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ABSTRACT
An ad hoc network is a collection of wireless mobile hosts
forming a temporary network without the aid of any fixed
infrastructure. Indeed, an important task of an ad hoc net-
work is to determine an appropriate topology over which
high-level routing protocols are implemented. Furthermore,
since the underlying topology may change with time, we
need to design routing algorithms that effectively react to
dynamically changing network conditions.
The aim of this paper is to explore the limits of com-

munication in wireless mobile networks, concentrating on
local-control algorithms for topology control and routing.
We analyze the performance of the algorithms under three
measures: throughput, which is the rate at which packets
can be delivered, space overhead, i.e. the space necessary to
buffer packets, and the total energy consumed due to packet
transmissions. Energy consumption is an important perfor-
mance measure for ad hoc networks since the battery power
of mobile nodes is usually limited.
Towards topology control, we show that for any distri-

bution of nodes in the 2-dimensional Euclidean plane, a
simple local algorithm allows to establish and maintain a
connected constant degree overlay network that contains
energy-efficient paths between every pair of nodes. Towards
routing, we present a local routing algorithm that works
for arbitrary overlay networks without transmission interfer-
ence. We show that for any sequence of network changes and
packet injections the algorithm is within a constant factor
of the optimal, with respect to both throughput and energy,
when compared to what a best possible routing algorithm
can achieve under the same sequence of network changes
and injection. We then combine the topology control and
routing algorithms to obtain competitive wireless communi-
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cation algorithms that account for transmission interference,
an important performance-limiting aspect of wireless com-
munication.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication; F.2.2 [Nonnumerical Algorithms and
Problems]: Computations on discrete structures, geomet-
rical problems and computations, routing and layout

General Terms
Algorithms, theory

Keywords
Distributed algorithms, mobile computing and communica-
tion, ad hoc wireless networks, routing, spanners, adversar-
ial model, competitive analysis

1. INTRODUCTION
An ad hoc wireless network consists of a collection of ge-

ographically dispersed nodes communicating with one an-
other over a wireless medium using paths that may traverse
multiple nodes. An ad hoc network differs from both wired
and cellular networks in that there is no wired infrastructure
and the communication capabilities of the network are usu-
ally constrained by the limited battery power of the nodes.
While primary applications of ad hoc networks are in the
military domain [18], the rapid advent of mobile telephony
and a plethora of personal digital assistants has brought to
the fore a number of potential commercial applications of
ad hoc networks. Examples are disaster relief, conferencing,
home networking, sensor networks, personal area networks,
and embedded computing applications [33].
The absence of a fixed infrastructure in ad hoc networks

implies that an ad-hoc network does not have an associated
fixed topology. Hence, the nodes themselves have to form a
connected topology to enable communication among them.
There are several factors that influence the topology of an ad
hoc network. Some are controllable such as the transmission
power of individual nodes and antenna direction, while oth-
ers are uncontrollable such as node mobility, weather, and
noise. Furthermore, since wireless nodes transmit by broad-
casting within a certain (potentially variable) transmission
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range, two different simultaneous transmissions may inter-
fere, and neither may succeed. For a given topology, we also
need to identify routes and schedule packet movements so to
ensure high throughput and to minimize energy consump-
tion, an important measure for communication in ad hoc
networks.
In general, designing optimal communication protocols in

ad hoc networks is hard. For instance, it is known that
finding a schedule for a set of packets in an ad hoc network
of n nodes that completes in time within even an O(n1−ε)
factor of optimal, is NP-hard, for any constant ε > 0 [1].
The sheer complexity of establishing communication in ad
hoc networks suggests a layered approach, addressing the
following questions:

• How to set up a topology that guarantees con-
nectivity? Distributed algorithms that address this
problem will be called topology control protocols. A
naive solution that is wasteful in both energy consump-
tion and maintenance overhead is to simply connect
each node to all other nodes within its maximum trans-
mission range. In order to increase scalability and re-
duce interference, it is more desirable to maintain only
a constant number of direct links for each node at any
point of time, while trying to ensure that the topol-
ogy offers energy-efficient routes between any pair of
nodes. Note that just connecting each node to its clos-
est k neighbors may provide energy-efficient routes but
does not guarantee connectivity or a constant degree
per node.

• How to select connections provided by the topol-
ogy to allow non-interfering transmissions of
packets? A topology that ensures connectivity nec-
essarily contains edges that interfere with each other.
Thus, a way has to be found to schedule the use of
these edges. Algorithms for this problem will be called
medium access control (MAC) protocols.

• How to route packets along non-interfering con-
nections? Given an underlying topology, which may
be dynamically changing, we need to determine routes
for individual packets and decide which packet to sched-
ule if several packets contend to use an edge at the
same time. We will refer to algorithms for this prob-
lem as routing protocols.

1.1 Our results
In this paper, we consider the performance of simple local

algorithms for topology control, medium access, and routing
in ad hoc wireless networks. To the best of our knowledge,
this is the first study in which all of these issues have been
addressed and analyzed.
Our first result concerns a local algorithm for computing

a constant-degree, energy-efficient topology for an arbitrary
distribution of ad hoc network nodes in the 2-dimensional
Euclidean plane. Let V be a set of nodes in the 2-dimensional
plane. We adopt the following standard model for energy
consumption. The energy consumed due to a direct trans-
mission from u to v is given by |uv|κ, where κ ≥ 2 is a
constant and |uv| is the Euclidean distance between u and
v. The preceding formula for energy consumption, which is
discussed in more detail in Section 2.2, follows from a stan-
dard power attenuation model adopted for wireless trans-
missions [35, 41]. The total energy used for delivering a

packet from source s to destination t along a path P is sim-
ply the sum of the energy used for all the edges in P . We
define the energy-stretch of a path P between vertices u and
v to be the ratio of the energy of P to the energy of the
minimum-energy path between u and v. The energy-stretch
is a variant of the well-known measure of distance-stretch,
which for a path P is the ratio of the length of P to the the
minimum distance between u and v.

