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Abstract—We study topology control in heterogeneous wireless ad hoc ing the process of transmitting even the transmission powers of
networks, where mobile hosts may have different maximum transmission g|| devices are set the same initially. In [7], [8], the authors ex-

powers and two nodes are connected iff they are within the maximum trans- . . P
mission range of each other. We present several strategies that all Wirelesster|ded UDG into a new model, callepha3| unit disk graphs

nodes self-maintain sparse and power efficient topologies in heterogeneouswhich is closer to reality than UDG. In this paper, we study a
network environment with low communication cost. The first structure is  more generalized model. Each wireless nodeay have its own

sparse and can be used for broadcasting. While the second structure keepstransmission radiug,. Then heterogeneous wireless networks
the minimum power consumption path, and the third structure is a length ’

and power spanner with a bounded degree. Both the second and third @€ modelled by mutual inclusion graphs (MG): two nodes can
structures are power efficient and can be used for unicast. Here a struc- communicate directly only if they are within the transmission

ture is power efficient if the total power consumption of the least cost path range of each other. i.e.. it has a link iff HUUH < min(ru Tv)
3 i " —_ b .

connecting any two nodes in it is no more than a small constant factor of . .
that in the original heterogeneous communication graph. All our methods Clearly UDG is a special case of MG. Few research efforts

use at mostO(n) total messages, where each message I28og n) bits. addressed the topology control for heterogeneous wireless net-
Keywords— Graph theory, wireless ad hoc networks, topology control, WOrksS.
heterogeneous networks, power consumption. The main contribution of this paper is as follows. We propose
severallocalized strategies for heterogeneous wireless devices
|. INTRODUCTION to self-form aglobally sparse power efficient network topol-

An important requirement of wirelessl hocnetworks is that ©9Y: & POWEr spanner, a sparse structure and a degree-bounded

they should be self-organizing, i.e., transmission ranges and d§fPth and power spanner respectively. Here an algorithm is said

paths are dynamically restructured with changing topology. LI construct a topology! locally, if every nodeu can decide

calizedad hocnetwork topology control scheme is to let eacl{/Nich incident edgew belong to 7 using only the informa-
wireless node locally adjust its transmission power and seld@" Of nodes within a constant number of hopsuof All our
proper neighbors to communicate according to certain strateggor'thms have communication cosiirn), where each mes-
while maintaining a structure that can support energy efficierf9€ has)(logn) bits. Notice, to study the topology control
routing and improve the overall network performance. Hend? heterogeneous netwqus, It wouI_d be helpful to extend the
it can efficiently conserve the transmission energy from soft 486as from the well-studied topologies, such as GG, RNG and
pects with low cost. In the past several years, topology contrdt?: Used in homogeneous networks. The topology control for
algorithms have drawn significant research interest. CentraliZ&gf€'09eneous networks is not trivial, since many properties in
algorithms can achieve optimality or its approximation, whicH°M0g€eneous networks disappear in heterogeneous networks.
are more applicable to static networks due to the lack of adapt-T "€ rest of the paper is organized as follows. In Section Il we
ability to topology changes. In contrast, distributed algorithrdgtmduce the background and review previous methods.' Limita-
are more suitable for mobile ad hoc networks since the envirdl2S on heterogeneous network topology control are discussed
ment is inherently dynamic and they are adaptive to topolod} S€ction Ill. We describe a strategy for all nodes forming a
changes at the cost of possible less optimality. Furthermop@arSe structure in Section IV, a sparse power spanner in Section
these algorithms only attempt to selectively choose some neigh-2nd @ degree-bounded power and length spanner in Section
bors for each node. The primary distributed topology control - We also analyze the communication complexities of these
gorithms for ad hoc networks aim to maintain network Connemgthod_s. Our. theoretical results are corroborgted in 'Fhe simu-
tivity, optimize network throughput with power-efficient rou,[_Ia_t|ons in _Sect|o_n VII. We conclude our paper in Section VIl
ing, conserve energy and increase the fault tolerance. with the discussion of future works.

Most prior art [1], [2], [3], [4], [5], [6] on network topology
control assumed that wireless ad hoc networks are modelled by
unit disk graphgUDG), i.e., two mobile hosts can communicaté\. Heterogeneous Wireless Network Model
as long as their Euclidean distance is no more than a threshoIdA h eles h Ki d of
However, practically, wireless ad hoc networks cannot be per- eterogeneous wirele ocnetwork is composed of a

fectly modelled as UDGs: the maximum transmission ranges 3t of n nodesuy, vz, -~ -, vs, N Which each nodey; has

wireless devices may vary due to various reasons such as'gE pwn maximum transmission powef. Lete; be the me-
t

Il. PRELIMINARIES

device differences and the small mechanic/electronic errors d _anlc/e_lectronlc error qf a nodg in its power .cont.rol. The_n
€ maximum transmission power considered in this paper is ac-
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Euclidean distance between andv;. Consequently, the sig- the extended local minimum spanning tree. Itis unknown if their
nal sent by a node; can be received by all nodes with structures are sparse, power efficient.

