388 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

The Capacity of Wireless Networks

Piyush GuptaStudent Member, IEEEBNd P. R. KumarFellow, IEEE

Abstract—When n identical randomly located nodes, each ca- example of such networks is multihop radio networksadr
pable of transmitting at W bits per second and using a fixed range, hocnetworks. Another possibly futuristic example, see [1], may
form a wireless network, the throughput A(n) obtainable by each be collections of “smart homes” where computers, microwave

node for a randomly chosen destination i€® % bits per  ovens, door locks, water sprinklers, and other “information ap-
nlogn . . .
second under a noninterference protocol. pliances” are interconnected by a wireless network.
If the nodes are optimally placed in a disk of unit area, traffic It is to these types of all wireless networks that this paper

patterns are optimally assigned, and each transmission’s range is js addressed. Such networks consist of a group of nodes which
gptlﬂqa”y Chosken' the blt_gIStan(Ce p\r/Od—uc)t Lhat can be tranSportzd communicate with each other over a wireless channel without

y the network per second is® (W +/ An) bit-meters per second. : ) . .
Thus even under optimal circumstances, the throughput is only any_CentraI;lzedh COI?t(;OL see lflg' 1L Nl?dfes may Coolpergte n
® (% bits per second for each node for a destination nonva- routing eac 9t ers’ data pa_(_: et;. a_c orany cer_ltra 1260 CON=
nishina v far away. trol and possible node mobility give rise to many issues at the

Similar results also hold under an alternate physical model Network, medwm access, and phys!cal layers, Whl(}h have no
where a required signal-to-interference ratio is specified for counterparts in the wired networks like Internet, or in cellular
successful receptions. networks.

Fundamentally, it is the need for every node all over the domain At the network layer, the main problem is that of routing

to share whatever portion of the channel it is utilizing with nodes s o .
in its local neighborhood that is the reason for the constriction in which is exacerbated by the time-varying network topology,

capacity. power constraints, and the characteristics of the wireless
Splitting the channel into several subchannels does not changechannel; see Ramanathan and Steenstrup [2] for an overview.
any of the results. The choice of medium access scheme is also difficudiditoc

Some implications may be worth considering by designers. Since networks due to the time-varying network topology and the lack

the throughput furnished to each user diminishes to zero as the . . .
number of users is increased, perhaps networks connecting smaller of centralized control. Use of TDMA or dynamic assignment of

numbers of users, or featuring connections mostly with nearby frequency bands is complex since there is no centralized control

neighbors, may be more likely to be find acceptance. as in cellular networks, FDMA is inefficient in dense networks,
Index Terms—Ad hocnetworks, capacity, multihop radio net- CDMA is difficult to implement due to node mobility and_
works, throughput, wireless networks. the consequent need to keep track of the frequency-hopping

patterns and/or spreading codes for nodes in the time-varying
neighborhood, and random access appears to be the current
. INTRODUCTION favorite. The access problem when many nodes transmit to
IRELESS networks consist of a number of nodes whidhe same receiver has been much studied in the literature ever
communicate with each other over a wireless channéince the genesis of the ALOHA network, and bounds on the
Some wireless networks have a wired backbone with only tHeroughput of successful collision-free transmissions as well
last hop being wireless. Examples are cellular voice and d&@&transmission protocols have been devised; see Gallager [3].
networks and mobile IP. In others, all links are wireless. Orfgharing channels in networks does lead to some new problems
associated with “hidden” terminals and “exposed” terminals.
The protocols MACA and its extension MACAW, see Karn [4]
Manuscript received December 3, 1998; revised July 1, 1999. This magnd Bhargavaet al. [5] respectively, use a series of handshake

rial is based on work supported in part by the Air Force Office of ScientifigignmS to resolve these problems to a certain extent. This has
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e- . .
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and 35352-6086, by the U.S. Army Research Office under Contract DAAphysical layer, an important issue is that of power control. The

04-95-1-0090,the Office of Naval Research under Contract N00014-99-1-06%nsm|88|0n power Of nodes needs to be regulated e} that It
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Fig. 1. Anad hocwireless network.

to our resultsif the channel is broken up into several subchartransmitting on the same subchannel at the same time. It also

nels of capacityvy, Wa, -- -, W), bits per second, as long asallows for imprecision in the achieved range of transmissions.

Zﬁle W,, = W. Packets are sent from node to node in a mul- Another model which is more related to physical layer con-

tihop fashion until they reach their final destination. They casiderations is

be buffered at intermediate nodes while awaiting transmission.2) The Physical Model:Let {X};k € 7} be the subset of
Due to spatial separation, several nodes can make wirelassles simultaneously transmitting at some time instant over a

transmissions simultaneously, provided there is no destructsertain subchannel. Lg%, be the power level chosen by node

interference of a transmission by others. We will describe iy, for £ € 7. Then the transmission from a nodg, ¢ € 7,

the sequel under what conditions a wireless transmission oigesuccessfully received by a nodg if

a subchannel is received successfully by its intended recipient.

D
We will consider two types of networkéybitrary Networks X=X,
. O , 7 =B 2)
where the node locations, destinations of sources, and traffic N+ Y m
demands, are all arbitrary, afRbndom Networkswvhere the keT ’

k#i
This models a situation where a minimum signal-to-interference

A. Arbitrary Networks: Arbitrarily Located Nodes and Traffic fatio (SIR) of 3 is necessary for successful receptions, the am-
Patterns bient noise power level i%/, and signal power decays with dis-
tancer asT%. We will suppose thatr > 2, which is the usual
odel outside a small neighborhood of the transmitter.

nodes and their destinations are randomly chosen.

In the arbitrary setting we suppose thatodes are arbitrarily
located in a disk of unit area in the plane. Each node has an arrE|3) The Transport Capacity of Arbitrary Networksiven

trarily chosen destination to which it wishes to send traffic at aaﬂ]y set of successful transmissions taking place over time and

arbitrary rate; thus the traffic pattern is arbitrary. Each node C@Pace letus say that the network transportstsnmeterwhen
choose an arbitrary range or power level for each transmissi(ag ’

Wi diod ibe wh ¢ L ved 'e bit has been transported a distance of one meter toward
€ need lo describe when a ransmission 1S received SUCCRSy astination. (We do not give multiple credit for the same

fully by its intended recipient. We will allow for two poSSIbIebit carried from one source to several different destinations as

models for successful reception of a transmission over one hﬂpthe multicast or broadcast cases). This sum of products of
Eallled t[]eF;OtSCOI Mogel?nd t'hePhQ/smaldM.odel d(_a”scrllbed bits and the distances over which they are carried is a valuable
Xe OW- fet ’ henote;jt e ol:c:atlon ot a node, we Wil alSo USg,gicator of a network’sransport capacity (It should be noted

ilto_lr_i eIrDtot © Inl\(jl Z'tﬁg ' 4& ) h that when the area of the domain Js square meters rather

) The Protocol Model:Suppose NOCAL; tranSmIts Overthe . the normalized 1 Pthen all the transport capacity results

mth subchannel to a nod¢;. Then this transmission is SUCCESS esented below should be scaled W1). Our main results
fully received by nodeX; if are the following. Recall Knuth’s notatiorfi(n) = ©(g(n))
denotes thaf(n) = O(g(n)) as well ag(n) = O(f(n)).

Main Result 1.: The transport capacity of an Arbitrary Net-

for every other nodeX,, simultaneously transmitting over thework under the Protocol Model i® (W/n) bit-meters per
same subchannel. second if the nodes are optimally placed, the traffic patternis op-

The quantityA > 0 models situations where a guard zon&mally chosen, and if the range of each transmission is chosen
is specified by the protocol to prevent a neighboring node frogptimally.

| Xk — X5 2 (1 4+ A)|X; — X 1)

ope N 8 W i
1we are grateful to Kimberly King for asking us to be more explicit about the Specifically, an upper bound '§/;K\/ﬁ b_'t meters per
prospects for routing through multiple technologies. second for every Arbitrary Network for all spatial and temporal
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scheduling strategies, whilq%L bit-meters per 1) The Protocol Model:All nodes employ a commorange
, N . o :

second (forn a multiple of four) can be achieved when the for all their transmissions. When nodg transmits to a node
nodes and traffic patterns are appropriately chosen, and tKg over themth subchannel, this transmission is successfully
ranges and schedules of transmissions are appropriately choggggived byX; if

If this transport capacity were to be equitably divided between i) The distance betweeR; and X; is no more tham, i.e.,
all then nodes, then each node would obté&i{ 2= ) bit-me-
ters per second. If, further, each source has its destination about | X il < )

the same distance of 1 m away, then each node would obtain a_) E h &, simult Wi it
) W\ e i) Forevery other nodé&(;, simultaneously transmitting over
throughput capacityf © (ﬁ) bits per second.