• We show that a simple local-control algorithm, pro-
posed by Li et al [32], identifies an O(1)-degree graph
N on V such that for any two nodes u and v, there
exists a path in N between u and v that has O(1)
energy-stretch. For the special case of civilized graphs,
in which it is assumed that the ratio of the maximum
edge length to the minimum edge length is bounded by
a constant, we show that the same algorithm achieves
O(1) distance-stretch for any two nodes u and v. Our
result, which is presented in Section 2, is related to
work done on proximity graphs in computational ge-
ometry and may be of independent interest.

A topology control algorithm provides an underlying net-
work over which a suitable routing mechanism can be im-
plemented. Since this network is computed online and may
further change due to uncontrollable factors (as discussed
above), we need to design routing algorithms that react to
dynamically changing network conditions.
First, we consider a scenario in which a topology control

protocol and a MAC protocol are given that provides edges
to the routing layer that can be used without interference.
We investigate the performance of our routing algorithm
under the situation that the MAC protocol and the packet
injections show adversarial behavior. More precisely, we as-
sume that there is an adversary that is allowed to inject an
arbitrary number of packets and that can select an arbitrary
set of non-interfering edges at any time step. We also as-
sociate a cost with each edge that represents, for example,
the energy usage for transmission along the edge, and may
change from one step to another.

• Under the above adversarial model, we present a rout-
ing algorithm in Section 3 that is based on a simple,
local balancing approach. For any sequence of adver-
sarial packet injections and edge activations and for
any constant ε > 0, our algorithm successfully delivers
a 1− ε fraction of the packets at an average cost that
is within an O(1/ε) factor of optimal, assuming that
the node buffer sizes in our algorithm are larger than
the buffer sizes used in an optimal schedule by a fac-
tor of essentially O(L̄/ε), where L̄ is the average path
length used for successful packets in an optimal solu-
tion. While algorithms based on local balancing have
been extensively studied before, this is the first study
that models transmission costs; it is somewhat surpris-
ing that a local-control algorithm achieves a constant-
factor approximation with respect to both throughput
and average cost, when compared with any other rout-
ing schedule. We also note that the generality of our
adversarial model implies the applicability of our re-
sult in diverse scenarios involving dynamic networks.

An important assumption in the above result is that trans-
missions across all of the edges in the network can be sched-
uled simultaneously. As mentioned at the outset, wireless
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nodes transmit by broadcasting and, therefore, transmis-
sions are prone to interference, even when the nodes are
able to adjust their transmission ranges. We adopt a stan-
dard model for interference, that is described in Section 2.4.
Our next set of results addresses the impact of interference
on the throughput achievable on the topology N and on the
throughput achieved by our local balancing algorithm.

• We show that for any communication pattern, the lo-
cal balancing algorithm, when applied to network N
using a simple randomized symmetry-breaking tech-
nique for resolving interference, achieves throughput
within Ω(1/I) of the optimal achievable on any topol-
ogy, where I is the maximum number of edges that
any edge in N interferes with. If the n nodes are
distributed uniformly at random in the plane, then
we show that I = O(log n) whp1, thus implying that
our local algorithms achieve a throughput within an
O(log n) factor of any other routing algorithm on any
topology. These results follow from our analyses in
Sections 2.4 and 3.3.

• Finally, we also show in Section 3.4 that for the special
case where the transmission range of every node is uni-
form and fixed, one can achieve expected throughput
which is optimal to within constant factors.

1.2 Related work
The topology control algorithm that we analyze in this

paper was first proposed by Li et al [32] and is a variant
of a graph introduced by Yao [44] for connecting nodes in
Euclidean space. In the Yao graph, which is also commonly
referred to as the θ-graph, one partitions the space around
each node into sectors of a fixed angle and connects the
node to the nearest neighbor in each sector. It can be easily
shown that the Yao graph contains paths of O(1) energy-
stretch connecting any two nodes. In fact, the Yao graph
satisfies the stronger property of being a spanner; that is,
for any two nodes u and v, the Yao graph contains a path
connecting u and v, the length of which is within a constant
factor of the Euclidean distance between u and v. (Note that
a spanner always has constant energy-stretch.) The maxi-
mum degree of the Yao graph is Ω(n) in the worst case,
however. One can obtain a bounded-degree subgraph of the
Yao graph that is also a spanner by processing the edges in
order by length and adding an edge (u, v) to the subgraph
if there is no other edge (u, w) or (v, w) already added and
having an angle close to that of (u, v) [36] (a related idea is
used in [7]). A topology control algorithm due to Watten-
hoffer et al [43] (also see [31]) adopts a similar approach to
convert the Yao graph to a constant-degree spanner. All of
the suggested approaches, however, rely on a global ranking
of the edges and it is not apparent how to implement such
a postprocessing of the Yao graph edges without network-
wide communication. In [42], the authors analyzed the
topology control algorithm proposed in [32], and showed
that this algorithm brings the maximum degree down to a

1We use the abbreviation “whp” throughout the paper to
mean “with high probability” or, more precisely, “with prob-
ability 1− n−c, where n is the number of nodes in the net-
work and c is a constant that can be set arbitrarily large by
appropriately adjusting other constants defined within the
relevant context.”