viv;|| < 74, wherer? < p;/po, po is the uniform threshold

tHhatJallsignal with pov:/epo ca{1 be recognized by a node. Thus(,:' Spanners and Stretch Factors

for simplicity, we assume that each mobile hoshas its own ~ When constructing a subgraph of the original communication
transmission range;. The heterogeneous wireless ad hoc negraph MG, we may need consume more power to connect some
work is then modelled by a mutual inclusion graph (MG), whergodes since we may disconnect the most power efficient path
two nodesv;, v; are connected iff they are within the transmisin MG. Thus, naturally, we would require that the constructed
sion range of each other, i.¢ly;v;|| < min(r;,r;). Previously, structure approximates MG well in terms of the power consump-
no method is known for topology control when the networks at®n for unicast routing. In graph theoretical term, the structure

modelled as mutual inclusion graphs. should be a spanner [16], [13]. Lét = (V, E) be an-vertex
weighted connected graph. The distancé&ibetween two ver-
B. Current State of Knowledge ticesu,v € V is the length of the shortest path betweeand

v and it is denoted bylg(u,v). A subgraphH = (V,E’),

Many structures were proposed for topology control in hggnhere £/ ¢ E, is at-spannerof G if for every u,v € V,
mogeneous wireless ad hoc networks. Due to limited SPacgfi(u,v) < t - dg(u,v). The value oft is called thestretch
we will briefly rgview some of proximity geometric. structurestactor or spanning ratio When the graph is a geometric graph
The relative neighborhood grapfB] RNG(V) consists of all and the weight is the Euclidean distance between two vertices,
edgesuv such that the intersection of two circles centered athe stretch factot is called thelength stretch factqrdenoted
andwv and with radius|uv|| do not contain any vertex from V.. y 7, (@). For wireless networks, the mobile devices are usu-
TheGabriel graph[10] GG(V') contains edgew if and only if 511y powered by battery only. We thus pay more attention to the
disk(u, v) contains no other points &f, wheredisk(u, v) isthe  power consumptions. When the weight of a link € G is de-
disk with edgeuv as a diameter. Bott'G(V) and RNG(V)  fined as the power to support the communication of finkthe
are connected, planar, and contain the Euclidean minimum spgfietch factor ofH is called thepower stretch factgrdenoted
ning tree ofV. The intersections of:G(V), RNG(V) witha py ;. (G) hereafter. The power, denoted py (u, v), needed
connected/ DG(V') are connected. Delaunay triangulation, dey support the communication between a linkin G is often
noted byDel(V'), is also used as underlying structure by severgks med to béuv||’, where2 < 3 < 5. Obviously, for any
routing protocols. Here a triangl&uvw belongs toDel(V) weighted grapl? and a subgra_ph[ C_G,

if its circumcircle does not contain any node inside. It is well | orima 1:[3] Graph H has stretch factaf if and only if for
known thatRNG(V) C GG(V) C Del(V). The intersection any linkuv € G, dg (u, v) < 6 - de(u, v).

of Del(V) with a connected/ DG(V) has a bounded length 5, 1o generate a spannié; we only have to make sure that

spanning ratio [11]. _ every linkof G is approximated within a constant factor.
TheYao graph12] with an integer parametér> 6, denoted

by Y'Gx(V), is defined as follows. At each nodeanyk equal- D- Sparseness and Bounded Degree

separated rays originated atdefine cones. In each cone, All well-known proximity graphs GG(V), RNG(V),
choose the shortest edge among all edges from, if there  De(V) and YG(V)) have been proved to be sparse graphs
is any, and add a directed links. Ties are broken arbitrarily when network is modeled as a UDG. Recall thaparsegraph
or by ID. The resulting directed graph is called tfi@o graph means the number of edges is linear with the number of nodes.
Let G, (V) be the undirected graph by ignoring the directiohe sparseness of all well-known proximity graphs implies that
of each link inY G (V). Some researchers used a similar corthe average node degree is bounded by a constant. Moreover, we
struction named-graph [13], the difference is that it chooseprefer the maximum node degree is bounded by a constant, be-
the edge which has the shortest projection on the axis of eaguse wireless nodes have limited resources and the signal inter-
cone instead of the shortest edge in each cone. ference in wireless communications. Unbounded degree (or in-
The first effort for topology control in heterogeneous wiredegree) at a nodewill often cause large overheadwatwhereas
less networks was reported in [14] by the same authors of tRi§ounded degree increases the network throughput. In addition,
paper. In [14], we showed how to perform topology contrdlounded degree will also give us advantages when apply several
based on Yao structure for heterogeneous wireless networiéiting algorithms. Therefore, it is often imperative to construct
The results presented in current paper have been available onfirg@arse network topology with a bounded node degree while it
since around June 2003. Recently, several structures that exiéri@ill power-efficient. However, Lét al. [3] showed that the
the relative neighborhood graph and local minimum spannifigeximum node degree of RNG, GG and Yao could be as large
tree were proposed in [15] for topology control in heterog&sn — 1. The instance consists of— 1 points lying on the unit
neous wireless networks. They build directed network topolircle centered at a nodec V. Then each edgev; belongs to
gies while the methods presented here build undirected topdlee RNG(V), GG(V) andY G (V).
gies that are beneficial for routing. In addition, as the authors ofRecently, in homogeneous wireless ad hoc networks, some
[15] acknowledged, their original methods cannot guarantee figroved or combined proximity graphs [17], [18] have been
network connectivity. Then new methods were proposed to reproposed to build planar degree-bounded power spanner topol-
edy this in their online version of the paper. Two structures weogly, which meets all preferred properties for unicast. In het-
proposed by them: an extended relative neighborhood grapg#nogeneous networks, only a few research efforts [15], [14] are