. the same subchannel
The upper bound on transport capacity does not depend on
the transmissions being omnidirectional, as implied by (1), but X5 — X;| > (1+ D) (4)
only on there being some dispersion in the neighborhood of the =

receiver; see Assumption (A.vi) in Section II. 2) The Physical Model:All nodes choose a common power

Main Result 2: For the Physical ModekW /n bit-meters level P for all their transmissions. LefX;;k € 7} be the
per second is feasible, whitéi¥ n*—1/ bit-meters per seconds subset of nodes simultaneously transmitting at some time instant

is not, for appropriate, ¢’. Specifically, over a certain subchannel. A transmission from a n¥ge €
7, is successfully received by a nodg if
1 Wn P
ES [X: =X ;o
o | ge-z\\" VN + V8T —5 > g (5)
(16[3 (22 + a—?)) N+ Z |Xk—Xj|“
keT
ki

bit-meters per second (fer a multiple of4) is feasible when
the networklis appropriately designed, while an upper bound is3) The Throughput Capacity of Random NetworKge no-
L (2842)° 1,2 bit-meters per second. tion of throughput is defined in the usual manner as the time

VT s average of the number of bits per second that can be transmitted
We suspect that an upper bound of or@é# ,/n) bit-meters th evgry node o its destinati(?n
atio ’

per second may actually hold. In the special case where the r
Prax hetween the maximum and minimum powers that trans- Definition: Feasible ThroughputA throughput ofA(n) bits

mitters can employ is bounded above/bythen an upper bound per second for each node fisasibleif there is a spatial and

is in fact temporal scheme for scheduling transmissions, such that by op-
erating the network in a multihop fashion and buffering at in-

\/§ 1 termediate nodes when awaiting transmission, every node can
T (&) < sendA(n) bI'FS per se(_:ond on average to its chosen c_iestnjatlon

Prax node. That is, there is& < oo such that in every time in-

_ terval[(i — 1)T, <T"] every node can seriflA(n) bits to its cor-
bit-meters per second. responding destination node.

It is worth noting that both bounds suggest that transport ca-\whether a particular throughput level is feasible may depend
pacity improves whem is larger, i.e., when the signal powergn, the locations of the nodes. These locations are random. So
decays more rapidly with distance. is the destination for the traffic entering each node. As in PAC

Learning Theory (see Valiant [9]), given the randomness in-
B. Random Networks: Randomly Located Nodes and Traffiosolved in the problem statement, we allow for vanishingly small
Patterns probabilities when defining the “throughput capacity.”

In a random scenario; nodes are randomly located, i.e., Definition: The Throughput Capacity of Random Wireless
independently and uniformly distributed, either on the surfag@etworks: We say that théhroughput capacityf the class of
S of a three-dimensional sphere of area Z or in a disk Random Networks is of ordé(f(n)) bits per second if there

of area 1 m in the plane. Our purpose in studyirfly is 0 are deterministic constants> 0 and¢ < -+oo such that
separate edge effects from other phenomena. Each node has a

randomly chosen destination to which it wishes to safwl) lim Prob (A(n) =cf(n) is feasiblg = 1
bits per second. The destination for each node is independently e , ) i
chosen as the node nearest to a randomly located point, i.e., uni-  inf Prob(A(n) =< f(n) is feasiblg < 1.
formly and independently distributed. (Thus destinations are on . .

the order of 1 m away on average.) Our main results are the following.

In this random setting, we will assume that the nodes arepain Result 3.: In the case of both the surface of the sphere

homogeneous, i.e., all transmissions employ the same nomiga} planar disk, the order of the throughput capacity is
range or power. As for Arbitrary Networks, we will allow for

both a Protocol Model as well as a Physical Model for interfer-

ence. Aln) = © <\/%gn>
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bits per second for the Protocol Model. For the upper bound vwedarge. Perhaps designers should target their efforts at networks

actually prove the sharp cutoff phenomenon that for sdme for smaller numbers of users, rather than try to develop large
wireless networks.

is feasib|e> —0. Afeasible scenario is where nodes need to communicate only
with nearby nodes. Then the scaled distance between sources

and destinations is only % meters. Thus all nodes can

n—oo

w
lim Prob <)\(71) = CIW

Specifically, there are deterministic constaritsandc¢’” not

depending om, A, or W, such that transmit data to nearby neighbors at a bit rate that does not de-
crease withh. Such a scenario can arise, for example, in collec-
(n) = "W tions of “smart homes,” each home having sensors and actuators
(14 A)2/nlogn communicating by wireless means.

Another implication concerns the power consumption by

bits per second is feasible, and each node for transmission. Consider Random Networks. The

W fraction of time that a modem is busy, whether relaying traffic
Aln) = W\/Tg” or sending packets originating at the node, is dﬁl{b;r)

Not only that, the scaled range of each transmission is about
bits per second is infeasible, both with probability approachin@

one asw — oo. Since routing hot spots may form at the cente
in the case of a disk on the plane, and yet the order of throughpugster rate of decay of signal power with distance, i.e., a larger
capacity is the same as on the surface of the sphere, it shows thatllows greater transport and throughput capacity.

the cause of the throughput constriction is not the formation of One more implication follows from the constructive proof
hot spots, but is the pervasive need for all nodes to share tiiecapacity. It shows that one can group the nodes into small
channel locally with other nodes. clusters or “cells,” where in each cell one can designate one
specific node to carry all the burden of relaying multihop

Main Rfj,u“ 4. For the Physical Model a throughput Ofpackets, if so desired. Thus a division of labor is possible, were

_ - s feasi i) — S W
An) = nlogn bits per second is feasible, whilén) = vn  this to be found profitable. Moreover, it would further reduce

bits per second is not, for appropriatec’, both with prob- the transmission power consumed by the vast majority of other
ability approaching one as — oo. Specifically, there are nodes. This may offer some suggestive guidelines for designers

deterministic constants’ and¢’” not depending on, N, «, 3, of routing protocols.

leen ) The bounds for the Physical Model suggest that

n .

or W, such that It should be noted that dividing the channel into subchannels
" W does not change any of the results.
Aln) = < - A RD Yet another issue concerns the use of relay né@emsider a
<2 (c’”/} (3 bl %)) & 1) nlogn Random Network with source nodes. Then the throughput that
can be furnished to each of them s oﬁh(L> under the

bits per second is feasible with probability approaching one pgotocol Model. Suppose additional homogeneous nodes are
n — oo, If L is the mean Q|stanqe between two points indepefeployed as pure relays in random positions, with no indepen-

sphere or planar disk of unit area), then there is a determinisgig, throughput that can be furnished to each ofitlseurces is
sequence(n) — 0, not depending oV, «, /3 or W, such that

v i"*)"ll)“(” — ) There is, however, a severe cost of

n nTm) login—+m

8 w 1+4¢(n) providing this increase in throughput. The number of additional
™ f(ﬁ% —1) /n relay nodes that need to be deployed to gain an appreciable in-

_ . _ _ . _crease in capacity for the source nodes may be very large. When
bit-meters per second is infeasible with probability approachu?'gere aren — 100 active nodes. to make (ntm)

one asn — . ) . . n (n+m) log(n+m)
equal to five times its value at. = 0, m will have to be equal
C. Some Possible Implications to at leasti476. The addition ofn nodes to serve as pure relays

The results in this paper allow for a perfect scheduling aﬁ)_rowdes aless thagk -+ 1-fold Increase in this term. .
One way to overcome the barrier of wireless networks is to

gorithm which knows the locations of all nodes and all traffi% . . .
; X . . o what is done in cellular telephony—connect the base stations
demands, and which coordinates wireless transmissions tempo-

- By a wired network. If, however, nondirected wireless links are

rally a_nd spatially to avoid collisions which would o_thermse sed for connecting the base stations, then the capacity limita-
result in lost packets. Also, the nodes are not mobile. If su%b)n of wireless networks remains witr,1 us, though in less ob-

perfect node location information is not available, or if nOde\ﬁous ways. For example, suppose a higf\-power base station
move, or traffic demands are not known, then the capacity “Rchosen in each cell, which communicates with other distant

only be even smaller.