constant and achieves the O(1) energy-stretch for the spe-
cial case of civilized graphs. In our paper, we show that
the same topology control algorithm actually achieves the
O(1) energy-stretch for arbitrary graphs. We also analyze
the throughput-efficiency of the resultant topology for arbi-
trary and random node distributions. Variants of the Yao
graph, including the topology that we analyze in this pa-
per, are also studied in [23]. We have recently learnt from
Klaus Volbert, one of the authors of [23], that our result of
O(1) energy-stretch can also be proved using the analysis
techniques presented in [23].
The Yao graph and the variants discussed above are closely

related to a class of graphs referred to as proximity graphs,
in which the graph edges are determined by the proximity
among the nodes in Euclidean space. Proximity graphs in-
clude relative neighborhood graphs and Gabriel graphs [39].
While the relative neighborhood graph has polynomial energy-
stretch, a Gabriel graph, by definition, has shortest paths
with respect to the �2-norm and hence has optimal energy
paths. The Gabriel graph, however, has Ω(n) degree in the
worst case. Another geometric structure that leads to a
spanner is the Delaunay triangulation of the set of points;
without additional restrictions, however, the Delaunay tri-
angulation graph may include edges much longer than the
transmission range of a node. It has been shown that re-
stricted Delaunay graphs [21], in which we only include De-
launay edges with a limited fixed transmission radius, are
also spanners. The maximum degree of restricted Delaunay
graphs is Ω(n) in the worst case, however. For a compre-
hensive survey on geometric spanners and other structures
in geometric network design, see [17].
In recent years, a number of routing protocols have been

proposed for ad hoc networks. A recent survey may be found
in [38]. Most of these protocols rely on heuristics and, as
such, do not provide provable worst-case guarantees. Our
work is also related to routing protocols that exploit the
underlying geometry of the network [25, 30].
Our results on adversarial routing build on a series of

studies in adversarial queuing theory, which was initiated
by Borodin et al. [15]. Other work on adversarial queuing
theory includes [5, 19, 20, 22, 37, 40]. In these studies it is
assumed that the adversary has to provide a path for every
injected packet and reveals these paths to the system. The
paths have to be selected in a way that they do not overload
the system. Hence, it only remains to find the right queue-
ing discipline (such as furthest-to-go) to ensure that all of
the packets can reach their destination.
In the context of packet routing algorithms, the study of

adversarial models was initiated by Awerbuch, Mansour and
Shavit [13] and further refined by [4, 9, 11, 12, 20]. In
the model adopted by these studies, the adversary does not
reveal the paths to the system, and therefore the routing
protocol has to figure out paths for the packets by itself.
Based on work by Awerbuch and Leighton [12], Aiello et
al. [4] show that there is a simple distributed routing pro-
tocol that keeps the number of packets in transit bounded
in a dynamic network if, roughly speaking, in each window
of time the paths selected for the injected packets require a
capacity that is below what the available network capacities
can handle in the same window of time.
Awerbuch et al. [9] study the problem of sending packets

to a single destination in a dynamic network, using an ad-
versarial model in which the adversary is allowed to control
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the network topology and packet injections as it likes, as
long as for every injected packet it can provide a schedule to
reach its destination. They show that even for the case that
the network capacity is fully exploited, the number of pack-
ets in transit is bounded at any time. Recently, Awerbuch
et al. [10] extended these results to arbitrary anycasting sit-
uations and showed that simple balancing strategies achieve
a throughput that can be brought arbitrarily close to a best
possible throughput. Our work generalizes the results of [10]
to incorporate edge costs. We also augment the algorithm
to account for interference. We note that all of the above
work in the adversarial routing area, including this current
paper, is based on simple load balancing schemes first de-
scribed in [13], and refined in [2, 3, 4, 6, 9, 10, 11, 12] for
various routing purposes.

2. TOPOLOGY CONTROL
We consider a set V of n nodes in a 2-dimensional plane,

in which each node can directly communicate with every
node within a maximum distance D. Let G∗ = (V,E) de-
note the transmission graph that contains an edge between
two nodes u and v if they can directly communicate with
each other. We assume throughout this paper that G∗ is
connected. For each edge (u, v) in E, we associate a cost
c(u, v) = |uv|κ for κ ≥ 2, where |uv| denotes the Euclidean
distance between u and v. In the cost we consider only
transmission energy, since receiving energy is independent of
the transmission distance and normally smaller compared to
transmission energy. We also assume that κ is the same for
all the links in the network. The cost of a path P between
u and v is the sum of the cost of the edges along P .
We now elaborate on the assumptions made in our model.

The parameterD represents the maximum transmission range
of any node. The cost assigned to an edge represents the
transmission energy expended and is based on a standard
power attenuation model [35], in which the receiving power

at any receiver is given by Θ(PT
dκ ), where PT is the transmis-

sion power, d is the distance between the transmitter and
the receiver and 2 ≤ κ ≤ 4 is a constant. Thus, if we assume
that each node has the same power reception threshold for
signal detection, then the transmission power, and hence the
energy, required for transmission over edge (u, v) is propor-
tional to |uv|κ, which is what we assign as energy cost for
edge (u, v). We assume that each node is equipped with a
GPS receiver, which can provide the position information.
We also assume that each node is able to adjust its transmis-
sion power according to the distance to its receiver [43, 34],
as long as the power does not exceed the maximum power
needed to transmit to a distance of D.
Given an arbitrary collection of nodes forming a transmis-

sion graphG∗, we seek a distributed algorithm that identifies
a low-degree subgraph of G∗ that contains energy-efficient
paths and admits high throughput. We capture the energy-
efficiency of a subgraph H by its energy-stretch, which we
now define. For any subgraph H of G∗ and any nodes u
and v, define EH

u,v to be the cost of the path with least cost
in H . We define the energy-stretch of a subgraph H to be
maximum ratio, over all nodes u and v, of EH

u,v to E
G∗
u,v. The

main result of this section is that for any distribution of the
n nodes, a simple local algorithm computes an O(1)-degree
topology N with O(1) energy-stretch. We note that the re-
sults of Wang et al. [42] establish the O(1) energy-stretch
property of N for the special case of civilized graphs [27].