reported so far. In the following, we will first discuss the diftive neighborhood graph structure, whose total number of links
ficulties and limitations for topology control in heterogeneous O(n). We add a linkuv € MG to RNG(MG) if there is

networks, then present our localized strategies in detail. no another nodev inside lune(u, v) andbothlinks uww andwwv
are in MG. Herdune(u, v) is the intersection oflisk (u, ||uv]|)
HI. L IMITATIONS and disk (v, ||luv||). The algorithm will be similar to Algorithm

In heterogeneous wireless ad hoc networks, the planar topal-thus we omit it here. Notice that the total communication
ogy does not necessarily exist. Figure 1 (a) shows an examgiest of constructingtNG(MG) is O(nlogn) bits, assuming
there are four nodes, y, v andv in the network, where their that the radius and ID information of a node can be represented
transmission range, = r, = ||zy|| andr,, = r, = |luv|, and in O(logn) bits. In addition, the structurB N G(M G) is sym-
nodew is out of the transmission range of nod@ndy, while metric: if a node: keeps a linkiw, nodev will also keep the link
nodev is in the transmission range of nogland out of the range uv. Thus, a node: does not have to tell its neighbowhether
of 2. The transmission ranges ofandy are illustrated by the it keeps a linkuv or not.
dotted circles. According to the definition 8f G, there are only It is not difficult to prove that structur& NG (MG) is con-
three edgesy, vy anduv in the graph. Hence any topology conhected by induction. On the other hand, same as the case in
trol method can not make the topology planar while keeping themogeneous networks (i.e., UDG mod&NG(MG) does
communication graph connected. On the other hand, it is wortht have a bounded length stretch factor, nor constant bounded
to think whether we can design a new routing protocol on sorpewer stretch factor, and does not have bounded node degree. In
pseudo-planar topologies. As will see later, the pseudo-platiais paper, we will show thaRNG (M G) is asparsegraph: it
topology GG(MG) and RNG(MG) proposed in this section hasas at mosén links.
some special properties which are different from other generaln the following, we define a new structure, called
non-planar topologies. For instance, two intersecting triangléR NG (M G). Assume that each nodeknows its maximum
can not share a common edge. We leave it as a future work. transmission radius,. Let B(u) = {v | r, > r,}. A node

u processes its incident linkv in MG only if r, > r,, i.e.,
v € B(u). Nodeu removes a linkww, wherev € B(u), if there

NPPEET P is another node € B(u) insidelune(u, v) with both linksuw
. p \/\\ andwv are in MG. All the linksuv kept by all nodes form the
li\\ / v \ Wo final structureERNG(MG).
\L\ V W Algorithm 1: Constructing-ERNG
oY V EZWo 1. Each node: initiates setsEy ¢ (u) and Egrne(u) to be
(® (b) empty. Here ;¢ (u) is the set of links of MG known ta so far

Fig. 1. Limitations on heterogeneous networks: (a) Planar topology does ARdEzrna(u) is the set of links of ERNG known ta so fa_r'
exist. (b) Degree of node can not be bounded by constant. Then, each node locally broadcasts #lELLO message with