There are some implications of these results which designbase stations by a wireless channel. Then the set of base sta-

s . : o .
may want to consider. The decrease in throughputaitiay be fibhs inherits the same capacity limitation. A setiofvire-
regarded as unacceptable by users when the numbknodes  2we are grateful to Chip Elliott for raising this issue.
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lessly connected base stations can provide a throughput of 0@I>< W

nlogn

) bits per second for Random Networks 68.
for each base station.
Viles? In Section V we show tha® <

V%) bits per second and

C] (%) bits per second are upper bounds on the throughput

for Random Networks o1$?, under the Protocol and Physical
Why does the throughput capacity diminish as the numberMfodels, respectively. In Section VI we show that the above

nodes increases? For an insight into some of the tradeoffs figsults for Random Networks also hold for a disk in the plane.

volved, consider Random Networks. Let the mean distance to

be traversed by a packet ie and denote by(n) the common 1. ARBITRARY NETWORKS AN UPPERBOUND ON TRANSPORT

range of all transmissions. Then the mean number of hops taken CAPACITY

by packets is no less thaﬁ(in) Thus each node generates atleast \yg consider the setting on a planar disk of unit area. Consider

ff(g) bits per second of traffic for other nodes. Since the totéie following (nearly) minimal set of assumptions:

number of nodes is, the total traffic is no less tha#“(" bits (A.) There aren nodes arbitrarily located in a disk of unit

per second. This has to be serveddyodes each capableﬁf area on the plane. (The results carry over to any domain

bits per second. Thus one ne kﬂ%(n) < nW. An upper bound of unit area ink? which is the closure of its interior.)
Wr(n) (A.ii) The network transportan7 bits overl’ seconds.

on the throughput is thereforgn) < . Since the term on

the right side grows linearly in(n), it might appear that to in- (A-iii) The average distance between the source and destination

crease the throughput by reducing the number of hops traversed ~ ©f @ bit is L. Note that, together with (A.ii), this implies

by each packet, and thus the burden on other nodes serving as  that atransport capacity &L bit-meters per second is

D. A Discussion of the Tradeoffs Involved

relays, one should increase the ramge) of each node. How- achieved.
ever, the expression above is not an achievable upper bound/as’) Each node can transmit over any subsefibisubchan-
a function ofr(n). The reason is that we have neglected the re- nels with capacitieWm bits per second, < m < M,

duction in capacity due to spatial concurrency constraints, since WhereZm 1 Wi =W.

nodes close to a receiver are required to be idle to avoid cgk.v) Transmissions are slotted into synchronized slots of
lisions which cause the loss of packets. In fact, the loss from length~ seconds. (This assumption can be eliminated,
increasingr(n) is quadratic due to the area of the conflict in— but makes the exposition easier.)

volved. Therefore, the desire to reduce the multihop burden

the desire to increase spatial concurrency and frequency retise
are in conflict. It turns out that when we consider both issues to-
gether, we find that one really needs to reduce the valué-of

to as small a value as possible. However, there is a limit to how
small one can make(n). When the range(n) of transmissions

is too small, the wireless network loses connectivity. In a pre-
cursor result, see [10], the critical range for connectivity of net-
works formed by randomly located nodes on a disk in the plane
has been determined. Consider the graph with random vertices
uniformly and independently distributed in a disk of unit area.
Join two vertices by an edge whenever they are within a dis-Theorem 2.1:

tancer(n) from each other. The critical radius for connectivity i) In the Protocol Model, the transport capacity.l. is

is /1% in the sense that the graph withn) = |/ 28245 g bounded as follows:
connected with probability approaching oneras— oo if and _ B’
only if x,, — +o0. AnL < -
For Arbitrary Networks under the Protocol model, just three
constraints—the length of routes, the consumption of valuableii) In the Physical Model
two-dimensional area by transmissions, and the total number of
nodes—are enough to force the transport capacity to be no moye+ 28 +2\"% 1 - -
ASL < < ) — Wn®~Y* bit-meters per second
thanO(W/n) bit-meters per second. Jé; NZ3
The rest of this paper is organized as follows. In Section
Il we exhibit upper bounds on the transport capacity of the iii) If the ratio == between the maximum and minimum
form ¢W\/n bit-meters per second andiWn“=" bit-meters POWers that transm|tters can employ is strictly bounded above
per second, under the Protocol and Physical Models, respB¥-3: then
tively, for Arbitrary Networks. In Section Il we show that a \/7

) While retaining the restriction (2) for the case of the
Physical Model, we can either retain (1) in the Protocol
Model or consider an alternate restriction as follows: If
a nodeX; transmits to another node; located at a dis-
tance ofr units on a certain subchannel in a certain slot,
then there can be no other receiver within a radivAof
aroundX; on the same subchannel in the same slot. This
alternate restriction addresses situations where the trans-
missions are not omnidirectional, but nevertheless there
is some dispersion in the neighborhood of the receiver.

A W+/n bit-meters per second

1

transport capacity of’W./n bit-meters per second is also),7, <
feasible for Arbitrary Networks. In Section IV we construct a

v, W+/n bit-meters per second
ﬁpmm “ 1
scheduling and routing scheme which achieves a throughput of P B
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iv) When the domain is oft square meters rather than 2m Summing over the subchannels and the slots gives
then all the upper bounds above are scaled/by,

nT (b
Proof: Consider bith, wherel < b < AnT. Let us sup- § z(:) wA? (12 < WT
pose that it moves from its origin to its destination in a sequence — i 16 VY - )
of h(b) hops, where th&th hop traverses a distancergf Then -
from (A.iii) This can be rewritten as
AnT h(b) 1 4, 16WT
_ = (r)* < . 9
33 > anTL (6) b; }; g7 ") S AT ©)

b=1 hL=1
Note now that the quadratic function is convex. Hence

Note now that in any slot at most/2 nodes can transmit.

2
Hence for any subchannel and any slot AnT 1(0) -y ) AnT () s
ZZE% SZZﬁ(T‘))' (10)
AnT h(b) b=1 h=1 b=1 h=1
> > 1(Thehth hop of bitb is over Combining (9) and (10) yields

b=1 h=1

. Wotn AnT h(b)
subchannet: in slot s) < . T 16WTH
2 > > Sy A (1)

b=1 h=1
Summing over the subchannels and the slots, and noting that o ) )
there can be no more th&nslots in7" seconds, yields Now substituting (6) in (11) gives

AnT . T < 1/%. (12)
Hi=3 )< (7) "

b=1 Substituting (7) in (12) yields the result.

] . Now turn to the Physical Model. The difference stems from

Consider now the Protocol Model. Suppose thatis re- {he need to replace (8) by a different expression. Supphse

ceiving a transmission fronY; over themth subchannel at the ;g transmitting taX;; ;) over themth subchannel at power level
same time thak, is receiving a transmission frofi;, over the P, at some time, and lef’ denote the set of all simultaneous
same subchannel. Then from the triangle inequality and (1) {ransmitters over theuth subchannel at that time. Including the
signal power ofX; also in the denominator, the signal-to-inter-

|Xj — Xe| Z|X) — K| — | Xe— Xt ference requirement (2) faX; ;) can be written as

21+ 8)1Xi — X;| = | X = Xil.

D
X=X, g
- = > .
Similarly, N+ kg m B8+1
|Xe — Xj| = (14 A)[ X — X| = |X; — X5 Hence
Adding the two inequalities, we obtain | Xi — X" < Al . 7
PN+ Y mxor
A ker TF IO
[Xe =X 2 5 (10— Xl + X0 - X)) RS P,
. o A N+® T B
Hence disks of radm% times the lengths of hops centered keT
at the receivers over the same subchannel in the same slot are since| Xy — X < 2
essentially disjoint. (Note that this conclusion directly follows PO = T )

when (1) is replaced by the alternate restriction of Assumpti

(A.vi)). Allowing for edge effects where a node is near the pgummlng over all transmitter-receiver pairs

riphery of the domain, and noting that a range greater than the S P
diameter of the domain is unnecessary, we see that at least a Z X — Xj|* < B+1 icT

quarter of such a disk is within the domain. Since at nistr -t BN+ (D) T P
bits can be carried in slatfrom a receiver to a transmitter over keT
themth subchannel, we have < 9oy —(a/2) ﬁj

< 3

AnT h(b) . .