For this special case, we show in this section that the topol-
ogy N actually achieves O(1) distance-stretch, which di-
rectly implies the O(1) energy-stretch result in [42]. For
a general distribution of nodes, however, we have not been
able to resolve whether N is a spanner and we leave this
question as an open problem at this time. The algorithm is
described in Section 2.1, and the analysis of energy-stretch
and distance-stretch are presented in Section 2.2 and Sec-
tion 2.3 respectively.
We also evaluate the topology N on the basis of the

throughput achievable for arbitrary communication patterns.
The throughput achievable on a topology depends on the
degree to which the edges of the topology interfere. A for-
mal definition of the interference model and the analysis of
throughput are give in Section 2.4.

2.1 Algorithm
In this section, we describe the topology control algorithm

proposed in [32]. The algorithm is parametrized by an angle
θ ≤ π/3. We refer to the algorithm as ΘALG. Each node
u ∈ V divides the 360◦ space into 2π/θ sectors or cones.
For any two nodes u and v, we let S(u, v) denote the sector
of u containing node v. In the following description, we
assume, without loss of generality, that all pairwise distances
among the n nodes are unique. (If the distances are not
unique, then a simple tie breaking scheme can be used to
enforce the assumption.) The ΘALG determines a subgraph
N = (V, E) of G in two phases:

1. Each node u computes N(u) which consists of all nodes
v such that v is the node nearest to u in S(u, v).

2. Edge (u, v) ∈ E is in E if v is the nearest node in
S(u, v) such that u ∈ N(v) or u is the nearest node in
S(v, u) such that v ∈ N(u).

Let N1 denote the graph obtained after the first phase of
the algorithm; that is N1 = (V,E1) where (u, v) ∈ E1 if
u ∈ N(v) or v ∈ N(u). The graph N1 is identical to the Yao
graph with θ-degree sectors. One can easily prove by an
induction on pairwise distances that the distance between
two nodes u and v in the graph is O(|uv|), and hence that
N1 is a spanner. It follows then that N1 also has O(1)
energy-stretch.
While the total number of edges in N1 is O(n), the degree

of a node may be as large as Ω(n) in the worst-case. One
can construct a constant-degree subgraph of N1 by process-
ing the edges in order of decreasing length, and eliminating
edges that do not decrease the distance between endpoints
by more than a constant-factor [43]. Such a postprocess-
ing step, however, takes communication time proportional
to the diameter of the network. Instead, the second phase
of the algorithm above proposes a simple local step to elim-
inate certain edges from N1 so that the degree of each node
is a constant. Note that if we assign direction to each edge
in N1, i.e. u has a directed edge to v if u identifies v as its
nearest neighbor in S(u, v), then it is easy to see that each
node in N1 has constant out-degree while in-degree can be
O(n). In the second phase of the algorithm, the in-degree
of each node u is then reduced to constant by letting u ad-
mit only one incoming edge, the shortest one, in each of u’s
sector. In Section 2.2, we will show that the resultant graph
N has O(1) energy-stretch.
Before going on to the analysis, we note that ΘALG can

be implemented by three rounds of local message broadcast-
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ing and computation. In the first round, each node broad-
casts a Position message containing its position acquired
from its GPS receiver, at maximum power P . After receiv-
ing the position information, each node u computes N(u)
based on angle information computed from the received Po-
sition messages. In the second round, each node u broad-
casts a neighborhood message containing N(u) to each node
in N(u). In the third round, each node u sends a connec-
tion message to the nearest node v (if any) in each sector
such that u is in N(v). The topology N has an edge (u, v)
for any pair of nodes u and v that have exchanged a con-
nection message. We note that the three rounds of message
exchanges may take a variable amount of time due to the
interference and confliction.
It can be easily shown that the topology N is connected

and has constant degree [42]. The proof of 2.1 is presented
in the full paper [28].

Lemma 2.1 ( [42]). N is connected and the degree of
each node is at most 4π/θ.

2.2 Analysis of energy-stretch
In this section, we show that N has O(1) energy-stretch.

Let Eu,v denote the cost of the minimum-cost path from u
to v in N = (V,E). We will show that for any pair of nodes
u, v, Eu,v is within a constant factor of the minimum cost to
transmit from u to v in G∗. Since, the transmission along
any edge (u, v) in G∗ incurs cost |uv|κ, it suffices to show
that for any edge (u, v) ∈ G∗, Eu,v is O(|uv|κ). Our main
theorem is as follows

Theorem 2.2. For θ sufficiently small, Eu,v = O(|uv|κ),
for any edge (u, v) in G∗.

The proof of Theorem 2.2 proceeds by induction on pair-
wise distances. A challenge in establishing Theorem 2.2 is
that unlike proximity graphs such as the Yao graph [44],
Gabriel graph and some of its variants (such as β-skeletons
with β < 1) [17], the minimum-cost path in N from a node
u to another node v may traverse nodes that are farther
from v than u is. We are able to overcome this hurdle by
sufficiently characterizing such a path so as to place an up-
per bound on the cost. For our proof of Theorem 2.2, we
need a series of technical lemmas, which can be proved using
elementary geometry, to establish relationships among node
distances and relative orientation. We here give a proof
sketch for Theorem 2.2, and proofs of the technical lemmas
and Theorem 2.2 is presented in the full paper [28].

Lemma 2.3. For any �ABC with |AC| ≤ |BC| and \ACB
≤ π/3, c|AB|2 + |AC|2 ≤ c|BC|2 for c ≥ 1

2 cos (\ACB)−1
.

Lemma 2.4. For any �ABC with |BC| ≤ |AC| ≤ |AB|
and \BAC ≤ π/6, |BC| ≤ |AB|

2 cos\BAC
.

Lemma 2.5. Let A,A1, A2, . . . , Ak be a set of points, such
that |AAi| ≥ |AAi+1| and 0 ≤ \AiAAi+1 ≤ θ. If \A1AAk =

α, then
Pk−1

i=1 |AiAi+1|2 ≤ (|AA1|−|AAk|)2+2|AA1|2 α
θ
(1−

cos θ).