ID,, r, and its position(x,,, y.,) to all nodes in its transmission
We also can show that the node degree in heterogeneous rgige. Note that, = p,,'/? is its maximum transmission range.
works can not be bounded by a constant if the radius ratio is un- At the same time, each nodeprocesses the incoming mes-
bounded. Figure 1 (b) shows such an example. In the examgigges. Assume that nodeets a message from some nadéf
a nodev hasp + 1 incoming neighborsy;, 0 < i < p. Assume  ||lvu|| < min{r,,7,}, then node: adds a linkuv to Ersq (u). If
that each node; has a transmission radiug, = r,/3?~* and r, > r,, then node: performs the following procedures. Node
|vw;|| = 7w,. Obviously, |lw;w;|| > min(ry,,rw,), i.€., @ny v checks if there is another linkw € Ej;¢(u) with the fol-
two nodesw;, w; are not directly connected in MG. lowing additional properties: 1y € lune(u,v), 2) ry > Ty,
Obviously, none of those edges incidentooan be deleted, and 3)||wv| < min{r,,,}. If no such linkuw, then adduv
hence there is no topology control method to bound the degteer r ¢ (u). For any linkuw € Egrye(u), nodeu checks
by a constant without violating connectivity. Consider the exf the following conditions hold: 1y € lune(u,w), and 2)
ample illustrated by Figure 1 (b), edges;, 0 < i < p, are ||wv| < min{r,,r,}. If the conditions hold, then remove link
all possible communication links. Thus, nodein any con- vw from Egrye(u).
nected spanning graph has degree¢ 1. On the other hand, 3. Nodew repeats the above steps until no ne\ELLO mes-
the topology generated by our method in section VI can guragages received.
tee the maximum node degree bounded(XJog, ), where 4. For each linkuv € Eggng(u), nodeu informs nodev to
Y = MaxX,cy MaXyer(y) :—z Here,I(v) = {w | wv € MG}. add linkuw.
This is optimal in the worst case. In previous example, rec@| All links wv in Eggrnycg(u) are the final links in
that 37r,, = r,, hencey equals to3”. Thus,v has degree ERNG(MG) incident onu.
logsy + 1 = ©O(log,y). In the paper, we always assume  We then prove that the structure ERNG has at niadinks.
is a constant. It is practical, since it is trivial that two wireless Lemma 2: Structure ERNG(MG) has at mo&i. links.
devices in same network have unbounded radius ratio. Proof: Consider any node. We will show thatu keeps
at most6 directed links emanated from Assume that: keeps
more than6 directed links. Obviously, there are two linksv
In this section, we propose a strategy for all nodes to sefhduv such thatZwuv < 7 /3. Thus,vw is not the longest link
form a sparse structure, calldtiVG(MG), based on the relggdn triangle Auvw. Without loss of generality, we assume that

IV. HETEROGENEOUSSPARSE STRUCTURE



||uw]| is the longest in trianglé\uvw. Notice that the existence two nodesy; andw; in MG is still kept inGG(MG). Remem-

of link ww implies that||uw|| < min(r,,r,) = r,. Conse- ber that here we assume the power needed to support adink

quently, vw| < |luw| < min(r,,r,). Thus, from the fact is |Juv||?, for 3 € [2,5].

thatr, < r,, we know||vw| < min(r,,r,). Hence, linkvw On the other hand, same as the case in homogeneous net-

does exist in the original communication graph MG, it impliegorks (i.e., UDG mode)7G (M G) is not a length spanner, and

that link ww cannot be selected to ERNG. B does not have bounded node degree. Furthermore, itis unknown
From Lemma 2, we can prove the following lemma. whetherGG(MG) is asparsegraph. Recently, it was proven
Lemma 3: Structure RNG(MG) has at moét: links. in [19] that GG(MG) has at mosD(n®/5log v) edges where

Proof: Imagine that each linkv has a direction as fol- 7 = maxr,/r..

lows: @t if r, < r,. Then similar to Lemma 2, we can prove Notice that, the extension from Gabriel graph is non-trivial.

that each node only keeps at most such imagined direct links. In [19], two structures defined as follows even cannot guaran-

Thus, total links are at most. m tee the connectivity. In the first structure, called'G,(MG),
Similarly, we can define a structul8BGG(M @), which con- they remove a linkuv € MG if there is another node in-

tains an edgew if r, < r, and there is no node with Side disk(u,v). In the second structure, calldd=G,(MG),

the following properties: 1), < 7., 2) w is inside the disk they remove a linkw € MG if there is another node inside

disk(u,v). However, we cannot prove th&GG(M@G) has a disk(u, v), and either linkuw or link wv is in MG.

linear number of links.
VI. HETEROGENEOUSDEGREEBOUNDED SPANNER

V. HETEROGENEOUSPOWER SPANNER Undoubtedly, as described in preliminaries, we always pre-
%err a structure has more nice properties, such as degree-bounded

stronger than sparse), power spanner etc. Naturally, we could

extend the previous known degree-bounded spanner, such as the

Yao related structures, from homogeneous networks to hetero-

geneous networks. Unfortunately, a simple extension of the

Yao structure from UDG to MG even does not guarantee the
Algorithm 2: Constructing-GG connectivity. Figure 2 (@) illustrates such an example. Here

1. Let Exq(u) and Eqg(u) are the set of links known ta 7w = 7o = [[uv||, 1w = [luw|, rx = |lvz||, and[luw|| < [luv],

from MG and GG respectively. Each node initiates both [luw]| < [low]], [[vz]l < [Juv]], and|[vz|| < [[uz|. In addition,

Enc(u) and Egg(u) as empty. Then, each nodelocally v andw are in the same cone of node and nodes: andu

broadcasts alELLO message with/ D,,, r, and its position are in the same cone of node Thus, the original MG graph