Z Z 1(The Ath hop of bith is over Summing over all slots and subchannels gives

b=1 h=1 AnT h(b)

S (hb) < w30t yp

. A2 a2
subchannein in slot s) 6 (ry)* < W,7. (8) — Jé]
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The rest of the proof proceeds along lines similar to the Protoa®main. (This is done by noting that for a tessellation of the
Model, invoking the convexity of® instead of-2. plane by squares of sidg all squares intersecting a disk of

For the consideration of the special case wh@w& < f3, radiusR—+/2s are entirely contained within a larger concentric
we start with (2). From it, it follows that ifX; is tran§?ﬁitting to disk of radiusR. The number of such squares is greater than
X; atthe same time thaX, is transmitting taX, both over the M_ Now takes = (14-2A)r andR = Lﬁ_) Restricting
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same subchannel, then attention to just these pairs, there are a tota} dimultaneous
P transmissions, each of rangeand each alV bits per second.
|X;—XJ|“ > 3. This achieves the transport capacity indicated.
s el For the Physical Model, a calculation of the SIR shows that
it is lower-bounded at all receivers bX% Choosing
Thus 16(2% 42222
1 A to make this lower bound equal tbyields the result. [
ﬁRnin < : ;
| X5 — X;] > <P—> | X — X The above lower bounds on feasible transport capacity can be
_a +mAa3{|X x| sharpened._The following bounds may be useful in the design of
‘ J networks with small numbers of nodes.
whereA = BPP_P 5 1. Thus the same upper bound as for Lemma 3.1:In the Protocol Model, there is a placement of
the Protocol Model carries over with defined as above. [ nodes and an assignment of traffic patterns such that the network
can achieve
lll. ARBITRARY NETWORKS A CONSTRUCTIVE LOWER oW
BOUND ON TRANSPORTCAPACITY N bit-meters per second forn > 2
Wg will now shpw that the order of the upper bound ?n't.he aw bit-meters per second forn > 8
previous section is sharp for the Protocol Model, by exhibiting /7 (1 + A)
a scenario where it is achieved. This scenario is also feasible for W n .
the Physical Model. 1+2A /n+ 87 bit-meters per second
Theorem 3.1:There is a placement of nodes and an as- forn =2,3,4,---,19,20,21
signment of traffic patterns such that the network can achiesad

W n
1+2A \/n4+/87

bit-meters per second under the Protocol Model, W 4] %J
and

14+ 2A n
1 Wn \/4LZJ + /87

o 6o—2 % \/7_1 + 871'
(16[3 (22 n _,_2)) v , .

@ Proof: With at least two nodes, clear% bit-meters per
bit-meters per second under the Physical Model, both whene$€F0Nd can be achieved by placing two nodes at diametrically
n is a multiple of4. opposite locations. This verifies the formula for the bound for

Proof: Consider the Protocol Model. Define n < 8. With at least eight nodes, four transmitters can be placed
at the opposite ends of perpendicular diameters, and each can

bit-meters per secondfor all n.

1 1 : : : : 1
Ti= TR Tw ) transmit toward its receiver located at a dlsta}%e(\m to-
+28 /5 + Vo ward the center of the domain. This yiel% bit-meters
Recall that the domain is a disk of unit area, i.e., of radigsin per second, verifying the formula up o= 21. =

the plane. With the center of the disk located at the origin, placeThese bounds can be further improved slightly by tessellating

transmitters at locations the domain into hexagons, at the expense of more unwieldy ex-
) pressions.
(G +2A)r £ Ar, k(14 20)r)
and IV. RANDOM NETWORKS A CONSTRUCTIVELOWER BOUND
(G +2A)r, k(14 2A)r + Ar) ON THROUGHPUTCAPACITY

Now we turn to Random Networks. Even though the setting
of the problem is very different, the proof of throughput capacity
(G +20)r £ Ar E(1+2A0)7) is somewhat reminiscent of traditional information-theoretic ar-
and guments. We provide a constructive scheme to show that one
) ] ] ] can spatially and temporally schedule transmissions in a random
(G +28)r k(1 + 2A)r & Ar) graph so that when each randomly located node has a randomly
where|j + k| is odd. Each transmitter can transmit to its neareSfOSen destm?u_on, each sour,ce—destln_atlon paircan indeed be
receiver, which is at a distaneeway, without interference from guaranteed a “virtual channel” of capam(t? SUNENy e bits
any other transmitter—receiver pair. It can be verified that theper second with probability approachifigasn — oo, for an
are at least; transmitter—receiver pairs all located within theppropriate constart > 0. We will show how to route traffic

where|j + k| is even. Also place receivers at
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efficiently through the random graph so that no node is over-
loaded. The routing scheme will utilize a Voronoi tessellation of \
52 with some special properties. The size of each Voronoi cell
is chosen carefully in relation to the number of nodes. Every

cell should also be neither too thin nor too fat. The routing will
be over nearly straight-line paths, which assures that it is effi-
cient. To show that the load is balanced uniformly over the entire

network, we calculate the Vapnik—Chervonenkis dimension for
certain geometrically defined random variables on the plane and
the sphere, which are connected with the tessellations and routes

used. We will need to ensure that the routes are independently
and identically distributed. This will require us to circumvent
the possible pitfall that knowledge of one route provides infor-
mation on the locations of the source, destination, and interme-
diate relay nodes, thus possibly introducing dependencies with
other routes which may depend on the locations of these nodes.
We begin the constructive proof of the lower bound on the ‘
throughput capacity for Random Networks. Our treatment will

be directed at the Protocol Model. Where appropriate we will
comment on the arguments required for the Physical Model. fig. 2. A tessellation of the surfac® of the sphere.

A. A Spatial Tessellation tors. The Voronoi tessellation arising from this set of generators

We use a Voronoi tessellation of the surfafteof the sphere. has the desired properties. O
Recall th_e definition of a Voronoi tessellation, see Ok.abe, Boots|, the sequel we will use a Voronoi tessellation for which
and Sugihara [11]. Lefaq, a2, --- . a,} be a set op points on
S? (or any other set for that matter). The Voronoi cglla; ) is
the set of all points which are closerdothan to any of the other

5 . . 100log
@j S, 1.8, p(n) := radius of a disk of area——2" on $2.

(V.i) Every Voronoi cell contains a disk of aréa0 log . /n.
Let

. 13)
V(a) = {z €8 |x—a = —ay|}. . , o
() :={z € o = i 1%%; o = al} (Note that the area of a disk of radip®n S? is less
. thanp?).
Above and throughout, distances are measured on the surfacg/_ii) Every Voronoi cell is contained in a disk of radius
52 of the sphere by segments of great circles connecting two 2p(n).

points; see Stilwell [12]. The point; is called the generator of We will refer to each Voronoi ceV € V, as simply a “cell.”
the Voronoi cellV («; ). Fig. 2 shows an example of a tessellation

of S2. Unfortunately, the surface of the sphere does not allow Adjacency and Interference

any regular tessellation where all cells look the same, except for . .
yreg P Note that all Voronoi cells are polygons since they are formed

he platoni lids; Lyndon [13]. Th latter llations . ~.~ : . ;
the platonic solids; see Ly don [13]. These latter tessellat Oaée’flmtemtersectlons of hemispheres$h(or halfspaces in the
cannot be made as fine as we need to make them. Moreover, OUr . ip2

Voronoi tessellations will also need to be not too eccentrically Definition: Adjacent Cells: Say that two cells aradjacent
shaped. We exhibit tessellations with these two special propx?r- - Ad) S->ay )
T : o "I they share a common point. (Recall that every cell is a closed
ties in the following lemma, the proof of which is constructive,

Set).

Lemma 4.1: For ever here is a Voronoi llation o
emma or everye > 0, there Is a Voronol tesseflatio Let us choose the rangénr) of each transmission so that

of 52 with the property that every Voronoi cell contains a disk

of radiuse and is contained in a disk of radias. r(n) = 8p(n). (14)
Proof: Denote byD(x, ¢) a disk of radiusc centered at
z. Choosez; as any point inS%. Suppose that,, - - -, a, have This range allows direct communication within a cell and be-

already been chosen such that the distance between any'tvo tween adjacent cells.

is at leasBe. There are two cases to consider. ) . S .
: . , Lemma 4.2: Every node in a cell is within a distaneén)
Suppose there is a pointsuch thatD(z, ¢) does not intersect - ;
from every node in its own cell or adjacent cell.

any D(a;, ¢). Thenz can be added to the collection: Define Proof: The diameter of cells is bounded By(n); see

ap+1 := x. Otherwise, we stop. . e )
This procedure has to terminate in a finite number of ste \é'")' The range of a transmission #(n). Thus the area cov

since the addition of eacl) removes the area of a disk of radius red by the transmission of a node includes adjacent cells.
¢ > 0 from S2. When we stop we will have a set of generators Definition: Interfering Neighbors:We say that two cells are
such that they are at lea&t units apart, and such that all otheiinterfering neighborsf there is a point in one cell which is
points onS? are within a distance dfe from one of the genera- within a distance2 + A)r(n) of some point in the other cell.
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As the name implies, the interpretation is this: If two cells aneeighbors have the same color. This gives a schedule of length
not interfering neighbors, then in the Protocol Model a transt most(1 + ¢, ), where one can transmit one packet from each
mission from one cell cannot collide with a transmission froroell of the same color in a slot.
the other cell. For the Physical Model we will show that under the same

schedule as above, the required SIR%ofs obtained if each
C. A Bound on the Number of Interfering Neighbors of a Celiransmitter chooses an identical power levelthat is high

An important property of the constructed Voronoi tessellatiognough, and\ is large enough.