Lemma 2.6. Let A and B be any two points, and O be
the center of line segment (A,B). Let D be the point such
that |BD| = |AB| and \DBA = π/6. Let C be a point
outside C(O, |OA|) such that |AC| ≤ |AB| and \CAB <
π/12 and C,D are on the same side of (A,B). Let E be
the intersection of (C,D) with circle C(O, |OA|). We have
\EAB ≤ 2\CAB.

Proof Sketch: We prove that Eu,v ≤ c|uv|κ for an ap-
propriately chosen c, for any pair of nodes u, v ∈ V . For
simplicity, we assume κ = 2 in the following analysis, and
it is easy to see that the analysis holds for any κ ≥ 2. We
prove this theorem by an induction on |uv| for any u, v ∈ V .
Consider the base case where |uv| is the minimum among

any pair of nodes in V . This is trivial, since it is clear that
(u, v) ∈ E and Eu,v = |uv|2 ≤ c|uv|2, for c ≥ 1. Consider
nodes u, v. Assume for the purpose of induction that for any
pair of nodes x, y with |xy| < |uv|, Ex,y ≤ c|xy|2. We show
in the following that Eu,v ≤ c|uv|2. We distinguish between
two cases.

Case 1: v ∈ N(u), or u ∈ N(v). In this case, u selects
v as its nearest neighbor, so there exists node w (w = v or
w 	= v) in sector S(v, u) with \uvw ≤ θ such that |wv| ≤
|uv| and (w, v) ∈ E. Invoking Lemma 2.3, we have Eu,v ≤
Eu,w + |wv|2 ≤ c|uw|2 + |wv|2 ≤ c|uv|2, for c ≥ 1

2 cos θ−1
.

Case 2: v 	∈ N(u) and u 	∈ N(v). In this case, if there
exists a node w with \uwv ≥ π/2, we have Eu,v ≤ Eu,w +
Ew,v ≤ c|uw|2 + c|wv|2 ≤ c|uv|2.

u v

u′
0 u0

u′
1 u1

uk

w

Figure 1: Sectors of node u.

v

ut

�

o
u

u′
t u′

2 u2

u′
1 u1

Figure 2: Node ut has edge (ut, u′
t).

We now assume that \uwv < π/2 for any w ∈ V . Con-
sider Figure 1. Let \wuv = π/6. We number the consecu-
tive sectors of u as 0, 1, . . . , k, starting from S(u, v). Let k
be the largest number k such that the total angle spanned
by the sectors is at most π/6. We denote the nearest neigh-
bor of u in sector i as ui, and let u

′
i be the node such that

ui ∈ N(u′i) and (ui, u
′
i) ∈ E, if such a node exists. We then

let ut be the first node in the sequence u0, u1, . . . , uk, such
that |uu′t| < |u′tut|. We distinguish between the following
two cases:

Case 2.1: ut exists for 0 ≤ t ≤ k. Consider Figure 2. By
applying an induction on i for 1 ≤ i ≤ t, we are able to show
that there exists a sequence of nodes v, u1, u2, . . . , ut, such
that their distance to u is decreasing and \vuu1,\uiuui+1 ≤
2θ for 1 ≤ i ≤ t−1. Specifically, we have an edge (ut, u

′
t) ∈ E

with a length of Ω(|uv|). Invoking Lemma 2.4 on edge (u, u′t)
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and invoking Lemma 2.5 on sequence v, u1, u2, . . . , ut, we
can show that Eu,v ≤ Eu,u′

t
+ Eu′

t,ut
+ Eut,v ≤ c|uv|2, for

some constant c and θ.
Case 2.2: ut does not exist for 0 ≤ t ≤ k. In this case, we

have a sequence of nodes v, u1, u2 . . . , uk, by we are unable
to identify an edge of length Ω(|uv|) from any of the ui’s.
Instead, we identify another sequence of nodes on u’s side.
Consider Figure 3. First, we determine a node z with the
following properties.:

1. θ ≤ \zuv ≤ 4θ;

2. the nearest neighbor of z in sector S(z, u) is on the
same side of (u, v) as z;

3. any neighbor of z between ray (z, u) and (z, w) is on
the same side of � as u.

This is done by invoking Lemma 2.6 (a detailed argument is
given in the full paper [28]). Then, we number the consecu-
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�
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z′1
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o
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z1

z′0
z0

u

Figure 3: Node zt has edge (zt, z′t).
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u1

o

z1

u

z0

Figure 4: Node zt does not exist.

tive sectors of z between ray (z, u) and (z, w) as 0, 1, . . . ,m,
starting from S(z, u). The number m is selected to be the
largest number such that the angles those sectors span is
close to π/6. Similar to Case 2.1, we denote the nearest
neighbor of z in sector i as zi, and let z

′
i denote the node

such that zi ∈ N(z′i) and (zi, z
′
i) ∈ E, if such a node exists.

Let zt be the first node in the sequence z0, z1, . . . , zm, such
that |ztz

′
t| > |z′tz|. We then further distinguish between the

following two subcases:
Case 2.2.1: zt exists for 0 ≤ t ≤ m. Consider Figure 3. In

this case, we have an edge (zt, z
′
t) with length Ω(|uv|) and,

as in Case 2.1, we can show that Eu,v ≤ Eu,zt + Ezt,z′
t
+

Ez′
t,z + Ez,v ≤ c|uv|2 for some constant c and θ.
Case 2.2.2: zt does not exist for 0 ≤ t ≤ m. Consider

Figure 4. In this case, we have two sequences of nodes
v, u0, u1, . . . , uk and u, z0, z1, . . . , zm, in which the distance
between uk and zm is considerably small compared with |uv|,

which enables us to apply the induction step on |ukzm| di-
rectly. Invoking Lemma 2.5 on the two sequences of nodes,
we are able to show that Eu,v ≤ Eu,zn + Ezn,uk + Euk,v ≤
c|uv|2, for certain θ ≤ π/60. This completes a sketch of the
proof. We note that we have not attempted to optimize the
value of θ in our analysis.