(4, 1) to all nodes in its transmission range. contains linksuv, uw andva only and is connected. However,

2. At the same time, each nodeprocesses the incoming meswhen applying Yao structure on all nodes, nedgill only have

sages. Assume that nod@ets a message from some naddf information of nodev andw and it will keep linkuw. Simi-

|vu|| < min{r,,r,}, then node: adds a linkuv to Eyrq(u). larly, nodew keeps linkuw; nodev keeps linkvz; and noder

Node u checks if there is another linkw € Ej;¢(u) with keeps linkzv. In other words, only linkcv anduw are kept by

the following two additional properties: 1) € disk(u,v), Yao method. Thus applying Yao structure disconnects node
and 2) |wv|| < min{r,,r,}. If no such linkuw, adduv from the other two nodes andw. Consequently, we need more

to Eqg(u). For any linkuw € Egg(u), nodeu checks if sophisticated extensions of the Yao structure to MG to guarantee

the following two properties hold: 1) € disk(u,w), and the connectivity of the structure.
2) |lwv|| < min{r,,r,}. If they hold, remove linkuw from
Ega(u).

3. Nodeu repeats the above steps until no ne\#LLO mes-
sages received.

4. Alllinks uv in Egg(u) are the final links irGG(M Q) inci-
dent onu.

We first show that Algorithm 2 builds the structus&s (M G)
correctly. For any linkuw € GG(MG@G), clearly, we cannot re-
move them in Algorithm 2. For a linkv ¢ GG(MG), assume
that a nodev is insidedisk(u, v) and both linksuw andwwv be-

long to MG. If nodeu gets the message from first, and then _ _ _
Fig. 2. Extend Yao structure on heterogeneous networks: (a) Simple extension

gets message from, clearly, uv Ce_mnOt be add_ed tEGG(u)' of Yao structure does not guarantee the connectivity. (b) Further space partition
If node v gets the message fromfirst, thenu will removewv  in each cone to bound in-degree.

from Eqq(u) (if it is there) whenu gets the information of.
It is not difficult to prove that structuré:G(MG) is con-
nected by induction. In addition, since we remove a link A Extended Yao Graph
only if there are two linksiw andwwv with w inside disk (u, v), Algorithm 3: Constructing-EYG
it is easy to show that the power stretch factoGaf (M G)is1. 1. Initially, each node. divides the diskdisk(u, r,) centered
In other words, the minimum power consumption path fonbgmt u with radiusr,, by k£ equal-sized cones centeredwat We

Then, we give a strategy for all nodes to self-form a pow
spanner structure, call€dG (M G), based on the Gabriel graph.
We add alinkuv € MG to GG(MG) if there isnoanother node
w inside disk(u, v) and both linksuw andwv are in MG. Our
localized construction method works as follows.

bn




generally assume that the cone is half open and half-close. etactually only have to consider the links in MG. We then show
Ci(u), 1 < i < k, be thek cones partitioned. Lef;(u), 1 < that the constructed network topology is a length and power
1 < k, be the set of nodes inside theith coneC;(u) with a spanner.

larger or equat radius than.. In other words, Theorem 4:The length stretch factor dbY G (M G), k >

H 1
Ci(u) ={v|veCi(u), and r, > ry}. 6, 1s atmost = 1-2sin(f)"
Proof: Notice it is sufficient to show that for any nodes
Initially, C;(u) is empty. andv with ||uv|| < min(r,,7,), i.e. uv € MG, there is a path
2. Each node broadcasts &lELLO message it D,,, 7, and  connecting: andv in EY G}, (M G) with length at most|juv||.
its position(z.,, y..) to all nodes in its transmission range.  We construct a path «~~ v connecting: andv in EY G, (MG)

3. Atthe same time, each nodg@rocesses the incoming broadgs follows.

cast messages. Once it getsliBLLO message from some node Assume that, < r,. If link uv € EY Gy(M@), then set the

v, it setsCj(u) = Ci(u) U{v}, if nodev is inside theith cone pathy « v as the linkuv. Otherwise, consider théisk (u, r,)
Ci(u) of nodeu andr, = .. of nodeu. Clearly, nodeu: will get information ofv from v and

4. Nodeu chooses a node from each cone”;(u) so that the nodew will be selected to somé);(u) sincer, > r,. Thus,

link uv has the smallestD(uv) among all linksuv; with v; In- from uv ¢ EY G, (MG@), there must exist another nodein
Ci(u), if there is any. the same cone as which is a neighbor of. in EY G (MGQ).

5. Finally, each node informs all 1-hop neighbors of its cho-Then setu «~ v as the concatenation of the links and the
sen links through a broadcast messageMk(MG) bethe pathw «~ v. Here the existence of path ~~ v can be easily
union of all chosen links. proved by induction on the distance of two nodes. Notice that

Since the symmetric communications are required, Igie angle) of each cone section ?g Whenk > 6, thenf < 7.