V,. is that the number of interfering neighbors of a cell is uni- Note first that any two nodes transmitting simultaneously are
formly bounded. This will be exploited in the next section irseparated by a distance of at le@st- A)r(n). Hence disks of
constructing a spatial transmission schedule which allows f@adius(1 + £ )r(n) around each transmitter are disjoint. The
a high degree of spatial concurrency and thus frequency reus®a of each such disk is at leagt (1 + 5 )2r2(n). (In the case
From now or;'s will be used to denote deterministic constantef disks on the planes = 1, but it is smaller for disks on the
not depending om. surface of the sphere).

Consider a node; transmitting to a nodeX; at a distance
less than(n). The signal power received &i; is at Ieastﬁ.

Now we look at the interference power due to all the other si-
multaneous transmissions. Consider the annulus of all points
lying within a distance betweenandb from X ;. A transmitter

iy ) . within this annulus has the disk centered at itself and of ra-
and the other i, which are no more tha(® + A)r(n) units dius (1 + £)r(n) entirely contained within a larger annulus

apart. From (V.ii), the diameter of a cell is bounded4p(n). of all points lying between a distance— (1 + %)T(n) and

HenceV”, and similarly every other interfering neighbor in th A . ;
' . " . 1+ 2)r(n). The area of this larger annulus is no more than
Protocol Model, must be contained within a common large dlsk+( +2)r() s1arg uius|

D of radius6p(n) + (2 + A)r(n). A 2 A 2
Such a diskD cannot contain more thaﬁ(ﬁ”(")J’;fa?)”(")) cym { [b + <1 + 5) 7’(”)} - [a - <1 + 5) 7’(”)} } .

disks of radiusp(n). By (V.i), there can therefore be no more

than this number of cells withi®. This therefore is an upper Each transmitter above “consumes” an area of at leagtl +
bound on the number of interfering neighbors of the gellThe %)27;2(71), as noted earlier. Hence the annulus of points at a
result follows from the magnitudes pfn) andr(n) chosen as distance between andb from the receiverX; cannot contain

in (14). O  more than

Lemma 4.3: Every cell inV,, has no more thagy, interfering
neighbors¢; depends only od\ and grows no faster than lin-
early in(1 4+ A)2.

Proof: Let V be a Voronoi cell. IfV’ is an interfering
neighboring Voronoi cell, there must be two points, ond/in

D. A Bound on the Length of an All-Cell Inclusive cam { b+ (1+2) r(n)]2 —la-(1+2) 7’(71)]2}

Transmission Schedule 2
. . . C37r (1 + 7) r2(n)

The bounded number of interfering neighbors for each cell
allows the construction of a schedule of bounded length whittansmitters. Furthermore, the received powek afrom each
allows one opportunity for each cell in the tessellatignto such transmission is at maBY«™. Noting that there can be no
transmit. other simultaneous transmitter within a distafite- A)r(n) of
X;,and takingz = k(1+ $)r(n) andb = (k+1)(1+ $)r(n)
fork =1,2,3,---, we see that the SIR &; is lower-bounded

Lemma 4.4:
i) In the Protocol Model there is a schedule for transmittin
packets such that in eve(yl + ¢;) slots, each cell in the tes-

sellationV,, gets one slot in which to transmit, and such that all %
transmissions are successfully received within a distaeg oo
i i ca((k42)?—(k—1)%) r

from their transmitters. N+ = Y gy Lo

i) There is a deterministic constanhot depending on, N, k=1 » ? ’
«, 3, or W such that ifA is chosen to satisfy _ N

+oo ’
1 2 < [ r 6k+3
1 9 i r(n) + —iEy W =
L4A) > (2 <c/3<3+_1+ 2)) _1> (37 N &
& — & — . . . ..
Sincew > 2, the sum in the denominator converges, and is in
then for a large enough common power lefethe above result fact smaller thar(9 + _2; + _%5). WhenA is as specified
i) holds even for the Physical Model. and P — oo, the lower bound on the SIR converges to a value
Proof: First we show the result for the Protocol Modelgreater tharg. u

This follows from a well-known fact about vertex coloring of o )

graphs of bounded degree: A graph of degree no morethart+ The Source-Destination Pairs

can have its vertices colored by using no more thaA- ¢;) Each node wishes to communicate with the node nearestto a
colors, with no two neighboring vertices have the same colagndomly chosen location. L&} be a randomly chosen location
see Bondy and Murthy [14]. One can therefore color the celisich thatX; andY; are independently and uniformly distributed
with no more thar(1 + ¢;) colors such that no two interfering (i.i.d.) on S2, and that the sequend€X;,Y;)}"_, is i.i.d. The
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destination nodeX y.(;) for the traffic generated at node; is
chosen as the nodg; which is closest td;.

Denote byl; the straight-line segment connectiigandy;.
Above, and in the rest of the paper, by a “straight-line” segment
we actually mean a segment of the great circle on the sufface
of the sphere; see [12]. There is one significant property enjoyed
by the sequence of straight lin¢&, }7_;. 1

Lemma 4.5: The random sequence of straight-line segments
{L;} isi.id.

This has the powerful consequence of allowing us to apply the
law of large numbers to the i.i.d. straight-line segments. It will
be useful since the route followed by each origination—destina-

tion pair will approximate the corresponding straight-line seg-
ment, as described in the next section. Fig. 3. Proof that the vertices of a quadrilateral cannot be shattered by the set
of disks.

F. The Routes of Packets
. . First we will consider the case whefeis the set of all disks
We will choose the routes of packets to approximate these

straight-line segments. The straight-line segmignill inter- on the plane. Later we will consider the case where the disks
9 9f : ag 9 _are located oi$2. In the planar case we can make use of results
sect many cells in the tessellatidh). Let V; denote the partic-

ular cell which containst;, andV? the cell which containg’. from Euclidean geometry. The following result may perhaps be

Packets originating aX, will be relayed from the celV; to known already, though we have been unable to find it in the

. i _
the cellV;/ in a sequence of hops. In each hop, the packet Egserature

transferred from one cell to another in the order in which they Lemma 4.6: The Vapnik—Chervonenkis dimension of the set

intersect the line. (If two cells are both “next” cells, then eitheof disks inR? is 3.

can be chosen arbitrarily). Finally, after reaching theggtton- Proof: It is easy to see that there is a three-point set that

tainingY;, the packets will be sent on to their final destinatiorgan be shattered by the set of disks. An example is the set of

which we shall show later in Section IV-G to be no more thavertices of an equilateral triangle.

one hop away with high probability. Suppose there is a s€ty, s, 3, x4} Of four points that is
Note that this is a randomized algorithm for choosing routeshattered by the set of disks. If any one of ikigs lies in the

It can be thought of as a load balancing scheme with some rathenvex hull of the other three points, then there is no disk which

powerful uniformity properties, as shown in Section IV-I. can contain the others without containiXg too. Hence we can
assume without loss of generality that the convex hull of the four
G. Each Cell Contains at Least One Node points is a quadrilateral.

To make relaying of traffic from one cell to an adjacent cell Again_, we obtain a contradiction as follows. Without loss of
feasible, we need to first ensure treaterycell V in V, con- 9enerality, suppose that the angles of the quadrilateral and
tains at least one node. For this we use uniform convergerfgeSUm o at least 180i.e.,
in the weak law of large numbers. Note that uniformity is re-
guired over all cells in’,. We recall the following definitions; lxy + Zx3 > 180,
see Vapnik and Chervonenkis [15] and Vapnik [16]. [Z&be SupposeD is a disk which contains, andz., but notz; or z3;

a set of subsets. A finite set of pointsis said to beshattered gee Fig. 3. Extend the diagonalx; outwards in both directions
by 7 if for every subsef3 of A there is a sef” € F such that )| it meets the circumference ab at the pointsi, and ..
ANF = B. TheVC-dimension of, denoted by VGI(F),is  gimultaneously, lef, andi; be the points of intersection of the

defined as the supremum of the sizes of all finite sets that cggonalr, 25 with the circumference ab. Theni,#»isi4 is
be shattered byf'. For sets of finite VC-dimension, one has uniy, ¢yclic quadrilateral. However

form convergence in the weak law of large numbers.