2.3 Analysis of distance-stretch for civilized
graphs

A civilized graph, also called λ-precision graph, satisfies
the following property: for any nodes u1, u2, v1, v2 in the

graph, min{ |u1v1|
|u2v2|} ≥ λ, where 0 < λ ≤ 1 is a constant. This

is a commonly used model for wireless ad hoc networks [42,
23], since wireless devices typically are not too close to each
other. Let Θ-distance DN(u, v) denote the minimum dis-
tance between u, v in topology N . Our main theorem in
this section is as follows.

Theorem 2.7. If G∗ is a civilized graph, then topology N
has a distance-stretch of O(1) for sufficiently small θ.

Due to space constraints, we have placed the proof of The-
orem 2.7 in the full paper [28].

2.4 Interference model and throughput anal-
ysis

Modeling interference in a wireless environment is a com-
plex task. The wireless medium is susceptible to path loss,
noise, interference and blockages due to physical obstruc-
tions. In this paper, we adopt a pairwise interference model,
in which we specify conditions on the distances among par-
ticipating nodes under which a given transmission is suc-
cessfully received. Let X1,X2, . . . ,Xk be the set of nodes
transmitting simultaneously to receivers Y1, Y2, . . . , Yk, re-
spectively, at some instant. Then the transmission by Xi is
successfully received by node Yi if |XjYi| ≥ (1 + ∆)|XjYj |,
for every other node Xj , where ∆ > 0 models a proto-
col specified guard zone to prevent transmission interfer-
ence. This means any node Yi that falls into the guard zone
(1 + ∆)|XjYj | of transmission from Xj to Yj will be inter-
fered. Note that similar pairwise interference model is also
adopted in [24] (the protocol model), and is a simplified ver-
sion of the physical model [24], which considers a combined
interference from all other simultaneous transmissions.
Let topology N = (V,E). We consider any message ex-

change between Xi and Yi as a bidirectional communication
consisting of a transmission from Xi to Yi and another trans-
mission from Yi to Xi, to account for both data packets and
control packets such as acknowledgments. We define

IR(Xi, Yi) = C(Xi, (1 + ∆)|XiYi|)
[
C(Yi, (1 +∆)|XiYi|)

to be the interference region of transmission Xi ↔ Yi, where
C(O, r) denotes the open disk with center O and radius r.
Thus, Xi ↔ Yi is successful if and only if for any other trans-
mission Xj ↔ Yj , both Xi and Yi are not in IR(Xj , Yj).
We say that an edge e′ interferes with e ∈ E if the in-
terference region of e′ contains at least one end point of
e. Following the recent work of Meyer auf der Heide et
al [8], we define the interference set of e as I(e) = {e′ ∈
E | e′ interferes with e, or vice versa}, and call maxe∈E{I(e)}
the interference number of the graph.
For an arbitrary communication pattern, the throughput

achievable on a given topology depends on both the inter-
ference number of the topology and the congestion of the
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best path system connecting source-destination pairs, both
of which in turn are a function of the distribution of the
nodes in the plane. In the following theorem, we show the
throughput achievable on N is essentially limited only by
its interference number, when compared with an optimal
schedule on G∗.

Theorem 2.8. Let I be the interference number of topol-
ogy N . Let W denote a set of packets that are successfully
delivered by an arbitrary schedule of packet transmissions in
G∗ in t steps. Then, there exists a schedule of transmissions
in N that delivers W in O(tI + n2) steps. Thus, for suffi-
ciently large t and W , the throughput achievable on N is an
Ω(1/I) fraction of the optimal.

We here give an overview of the proof of Theorem 2.8.
Let T be any set of edges in G∗ such that the any two edges
do not interfere with each other. We show in the following
that any edge (u, v) in T can be replaced by a set of edges
{(u, u1), (u1, u2), . . . , (uk, v)} from N , such that any edge in
N can be included in at most a constant number of such set
of edges in T . We replace an edge (u, v) in G∗ by a path
P , which is recursively computed as follows. Initially, we
have P = φ. If (u, v) ∈ E, then P is simply the edge (u, v).
Otherwise, we have two cases. First, if v is the nearest
neighbor of u in S(u, v), then let w be the node in S(v, u)
such that (v, w) is an edge. We set P to be the recursive
path from u to w, which we call the θ-path, followed by the
edge (w, v). Second, if v is not the nearest neighbor of u in
S(u, v), then let w be the nearest neighbor of u in S(v, u).
We set P to be the recursive path from u to w followed by
the recursive path from w to v.

Lemma 2.9. Any edge in N can be selected by at most 6
θ-paths of edges in any T .

Theorem 2.8 follows from Lemma 2.9 and a carefully de-
signed scheduling [28]. While the minimum interference
number can be large in the worst case, we show a logarith-
mic upper bound on the interference number of N for a
random node distribution can be established.

Lemma 2.10. If the n nodes are placed independently and
uniformly at random in a unit square, then the interference
number of N is O(log n) whp.

3. ROUTING
In this section we will show how to perform routing in

wireless networks to ensure that, in conjunction with certain
topology control and medium access control protocols, the
throughput and energy efficiency is close to a best possible.
After describing our basic model, we investigate various sce-
narios of comparing optimal algorithms with our algorithms:

1. First, we assume that protocols for topology control
and the medium access control are already given. This
means that in each step a set of edges is provided
that do not interfere with each other and therefore
can be used concurrently. MAC layer protocols that
allow to achieve this are, for example, CSMA/CA[16],
MACA [14, 29] and IEEE 802.11 [26]. Thus, it remains
to perform routing decisions to achieve a throughput
that is as high as possible.