EY G, (MG) be the undirected graph by ignoring the directioft is easy to show thafwu|| < |luv|. Consequently, the path
of each link NEY G\, (MG). GraphEY G (MG) is the final u « v is a simple path, i.e., each node appears at most once.
network topology. Since nodechooses a node € disk(u, r,) We then prove by induction that the path«~~ v has total
with r, > r,, link uv is indeed a bidirectional link, i.ey and length at most||uv||.

v are within the transmission range of each other. Additionally, Obviously, if there is only one edge ine~ v, d(u «~ v) =
this strategy could avoid the possible disconnection by simgjev|| < ¢||uv||. Assume that the claim is true for any path with
Yao extension we mentioned before. [ edges. Then consider a path~~ v with [ + 1 edges, which

Obviously, each node only broadcasts twice: one for broag-the concatenation of edgav and the pathw «~ v with [
casting its ID, radius and position; and the other for broaddges, as shown in Figure 3 whéltev|| = ||zv].
casting the selected neighbors. Remember that it selects at
most £ neighbors. Thus, each node sends messages at most
O((k + 1) - logn) bits. Here, we assume that the node ID and
its position can be represented usinog n) bits for a network
with n wireless nodes.

Before we study the properties of this structure, we have to
define some terms first. Assume that each ngd# MG has a
unique identification numbefD,,, = . The identity of a bidi-
rectional linkuv is defined ad D(uv) = (|luv|, 1Dy, ID,) Fig. 3. The length stretch factor 6fY Gi (M G) is at most;—5 k.
whereID, > ID,. Note that we use the bidirectional links k
instead of the directional links in the final topology to guarantee
connectivity. In other words, we require that both nadand
nodev can communicate with each other through this link.

Notice, from induction,d(w «~ v) < f|jwv||. Then, let
K= Zwuv anda = Zuvw, we have

this paper, all proofs about conneghwt_y or stre_ztch factors t_alﬁw” sin(Luzw) sin(Z + 2)

the notationuv andvu as same, which is meaningful. Only in = = = ——2

the topology construction algorithm or proofs about bounded¥ll  sin(Zzwu)  sin(5 + 5 + )

degreeuw is different tharwu: the former is initiated and built _ 1 < cos(§ — %) < 1

by u, whereas the latter is by node Sometimes we denote a di- cosp —sinptan g ~ cos(§ + %p) ~ 1-2sin(%)

rectional link fromw to v asvu if necessary. Then we can order

all bidirectional links (at most(n — 1) such links) in an in- The first inequality is because< o < Z — £ and the second
creasing order of their identities. Here the identities of two linkaequality is becausé < ¢ < 2T. Consequentlyd(u o
are ordered based on the following ruleb(uv) > ID(pq) if v) = |Juw|| + d(w «~ v) < £||uzx| + £||wv] = £||uv]|, where
(1) luv|] > |lpg|l or (2) |uwv| = |lpg|| andID, > ID, or (3) ¢ = ﬁm(i) That is to say, the claim is also true for the path
Juv| = [Ipq|l, u = pandI D, > ID,. u ~ v with [ + 1 edges.

Correspondingly, the rank of each linkv, denoted by

rank(uv), is its order in sorted bidirectional links. Notice that, 2in the procedure of induction, if,, < 7, then we induct on patly «~ v,
otherwise we induct on path «~ w. In fact, herew «~» v is same a® «~
LThis is the main difference between this algorithm and the simple extensiensince the path is bidirectional for communication. Directional link is only
of Yao structure discussed before, in which it considers all nediasitw can  considered in building process and is meaningless when we talk about the path.
get signal from. 2gdhis induction rule is applied throughout the remainder of the paper.




Thus, the length stretch factor 8fY G, (M G) is at most = Method 1: Partition-EYG
#m(%) This finishes the proof. B For each node, lety, = max,cy(v) e Remember that all
Theorem 5:The power stretch factor of the extended Yaoodes inl(v) have transmission radius at mest Let h be the
graphEY G (MG), k > 6, is at mostp = m positive integer s_a_ltisfyingh‘2 <y < 2P We then discuss
Proof: The proof is similar to that in UDG [’33]' [4] except N de_tall our partition strategy of the cones, which is |Ilgstrated
the induction procedure. We show by induction, on the numbg¥ Figure 2 (b). Each nodedivides each cone centeredanto
of its edges, that the path« v constructed in theorem 4 hagimited number of triangles and caps, wheines,|| = |[vbi|| =
power cost, denoted by(u « v), at most,o||uv||3. m o and ¢i is the mld-p0|_nt of the segment;b;, for 1 <
1 < h. Notice that this partition can be conducted by naede
B. Novel Space Partition locally since it can collect the transmission radius information of