The Vapnik—Chervonenkis Theorerti: F is a set of finite [T+ LT3 > /w1 + Lx3
VC-dimension VCH(F), and {X;} is a sequence of i.i.d. > 180.
random variables with common probability distributiBnthen -
for everye, 6 > 0 This is a contradiction since the sum of the opposite angles of a
N cyclic quadrilateral is exactly 180 O
Prob <Sup — Z I(X; e F)— P(F)| < e) >1-6 Now we address the problem of determining the VC-dimen-
FeF — sion of disks on the surface of a sphere. It is sufficient for us to
restrict attention to disks strictly smaller than hemispheres.
whenever i
To convert results from the plane &7, we use a mapping
N> VC-d(F) ) 16ec 4 ) 2 called the “inversion map” which maps the punctured surface
ax 08T T 0B of the sphere onto the plane. Since the radius of the sphere is
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(0,0,0)

(0,0,-12)
®

Fig. 4. The inversion mapping maps disks $finto disks onrz=.

immaterial for the remainder of this discussion, we considerfdz,) and excluded(z;) and f(x3). However, we have seen
sphere of radiu%, centered at the poir0, 0, —%). Let us refer theimpossibility of this happening on the plane in Lemma4.6.

to it temporarily asS®. Also let us refer to the plane; = —1 Since each cel” in the tessellatio®,, contains a disk of area
asH. Then the mapping 100 logn/n (from V.i), we can appeal to uniform convergence
. in the law of large numbers.
f(z) = W Lemma 4.8: There is a sequenc&n) — 0 such that

: : . Prob(Every cellV € V, contains a node} 1 — é(n).
where|| - || is the Euclidean norm, has several useful properties

(see [11]). Proof: LetF denote the class of disks of ard# log n/n.
(i) It maps the punctured surfac® (i.e., S? except for the Note that the VC-dimension of is also3. Hence

origin) onto the planéd. In fact, each point on S? is < Number of nodes i~ 1001og 7
- <

n n

mapped to the point obtained by extending the ray frofrob
the origin toz until it hits the planeA.
(i) f(2) = [(2). >1=8n)
(iii) It maps disks onS? not containing the origin into disks
on the plane. See Fig. 4.

For our purposes, the last property is most important. It is used n> max{ 24 log 1(66)7 (4) log 6(2 ) } )
S n n

sup ‘
DCF

whenever

in the following lemma. e(n)
Lemma 4.7: The VC-dimension of the set of disks ¢  This is satisfied when
strictly smaller than hemispheresis 50log n
Proof: The proof parallels the contradiction argument e(n) =8(n) = —=—.

of Lemma 4.6. Suppose that there is a set of four points ] . .

{21, 22,23, 24} which is shattered by such disks. They all have Since each celV"in v, contains a disk of arez00logn/n,

to be contained in a disk smaller than a hemispherezLeind We have

x3 be opposite vertices of the quadrilateral formed. Since t . . )

setis shattered, there are two disks, each of radius less than hrg%)(Number of nodes i’ = 50log n,

necessary to form a hemisphere, one of which contajrsnd foreveryV € V) > 1—6(n).

3 but excludesr; andz,, while the other containg, andx,

but excludesr; andzx3. Since each disk is strictly less than aThe result follows. =

hemisphere, there is a point in the complement of their union.Hence every cell inV,, contains at least one node to relay

Rotate the sphere so that this point is at the top. the traffic (with probability exceedingl — 601%)). More-
Without loss of generality we can scale the sphere so thatdtger, every such node has enough range to communicate with

radius is%, and then translate it so that its top is at the origirall nodes in any adjacent cell (see Lemma 4.2). Hence packets

Applying the inversion map shows that there is a disk on tlwan be relayed from one cell intersecting a lingo the next cell

plane H which containsf(x) and f(z3) and excludeg'(z2) intersecting the line. Hence the routing scheme given above can

and f(z4), and another disk o/ which containsf(z2) and indeed work as planned with probability exceeding 501%.
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Fig. 5. Transforming great circles intersecting disks into points lying in equatorial bands.

From now on we will use the phrase “with high probability,” Let C; denote the great circle containing the libg i.e., the
abbreviated awhpto stand for “with probability approaching extension of the line so that it wraps around the sphere. The
1 asn — o0.” The multihop relaying scheme can thereforsame proof technique shows the following.

function as plannedhp Lemma 4.10:For every great circle’; and cellV € V,

H. The Mean Number of Routes Served by Each Cell logn
Prob (Great circleC; intersectd/) < ¢ .
n

Recall that the straight ling; connectsX; andY;, whereX;
andY; are independently and uniformly distributed 6&. By

. . an .
our assumption (V.ii) on the tessellatidh, each celV € V,, is Thgre being a total o lines {LZ}Z=1’ one conngctmg each
200 oz n X; with Y;, the mean number of lines or great circles passing

contained in a disk of radius no more thg™=""5=. (Note that  through a cell is bounded as follows:

the area of a disk of radiyson S? is less thamr p?). This allows
us to bound the probability that a lidg intersects a given cell E[Number of lines in{ L, };_, intersecting a cell’]

Viny,. < eszy/nlogn

Lemma 4.9: For every lineL; and cellV € V,, E[Number of great circles ¥C; }_, intersecting a cell’]

< croy/nlogn.

. log
Prob(Line L; intersects) < c;4/ ﬂ.
n I. The Actual Traffic Served by Each Cell

Proof: As noted above, from property (V.ii) of the tes- Above, since routes follow lines, we have bounded the mean
sellation, every celVV € V, is contained in a disk of radius number of routes passing through each cell. However, what we
[400logn It ¥ Jies at a distance from the disk, then the Need to bound is thactualrandom number of routes served by

™ every cell.
angle« subtended aX;; by the disk is no more thaff /2. Toydo this we make use of the critical property that the se-
The area of the sector so formed is no more thgn If Y; does quence{(X;,Y;)} is i.i.d. Hence, so are the straight linés.
not lie in this sector, then the ling; joining X; andY; cannot This allows us to exploit uniform convergence in the law of large
intersect the disk containing the c&l Hence, for a poini; at numbers.

a distancer from the disk of radius/ 2*2°&™ containing the  Recall that each celV € V), is contained in a disk of radius

cell V, the probability that the line conneétidg,; andy; inter- 2p(n). We will bound the number of great circlés intersecting

sects the disk is no more thep [logn_ such disks of radiugp(n). This is clearly an upper bound on the

. - . L "o . _ number of lines; passing through cells.
Since.X; is uniformly distributed or&™, the probability den We transform the problem of counting “intersections” of

Sty hat 'sizif LStanCﬁ fron_n the diskis _bounded above bydisks of radius: with great circles into a “shattering” problem
2com(w + \/ =, ~). Integrating, we obtain as follows. For every point on 52 let I(z) denote the (unique)

great circle containing all points equidistant from it. This is
akin to associating an equator with a pole.

Vw/2 A . ) . . .
Prob (L; intersects’) < / / ¢s flog n Given a great circl€”, the inverse of this map is not well de-
T J\/400logn/n \ T n fined since every equator has two poles. However, we arbitrarily

100To2 choose one of these two poles and designate it as the inverse
- 2c97 <a: + 1/—g> dz.  F~(C). Consider a diskD of radius¢ centered at a point
™m on $2. Let F(D) := U,cpF(z) denote the set of all points

logn which are within a distancé from F'(2); it is a band of width
n 2¢ around the great circl&'(z). See Fig. 5.

<6

(]
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Let D denote the set of all disks o8?. It is easy to see the rate can be accommodated by all cells if it is less than the rate
following lemma and corollary. available, i.e., if

Lemma 4.11:The great circle intersects the disk if and
only if the pointF~1(C) is contained in the ban# (D). csA(n)y/nlogn <
Corollary 4.1: Let C(D) denote the set of all great circles - , .
which intersectD € D. The VC-dimension ofC(D) : D M?Ireov%r, Vr\]"th'dnl adcbell, the trafhc(tio pe Eandllfd _by the err]mred
D} is the same as the VC-dimension{df (D) : D € D}. cellcan be han eW)giny one no edln the Ce”, since eac nlo €
Let D’ denote the set of all disks strictly smaller thar?an transmit at rat its per second whenever necessary. In

hemispheres. To appeal to uniform convergence in the law 8‘Ft’ One can even designate one node_,- in eac_h cell as a “relay”
large numbers we only have to show that the VC-dimension Ede. This node can hz_;mdle all the traffic needing tp be relayed.
{F(D) : D € D'} is bounded. Note that fab € T, each The other nodes can simply serve as sources or sinks. _
band#'(D) is the intersection of two disks, each strictly larger We have .proved tth. following  theorem, noting the .I|near
than a hemisphere. It is trivial that the VC-dimension of a clagéowm ofeyin (1+A) n Lemma 4.3, and the choice afin

of sets is the same as the VC-dimension of the class formedlb%mma 4.4 for the Physical Model.