2. Next, we assume that a topology control protocol is
only given, and medium access control and routing

protocols have to be designed. In this case, we com-
pare the performance of our algorithm with a best pos-
sible routing strategy using the interference number of
underlying topology.

3. Finally, we investigate two special cases, one when the
ad hoc network nodes are randomly placed in a unit
square and the other where the nodes are arbitrar-
ily placed but have a fixed transmission strength and
hence have to transmit every packet in the same range.

3.1 Analytical approach
We adopt a model in which the topology changes and

packet injections are under adversarial control. That is, in
each time step the adversary can specify a new topology
with edge costs that may differ from previous edge costs, and
it can inject an unbounded number of packets. Of course,
in this case only some of the injected packets may be able
to reach their destination, even when using a best possible
strategy. For each of the successful packets a schedule can be
specified. A schedule S = (t0, (e1, t1), . . . , (e�, t�)) consists
of a sequence of movements by which the injected packet
P can be sent from its source node to its destination node.
It has the property that P is injected at time step t0, the
edges e1, . . . , e� form a connected path, with the starting
point of e1 being the source of P and the endpoint of e�

being the destination of P , the time steps have the ordering
t0 < t1 < . . . < t�, and edge ei is active at time ti for all
1 ≤ i ≤ �.
We assume that at most one packet can be transmitted

along any edge in each direction and require that no two
schedules conflict with each other. That is, no edge is used
by two schedules at the same time. When speaking about
schedules in the following, we always mean a delivery strat-
egy chosen by a best possible routing algorithm.
We assume that every node v in the system has a buffer

Qv,d for each destination d. If a packet reaches its destina-
tion buffer Qd,d, it is absorbed, and we count it as a suc-
cessful delivery. The number of deliveries that is achieved
by an algorithm is called its throughput. Since the adver-
sary is allowed to inject an unbounded number of packets,
we will allow routing algorithms to drop packets so that a
high throughput can be achieved with a buffer size and a
cost that is as small as possible.
In order to compare the performance of an optimal al-

gorithm with our online algorithm, we will use competi-
tive analysis. Given any sequence of topology changes and
packet injections σ, let OPTB,C(σ) be the maximum pos-
sible throughput (i.e. the maximum number of deliveries)
achievable when using a buffer size of B and allowing an av-
erage cost of C per delivery (where the average is taken by
dividing the total cost spent on all packets by the number
of successful deliveries). Let AB′,C′(σ) be the throughput
achieved by some given online algorithm A with buffer size
B′ and an asymptotic average cost of at most C′ per de-
livery. (Asymptotic means here that as the number of suc-
cessful deliveries goes to infinity, the average cost goes to at
most C′.) We call an online algorithm A (t, s, c)-competitive
if for all σ and all B and C, A can guarantee that

As·B,c·C(σ) ≥ t ·OPTB,C(σ)− r
for some value r ≥ 0 that is independent of σ (but may
depend on s, B and n). Note that t ∈ [0, 1]. For the case
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that we do not consider the cost of transmissions, we simply
say that A is (t, s)-competitive.

3.2 MAC-based routing
We begin with the scenario in which protocols for topol-

ogy and medium access control are given and it remains to
provide a routing protocol. Recall that in this case edges are
provided in each step that do not interfere with each other.

The (T, γ)-balancing algorithm
Let h(v,d),t denote the amount of packets in buffer Qv,d at
the beginning of time step t. For any destination bufferQd,d,
h(d,d),t = 0 at any time. h(v,d),t will also be called the height
of buffer Qv,d at step t. The maximum height a buffer can
have is denoted by H .
We now present a simple balancing strategy. Several vari-

ants of it have been used in previous papers (e.g. [4, 9,
10]), but without considering edge costs. In every time step
t ≥ 1 the (T, γ)-balancing algorithm performs the following
operations.

1. For every edge e = (v, w), determine the destination
d with maximum h(v,d),t − h(w,d),t − c(e) · γ and check
whether h(v,d),t − h(w,d),t − c(e) · γ > T . If so, send a
packet from Qv,d to Qw,d (otherwise do nothing).

2. Receive incoming packets and absorb all packets that
reached the destination. Afterwards, receive all newly
injected packets. If a packet cannot be stored in a
buffer because its height is already H , then delete the
new packet.

In the above algorithm, we assume that nodes continuously
exchange the buffer height values. In a practical implemen-
tation, we can reduce the amount of control information
exchange for this purpose. This aspect is discussed in detail
in the full paper [28].
Note that if T is set large enough to ensure that packets

can only move downwards in their buffer position, then only
newly injected packets will ever get deleted. In this case, the
admission control problem for the sources has a simple solu-
tion: only admit those packets for which there is still buffer
space available. We show that this solution is surprisingly
effective.
Let δ denote the maximum number of edges incident to

a node that can be used concurrently, i.e. the maximum
number of available frequencies. Let C̄ denote the average
cost allowed for an optimal algorithm to deliver a packet
and L̄ denote the (best possible) average path length used
by successful packets in an optimal algorithm under this
assumption. We assume that C̄ is known to the online al-
gorithm whereas for L̄ just an upper bound may be known.
The following result demonstrates that the (T, γ)-balancing
algorithm can reach a (1−ε)-fraction of the optimal through-
put at the cost of increasing the buffer size by a factor of
essentially O(L̄/ε) and the average cost per packet by a fac-
tor of O(1/ε). The proof is presented in the full paper [28].

Theorem 3.1. For any ε > 0 and any T ≥ B + 2(δ − 1)
and γ ≥ (T + B + δ)L̄/C̄, the (T, γ)-balancing algorithm is
(1− ε, 1 + 2(1 + (T + δ)/B)L̄/ε, 1 + 2/ε)-competitive.