— . _ ) nodesinl (v). The triangles\va; b1, Aa;b;ciy1, ANa;ai 1641,
Partitioning the space surrounding a node ihtequal-sized b for1 < i< h-1 dth = h
cones enables us to bound the node out-degree using the Qlabiriciy, for 1 < @ < h—1, and the cagi,b, form the

structure. Using the same space partition, Yao-Yao structure al space partition of ea}ch cone. For simplicity, we call §ych a
[4] produces a topology with bounded in-degree when the n rjangle or the cap asregion We then prove that this partition

works are modeled by UDG. Yao-Yao structure (for UDG) ig\deed tgtéqralr\l/ltges that any two nodes in any same region are
generated as follows: a nodecollects all its incoming neigh- connectedin '

borsw (i.e., vt € S/_dk(V)), and then selects the closest neigh-
borv in each cone&;(u). Clearly, Yao-Yao has bounded degree
at mostk. They also showed that another structure YaoSink [3],
[4] has not only the bounded node degree but also a constant
bounded stretch factor. The network topology with a bounded
degree can increase the communication efficiency. However,
these methods [3], [4] may fail when the networks are modeled
by MG: they cannot even guarantee the connectivity, which is
verified by following discussions.
Assume that we already construct a connected directed struc-
—_ —_—
ture EY Gx(MG). LetI(v) = {w | wo € EYGL(MG)}. In
other words,I(v) is the set of nodes that have directed links to
vin EYGR(MG). Let I;(v) = I(v) N Ci(u), i.e., the nodes
in I(v) located inside théth coneC;(v). Yao-Yao structures
will pick the closest nodev in I;(v) and add undirected link
wv 10 Yao-Yao structure. Previous example in Figure 1 (b)
also illustrates the situation that Yao-Yao structure is not con- (c) (d)
nected. In the example, a nodehasp + 1 incoming neigh- Fig. 4. (a) Two nodes are in triangl&@va1b;. (b) Two nodes are in triangle
borsw;, 0 < i < p. Assume that each node; has a trans- Aa;b;c;11. (c) Two nodes are in triangléa;a; 11c;41. (d) Two nodes are
mission radius-,,, = r,/3?~% and ||vw;|| = 7,,. Obviously, inside capuybj.
|wiw; || > min(ry,, re,), i.€., any two nodes;, w; are not di-
reLtI)( connected in MG. Itis easy to show that the Yao structure emma 6: Assume thak > 6. Any two nodesu, w € I(v)
EY G (MG@) only has directed linkso;o. Obviously, nodes that co-exist in any one of the generated regions are directly
will only select the closest neighbar, to the Yao-Yao struc- connected in MG, i.e]luw| < min(ry, 7).
ture, which disconnects the network. This same example can Proof: There are four different cases.
also show that the structure based on Yao-Sink [3], [4] is ald0 Two nodes are if\va;b1, as shown in Figure 4 (a).
not connected for heterogeneous wireless ad hoc networks. Remember that all nodes if(v) have transmission radius at
Thus, selecting the closest incoming neighbor in each coleast||va,| = 2(,1%1)7"1,. We havemin(r,,r,) > |vai| =
C, is too aggressive to guarantee the connectivity. Observe that); || and||a1b1]| < ||vaq]|. In addition, sinceww is a segment
in Figure 1 (b), to guarantee the connectivity, when we delateside Ava,b,, we have||uw|| < max(||a1b1]|, [|vai]|, ||vbi]])-
a directed linkw; v, we need to keepomelink, sayw;v, such Consequentlyjuw| < min(r,,ry,), i.e.uw € MG.
thatw,w; is a link in MG. Thus, we want to further partition the2. Two nodes are id\a;b;c; 11, as shown in Figure 4 (b).
cone into a limited number of smallezgionsand we will keep In this case, we have
only one node in each region, e.g., the closest node. Clearly, (@) |lvu| > ||ucit+1]|, Sincea;b; is the perpendicular bisector
guarantee that other nodes in the same region are still connedkdc; ; andu is at the same side of lingb; asc; 1.
to v, we have to make sure that any two nodesw; € I(v)  (b) [lvu > |lua;||, becaus&/va;u > 5 > Zuva;.
that co-exist in a same small region are directly connected i(c) |vull > [lub;||, because/vbu > § > Zuwb;.
MG. Consequently, if the number of regions is bounded by &d) ||uw| < max(||ucit1]|, [|uasl],||ub;||), because node
constant, a degree-bounded structure could be generated. Imtlast be inside one of the trianglesa;b;u, Aa;c;r1u and
remainder of this subsection, we will introduce a novel spaceb;c;,u.
partition strategy satisfying the above requirement. ogdhus, |luw|| < |luv||. Similarly, |

uwl|| < ||lwv|. Consequently,



uw € MG from Let v = max, 7,. Obviously, the maximum node degree in
_ . graphEYY, (M @) is bounded by3[log, v| + 3)k.

[ww]] < min([uvl], [[wol]) < min(r, 7). Notice that the extended Yao-Yao graph’Y;(MG) is a
subgraph of the extended Yao graply G, (M G), thus, there
are at mosk - n edges inEY'Y;, (M G). Thus, the total commu-
nications of Algorithm 4 is at mos?(k-n), where each message
hasO(log n) bits. Itis interesting to see that the communication
complexity does not depend grat all.