the complements of the sets. It is also known (see Vidyasagamheorem 4.1:

[17]) that if A is a set of sets, anl consists of sets which are (i) For Random Networks 062 in the Protocol Model, there

1+Cl'

each obtained by intersecting two setsdnthen is a deterministic constaat> 0 not depending on, A, or W,
such that
VC-d(B) < 10 VC-d(A).
\ _ cW
Hence we obtain the following lemma. (n) = (14 A)2y/nlogn

Lemma 4.12: The VC-dimension of /(D) : D € D'} is
no more than ten times the VC-dimensionZgff
InLemma 4.7, we have already shown that the VC—dimensi%rIJ

bits per second is feasibiehp.
ii) For Random Networks 08Z in the Physical Model, there
e deterministic constantsandc” not depending on, IV, «,

of D’ is 3. Hence uniform convergence in the weak law of Iargg or W. such that
numbers holds, and we obtain the following. ' '
Lemma 4.13:There is &'(n) — 0 such that An) = d w

2("BB+ L + ﬁ))% —1)2v/nlogn
Prob( sup (Number of linesL; intersecting!’)
Vv, bits per second is feasiblehp.
< esv/n 10gn) >1-68(n). It should be noted that these throughput levels have been at-
tained without subdividing the wireless channel into subchan-

) . ) nels of smaller capacity.
Note that if a cell containg’;, it needs to forward the packet pactty

to its final destinationX . (;)- This final destination is at most
one hop awaywhyp. Else, if a cell does not contalrj, then the
traffic is relayed to the next cell. Hence the traffic handled by
a cell is proportional to the number of lines passing through it. Now we turn to the proof of the upper bound on the capacity
Since each lind.; carries traffic of rate\(n) bits per second, for Random Networks.

V. RANDOM NETWORKS AN UPPERBOUND ON THROUGHPUT
CAPACITY

we have obtained the following bound. First we will show that that when the range is too small not
Lemma 4.14: There is &' (n) — 0 such that every source will be able to communicate with its desired des-
tination.
p b( Traffic needing to be carried by céll . .
ro 525 ( ¢ y celf) A. Asymptotic Probability of an Isolated Node

< esA(n)y/n 10gn) >1-¢8(n). From [10] we know that a necessary condition for connec-
tivity whpfor the problem of: nodes strewn on a disk of unit

area in the plane ig{n) = 1/%, wherex,, — +o0o. The

n

J. Lower Bound on Throughput Capacity of Random Network® setting here requires a slightly different treatment. The area

From Lemma 4.4 we know that there exists a schedule fof a disk of radius- on S? is not«2. A saving grace in com-
transmitting packets such that in evéty+ ¢, ) slots, each cell parison to a disk on the plane is that there is no need to consider
in the tessellatiolv,, gets one slot to transmit, and such that eadhe tedious issue of edge effects.
transmission is received within a rangfe:) of the transmitter. ~ Another subtle issue is that we may not need connectivity
Thus the rate at which each cell gets to transmifigl + ¢;  of the entire graph. Strictly speaking, we only need that every
bits per second. source be able to communicate with its chosen destination. What

Onthe other hand, the rate at which eachme#idgo transmit  we will show below is that disconnectedness manifests itself by
is less tharcs A(n)+/nlogn whp With high probability, this the presence of isolated nodes. These nodes will then be unable
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to communicate with any other node. Hence the absence of iso-
lated nodes is indeed a necessary condition for feasibility of any
throughput.

We recall two results from [10].

Lemma 5.1:
(i) Foranyp € [0, 1]

(1-p)<e™®.

(i) For any givend > 1, there existgg € [0, 1], such that

e 7 < (1-p), forall 0 < p < po.

6> 1, thenpo > 0'1 ) Fig. 6. ComputingA(r), the area of a disk of radius on a sphere of unit
Lemma 5.2:If 7r?(n) = ©80FE then, for any fixed) < 1 surface area.

and for all sufficiently large:
n(1 — 7r2(n))"~L > ge*. Next we compute the area(r) of a disk of radius- on S2.
- Note that the radius of the sphere itselfris = \/% From
Given then nodes, denote bg(n, (n)) the graph which ¢() := r/ro as indicated in Fig. 6, we get
results from connecting nodes separated by a distance less than

(r
r(n) by an edge. Le?*)(n,r(n)), k = 1,2,--- denote the Alr) = / ) 2rro(sin d)ro d
probability that a graptG(n,»(n)) has at least one ordér- 0
component, i.e., a set & nodes which form a connected set, =277r2(1 — cos ¢(r))
but which are not connected with any other node. Also, let 1 [(¢*(r)  ¢*(r)
Py(n,r(n)) denote the probability thaf(n,r(n)) is discon- ) 2 4 T
nected. a2t
The main necessary condition for the absence of a single iso- =7r? — 3 (16)
lated node, and consequently also for connectivity, is the fol-
lowing. Hence
. 2 _ logntk, 2. .4
Lemma 5.3:1f 7r?(n) = <& where 2T A(r) < 72 (17)
lim x,=Kk < +x 3
n—oo NOW
then
liminf PM(n,r(n)) > T (1-e") P({iisisolated inG(n,r(n))}) = (1 — A(;(”)))nzl
and > (1 —7mr(n)) (18)
liminf Py(n,r(n)) >e™" (1 — c_”’) . Also
Proof: Consider first the case where?(n) = 1°g++"‘ P({i andj isolated inG(n, 7(n))})
for a fixed x. Consider P*)(n,r(n)), the probability that 3
’ ' A(2 1—-s A
G(n,r(n)) hasat leastone ordert component. Then < (AQr(n)) - Al (n)))( 2 n(7§n)))
) + (1= A@2r(n))(1 - 24(r(n))) (19)
PO (n,r(n))
n . . . where the first term on the right-hand side above takes into ac-
> P({iis the only isolated node ifi(n, 7(n))}) count the case where the distance betwieand j is between
7:1 r(n) and2r(n). Substituting (18) and (19) in (15) and using
> (P({iis anisolated node i (n, 7(n))}) (17), we get
=l _ _ PO r(n)) =n(l — mr%(n))" " = nln — 1)
- Z P({iandj are isolated nodes i@i(n,r(n))})) 5 4
— ' ' 9 w2t (n)
g . <<37r7’ (n) + 3 )
> P({iisisolated inG(n,r(n))}) ; n—2
T ~ (1 -5 () = >/3>>

-3 3" P({i and; are isolated irG(n, 7(n))}).

i=1 A s + (1= 2(wr?(n) — w2 (n)/3))"~ )
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Using Lemmas 5.1 and 5.2, for?(n) = l"g++" and any fixed
# > 1ande, ¢ > 0 we have <(I+A)r(n)
PO (n,r(n)) > 6e " —n(n—1)
By () G202 ) _
T (L) 2n=2m ) o=,
>0 " —(14e)e 2, foralln>N(e,0, ). Fig. 7. X cannot receive at the same timeXis on the same subchannel.
Now, replace: by «,, wherelim,, .., , = &. Then, for any

e >0,k, <E+eforaln > N'(c). Also, the probability of
an isolated node is monotone decreasing.iklence

mean length of the path of packets is at Idasto(1) since there
is always a node within a distanegél) of a point on the sphere
whp. (This was shown in Lemma 4.8). Thus the mean number

PO (n, r(n)) > e T+ _ (1 4 ¢)e 27— of hops taken by a packet is at Ieég}(jl—)l). Since each source
generates(n) bits per second, there anesources, and each bit
forn > max{N(e,8,% + ¢), N'(¢)}. Taking limits needs to be relayed on the average by at Ié§§§)l—) nodes, it
liming PO (n, r(n)) > Be=(+) _ (1 4 ¢)e=2F9), follows that the total number of bits per second served by the
n—oo ’ - entire network needs to be at Iee@ﬁ%. To ensure that

Since this holds for at > 0 andd < 1. and since all the required traffic is carried, we therefore need

(L — o(1))nA(n) < AW

PO(n,r(n)) < Pa(n,r(n))

r(n) = enmA2r2(n)’
the results follow. U Thus
Corollary 5.1: The asymptotic probability that graph c1aW
G(n,r(n)) has an isolated node and is disconnected is strictly A(n) < AZnr(n)

positive if rr2(n) = log"% andlimsup,, &k, < +o0.
Egom the previous section we know thdiz) > /&% is nec-

wn

essary to guarantee connectivithp. Hence we obtain the fol-
The key to the upper bound, as in the case of Arbitrary Nabwing upper bound.

works, is to note that each transmission consumes valuable area.
Theorem 5.1:For Random Networks 08?2 under the Pro-

Lemma 5.4: The number of simultaneous transmissions ofcol Model, there is a deterministic constaht< -+oo, not