3.3 Topology-based routing
Next we show that it is possible to compete with an op-

timal algorithm even when medium access control is not

provided. Recall the definition of the interference number
in Section 2.4. Suppose that we use a topology control algo-
rithm such as ΘALG of Section 2, and suppose that every
node v knows for every edge e = (v, w) of the resultant
topology an upper bound Ie on the maximum current inter-
ference number of any edge e interferes with. (In the ideal,
2-dimensional Euclidean space it would actually suffice just
to have an upper bound on the own interference number, but
in a space with obstacles, for example, this would not suf-
fice.) Then we use the following simple symmetry-breaking
technique to provide medium access control: Each edge e
provided by the topology control scheme chooses to become
active with probability 1/(2Ie). All active edges are passed
on to the (T, γ)-balancing algorithm. We refer to the com-
bined medium access and routing protocol as a (T, γ, I)-
balancing algorithm, where I is the maximum of Ie over all
edges every offered by the topology control protocol.
We note that if the algorithm decides to send packets

along two active edges that interfere with each other, then
neither of the transmissions is successful. Fortunately, the
following lemma demonstrates that there is a high probabil-
ity of successfully using an active edge.

Lemma 3.2. Every active edge has a probability of at most
1/2 to interfere with other active edges.

Now we are ready to compare our (T, γ, I)-balancing al-
gorithm with the performance of an optimal algorithm. We
assume here that an optimal algorithm still has to restrict
itself to the edges provided by the topology control scheme,
but apart from that is free to use any of these edges for
communication as it likes. We even allow it to use edges
successfully at the same time that would normally interfere
with each other. Let δ, the maximum degree of a node in a
step, be now equal to 1 (i.e. only one frequency is available).

Theorem 3.3. For any ε > 0 and any T ≥ 2B + 1 and
γ ≥ (T + B)L̄/C̄, the (T, γ, I)-balancing algorithm is ((1−
ε)/(8I), 1 + 2(1 + T/B)L̄/ε, 1 + 2/ε)-competitive w.r.t. an
optimal algorithm that is based on the same topology control
scheme.

The proof is presented in the full paper [28]. Theorem 3.3
can be combined with an analysis along the lines of The-
orem 2.8 to yield the following claim for ΘALG and the
(T, γ, I)-balancing algorithm, when compared with an op-
timal algorithm that is unrestricted in what edges it can
use.

Corollary 3.4. Suppose the nodes in the ad hoc network
are stationary and the adversary only controls packet injec-
tions. For suitable values of T and γ, the (T, γ, I)-balancing
algorithm, in conjunction with ΘALG, is (O(1/I), O(L̄))-
competitive w.r.t. an optimal algorithm that may use any
edges of G∗.

For the special case of having a random distribution of
nodes in the unit square, Corollary 3.4 and Lemma 2.10
imply the following:

Corollary 3.5. Suppose the nodes in the ad hoc net-
work are randomly distributed in a unit square and the ad-
versary only controls packet injections. For suitable values
of T and γ, the (T, γ, I)-balancing algorithm, in conjunction
with ΘALG, is (O(1/ log n), O(L̄))-competitive w.r.t an op-
timal algorithm that may use any edges of G∗.
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3.4 Communication with fixed transmission
strength

Finally, we demonstrate that an even better competitive
ratio than the one given in Corollary 3.5 can be shown if the
nodes are distributed in an arbitrary way in a 2-dimensional
Euclidean space but all nodes have the same, fixed transmis-
sion strength. That is, we assume that every node transmits
at the same fixed power level so that it will be successfully
received by all nodes within distance 1, if there were no in-
terference. Now recall the interference model in Section 2.4.
For a transmission from a sender s to a receiver t to be
successful, two properties have to be kept: (i) the distance
between s and t is at most 1, and (ii) every node in every
other sender-receiver pair must have a distance of more than
1+∆ from s and t. If (ii) holds for two sender-receiver pairs,
they are said to be independent.
Consider now the 2-dimensional space to be partitioned

into a honeycomb-like hexagonal pattern as shown in Fig-
ure 5, with hexagons of side length 3 + 2∆ (and therefore
diameter 2(3 + 2∆)). Each sender-receiver pair (s, t) is as-
signed to that hexagon that contains s. Our strategy for
selecting independent sender-receiver pairs is rather sim-
ple: Suppose that every sender-receiver pair has a benefit
associated with it, which equals the maximum difference
in buffer heights, over all destination buffers. Within each
hexagon, we first determine the sender-receiver pair of max-
imum benefit (breaking ties in an arbitrary way). If this
sender-receiver pair has a benefit of more than some thresh-
old T > 0, it is called a contestant. For each contestant,
we decide with probability pt to transmit a packet along
its connection, where pt is chosen so that the probability
of a successful transmission is at least 1/2. Two important
lemmas can be shown for this strategy.

Figure 5: Subdivision of the Euclidean space into
hexagons.

Lemma 3.6. The sum of the benefits of all contestants is
by at most some constant factor cb smaller than the maxi-
mum total benefit that can be achieved by any independent
set of sender-receiver pairs with benefit beyond T .

Lemma 3.7. If pt ≤ 1/6, then for each contestant (s, t),
with probability at least 1/2 no other contestant is selected
that interferes with (s, t).

The proofs of the two lemmas are presented in the full
paper [28]. Let the honeycomb algorithm be a combination of

the contestant selection strategy and the (T, γ, 3)-balancing
algorithm applied to the contestants. The two lemmas above
and Theorem 3.3 then yield the following result.

Theorem 3.8. For any ε > 0 and any T ≥ 2B + 1, the
honeycomb algorithm is ((1−ε)/(24 cb), 1+(1+T/B)L/ε, 1+
2/ε)-competitive.
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