))−

Lαk
i+1(�(αk)) ≥ k

24
. ✷

Claim 8.6 shows we can construct execution αk+1 from
αk, as long as nk+1 ≥ 1. By the definition of nk, we have
that nk = D−1

(384τf(1))k . Therefore, we can construct αk for

all k up to k = log384τf(1)(D − 1) = Ω(logf(1) D). By claim

8.7, for every αk, there exists a node i with L
αk
i (�(αk)) −

Lαk
i+1(�(αk)) ≥ k

24
. Since A satisfies the f -GCS property, we

must have

f(1) ≥ Lαk
i (�(αk)) − Lαk

i+1(�(αk))

≥ k

24
,∀k = Ω(logf(1) D)

Thus, solving f(1) = Ω(logf(1) D) for f(1), we get that

f(1) = Ω( log D
log log D

).

9. CONCLUSIONS AND FUTURE WORK
We have introduced the gradient clock synchronization

problem. We have shown the problem’s usefulness in the
context of sensor and ad hoc networks, and have also shown
that current clock synchronization algorithms do not solve
the problem. We proved that for any f -GCS algorithm,
f(d) = Ω(d + log D

log log D
). Lastly, we discussed some implica-

tions of this result.
The main open problem for GCS is whether there ex-

ists any f -GCS algorithm with f(d) = o(D). We believe
the answer is yes, and that there exist an f -GCS algorithm
with f(d) = O(d + log D). We are currently analyzing one
such candidate algorithm. Another open question is whether
our lower bound is tight. We believe that the correct lower
bound is f(d) = Ω(d + log D).

The gradient property emphasizes the local nature of dis-
tributed computation, especially in emerging platforms such
as mobile networks. We believe a very interesting research
direction is the discovery of new distributed algorithms which
are more local in nature, or discovering impossibility results
against such algorithms.
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