B. Upper Bound on Throughput Capacity of Random Networ

any particular subchannel is no more than depending om, A, or W, such that
4 . W . .
61171'A27’2(7'L) nlgr;o PI‘Ob <)\(7’L) = W\/Tgn IS feaSIb|e> =0.
in the Protocol Model. Note that just as in Theorem 4.1 the number of subchannels

Proof: Suppose nod&; in Fig. 7 transmits successfully tojs irrelevant.
nodeX; on themth subchannel. Then no other nadfg within ) )
a distanceAr(n) of X; can be simultaneously receiving a sep- For the Physical Model, the upper bound is as follows.

arate transmission on the same subchannel due to the requirerheorem 5.2: For Random Networks 062 under the Phys-

ments (3) and (4) and _th/ef(rrila)mgle inequality. _ ical Model, there is a deterministic sequen¢e) — 0, not
Hence disks of radm% centered at each receiver Odepending onV, «, 3, or W, such that

the mth subchannel are disjoint. Since the area of each such

. e wATri(n) 8 W 1 . .
disk is ===—- L it foI_Iows that the netwo_rk can support no lim Prob| A(n)= /__ +e(n) is feasiblel =0
more than. — 5 simultaneous transmissions on theh  n—co T LBV —1) n

subchannel. O

. - . whereL is the mean distance between two points independently
Noting that each transmission over thth subchannel is of and uniformly distributed on the unit area surface of the sphere.

W, bits per second, by adding all the transmissions taking place _ . 3 W .
at the same time over all the/ subchannels, we see that they ~ Proof: In Section Il we have shown thﬂ/;K\/ﬁ bit-

cannot total more than meters per second is an upper bound on the transport capacity
for an Arbitrary Network under the Protocol Model. We will
M .
4 W 4 W now show that any upper bound on the transport capacity for
c117A2r2(n) z_: " e mA2r2(n) Arbitrary Networks under the Protocol Model is also an upper
m=t bound on the transport capacity for Random Networks under the
bits per second in the Protocol Model. Physical Model. This will prove the assertion since thererare

Now let L denote the mean length of a line connecting twoodes, each having its destination at Idasto(1) meters away
independently and uniformly distributed points.$h Then the on average.
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Consider any set of successful simultaneous transmission€onsider now a cell” C G of the tessellatio®V,, of G. It is
under the Physical Model for Random NetworksXIf is suc- contained in a dislD of radius2p(n). This disk is mapped into
cessfully transmitting to\; over a themth subchannel, at the another diskd = f(D) C S2. Let A’ C S? be adisk inS? with
same time thal(}, is also successfully transmitting 5, over the same center a$, but with a radiu2p(n) larger than that of
the same subchannel, then from (5) A. It follows that a straighL; on G intersects the disk only if
the corresponding geodesitL;) on S? intersects the diskl’.

r
XX 3 (The reason is that the enlargement of the radiud atcounts
X=X _PX-|a - for the distortion involved in replacing the images of straight
g 7

line by geodesics). We have already shown in Section V-1 that

and so the uniform law of large numbers holds for the probability of
X X > AKX X randomly chosen geodesics intersecting disks. Mapping back

[ X% = X5l 2 (1+ A — X into D on the plane shows that the uniform upper bound on
whereA — (/3% ~1). Hence any set of simultaneous transmi§-he number of straight lines passing through the disks of radius

sions feasible for Random Networks under the Physical Mod%q(”) applies with high probability. ) )
is also feasible in the Protocol Model for Arbitrary Networks. Thus the same results for the capacity continue to hold.
Thus the upper bound on the transport capacity for the latter alsorheorem 6.1: For Random Networks on a planar disk of unit
holds for the former. O  area, the results of Theorems 4.1, 5.1, and 5.2 continue to hold,
except that in Theorem 5.7, is the mean distance between
VI. THROUGHPUTCAPACITY OF RANDOM NETWORKS ON two points independently and uniformly distributed in the planar

PLANAR Disk disk of unit area.
The reader may wonder if the capacity is much different
when the network is located on a disk in the two-dimensional VII. CONCLUDING REMARKS

plane, rather than on the surface of a sphere. The key issue i§\le have shown that under a Protocol Model of noninterfer-

whether hot spots created at the center of the domain by several . : .
L S . . . : ence, the capacity of wireless networks witrendomly located
origin—destination pairs routing their traffic through the center o :
nodes each capable of transmittingfabits per second and em-

will make it a bottleneck. The answer is no. The order of theIO ing a common rande. and each with randomly chosen and
capacity is unchanged for the Protocol Model, and the earlier ying g, y

orders for the lower and upper bounds for the Physical Modéerefore likely far away destination,@( L ) . Thisis

continue to hold. . true whether the nodes are located on the su;gface of a three-di-
Clearly, the arguments for the earlier upper bounds stfjensjonal sphere or on a planar disk. Even when the nodes are
hold, in view of the same necessary condition on the radius @Eﬂma"y placed in a disk of unit area, and the range of each
connectivity (see [10]) in Random Networks under the Protocghnsmission is optimally selected, a wireless network cannot
Model, and the same reduction of Random Networks un ovide a throughput of more tha® MT bits per second

the Physical Model to Arbitrary Networks under the Protoc b each node for a distance of the order’of 1 m away. In fact,

Model. . . .
L . : umming over all the bits transported, a wireless network on a
The critical issue is to show that the earlier lower boun . .
. . ) . Isk of unit area in the plane cannot transport a total of more
can still be achieved. We show this by using the same tesst%—

lation-based scheme as §A. Let G be the disk of unit area on an® (W/n) bit-meters per second, irrespective of how the
. y Io:i\d is distributed. Under a Physical Model of noninterference,

the plane on which the nodes are randomly located. Note thﬁi
. 5 o . the lower bounds are the same as those above for the Protocol
just as onS“, the probability that a randomly chosen line oy . w

i ) ) _ . odel, while the upper bounds on throughput @féﬁ) for
G intersects a disk of radiugp(n) is no more thare;/ ==, - )
This applies even to disks of radi2g(n) in the center ofg. Random Networks ane n_%) for Arbitrary Networks.
Thus no unduly hot spots are expected to occur at the center oPPIitting the channel into several subchannels does not
the domairg. The key result to show however is that with higtthange any of these results. _
probability no hot spots are creatadywhere That is, we need ~ These results have some implications that designers may want
to show the analog of Lemma 4.13 that the number of lines il consider. Perhaps efforts should be targeted at designing net-
tersecting every cell is less thap/nTog » whp. Lemma 4.11 Works with small numbers of nodes.
and Corollary 4.1 are not applicable any more since we are noOn the positive side, the results show that modulo further
on S2. However, we can circumvent this problem as follows. Mmedium access or adaptive routing restrictions, communication

We mapg into a large sphere of radiug by using an inver- With nearby neighbors at constant bit rates can be provided in a
sion mapyf (). Consider a straight lin& ong. Let f(L) denote dense clusters of nodes, since the source—destination distances
the curve onS? which is the image of the line, and lgtZ.) de- then shrink in scaled length ﬁgﬁ) . This shows that sce-
note the corresponding geodesic®hconnecting the two end narios envisaged in collections of smart homes, or networks with
points. When/ is large enough, every sugiiL) deviates from mostly close-range transactions and sparse long-range demands,
g(L) by no more than a distangén). That is, the distortion be- are feasible.
tween the images of straight lines on the disk and the geodesic8Ve have not considered in this paper the additional burden in

is very small. coordinating access to the wireless channel, and the additional



404

burden caused by mobility and link failures and the consequent3]
need to route traffic in a distributed and adaptive way. These
can only further throttle capacity. It would be useful to quantify 4]

these additional burdens.

Another issue to be studied is delay. This will arise when the [5]
traffic is bursty or when nodes are mobile. These two sources of

delay are markedly different.

Finally, spatial directivity in the antennas or beamforming (€]
will be advantageous in increasing the spatial concurrency
of transmissions, since wireless networks can then behavé7]
like wired ones. Ephremides [18] has analyzed the medium
access problem for a single channel and shown that when onl 8]
ternary feedback from the channel can be used to schedule
transmissions, the throughput of collision-free successfull®]
transmissions is the same as in the usual omnidirectional casgg
When node locations and demands are known and do not have
to be figured out purely from ternary feedback, transmissions
can be advantageously scheduled so that collisions are avoidetgl]
and the throughput can consequently be increased. However,
this is a challenging proposition since transmissions from nodel$?l
will have to be carefully orchestrated. Such schemes may poéleg]
some technological challenges though for low-cost networkg14]
Finally, there is the challange of a more information—theoretic[

formulation.
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