3. Two nodes are iM\a;a;11¢;+1, @S shown in Figure 4 (c).
We havemin(ru,ru,) > H’UCLZH = Haiai+1|| = ||6LiCi+1|| >
llait1cit1]]. Since uw is a segment insideNa;a;y1¢i41,
luw] < max([|la;air1|, ||aicit1ll; |laiticivl]) < min(ru,rw),
i.e. uw € MG. Triangle Ab;b;+1c;41 IS the symmetric case
with triangle Aa;a;4+1¢;41, SO the claim holds similarly.

4. Two nodes are inside the caIth, as shown in Figure 4 (d),
whereay, z andby, z is the tangent of amh/EL at pointa;, andby,
respectively.

SinceZayvby, < 2=, k > 6, we have

Zvbpz = g < m — Lapvby, = Lobpcpy.

(@) (b)
Similarly, Zvapz < Zvapcpyi. This meansayby, is inside Fig. 5. (a) INEY Gy (MG), star formed by links toward to. (b) Nodev

Aapbpcpy1. The remaining of the proof directly follows from chooses the shortest link iBY G (M G) toward itself from each region to
the proof for the case afa;b;c; 1. produceEYY (M G). (c) The sink structure atin EY'Y ;(M@G).

|
Theorem 8:The graphEYY (M G), k > 6, is connected if
C. Extended Yao-Yao Graph MG is connected .

Using the space partition discussed in Section VI-B, we Proof: Notice that it is sufficient to show that there is a
present our method to locally build a sparse network topologgth fromu to v for any two nodes withuw € M G. Remember
with bounded degree for heterogeneous wireless ad hoc ribe graphEY G, (M G) is connected, therefore, we only have
work. Here we assume that= max,cy 7, is bounded, where to show thatvuv € EY G,(MG), there is a path connecting
Yo = MaXye () 2, andI(v) = {w | w0 € E—ydk(Mg)}_ andv in EYYk(MG). We prove this claim by induction on the

, v _ ranks of all links inEY G (M G).

Algorithm 4: _Construgtmg-EYY . f the link wv has the smallest rank among all links of
1. Eachnode finds the incident edges in the Extended Yao 9rap{d 7, /3, thenww will obviously survive after the second
EY Gx(MG), as described in Algorithm 3. step. So the claim is true for the smallest rank.

2. Each node partitions thek cones centered atusing the  aAssume that the claim is true for all links BY G (MG)
partitioning method described in Method 1. Notice that for paygith rank at mosi-. Then consider a linkw in EY Gy (V) with
titioning, nodev uses parametey, in Method 1, which can be rank(uwv) = r + 1 in EYG(MG). If uv survives in Algo-
easily calculated from local information. Figure 5 (a) illustrategihm 4. then the claim holds. Otherwise, assume that r,.

such a partition. : A
, Then directed edgeu cannot belong t&Y G, (M G) from Al-
3. Each node chooses a node from each generated region so orithm 3. Thus, directed edge is in ETC;*,C(MG). In Algo-

RN . . g
that the linkuv has the smalledtD (uv) among all directed links ithm 4, directed edgew can only be removed by nodedue to

. . . ", . |
toward tov computed in the first step in the partition. Figure %q . . ) ) ) X
M P P P 9 e existence of another directed link with a smaller identity

(b) illustrates such a selection of incoming links. duw is in th . In addition. th e
4. Finally, for each linkuv selected by, nodev informs node 2N¢W 1S 1N the Same region as 1h addition, the anglewuu
is less thar® = =T (k > 6). Therefore we havéwu| < [juv]|.

u of keeping linkuv. . , S o
The union of all chosen links is the final network topology, otice that herevu is guaranteed to be alink in MG, but itis not

denoted byEWk(MG). We call it extended Yao-Yagraph, guaranteed to be iIRY G (MG). We then prove by induction

that there is a path connectingandw in EYY ,(MG). As-

Let EYY,(MG) be the undirected graph by ignoring the d'recéumerw < 1. The scenaria,, > r, can be proved similarly.

—_—
tion of each link inEY'Y . (MG). o There are two cases here.
Theorem 7:The out-degree of each nodén EYY(MG),  Case 1: the linkvu is in EY G(MG). Notice that rank of
k > 6, is bounded byt and the in-degree is bounded by is less than the rank afv. Then by induction, there is a path
(3[logy v | +2)k, wherey, = max,er()(7%)- w e~ u connectingw andu in EY'Y,(MG). Consequently,
Proof: It is obvious that the out-degree of a nodés there is a path (concatenation of the undirected path u
bounded byt because the out-degree bound&f G (M G) is  and the linkwv) between: andv.
k and this algorithm does not add any directed link. Case 2: the linkvu is not in EY G, (M G). Then, from proof
For the in-degree bound, as shown in Figure 2 (b), obvioustf, Theorem 4, we know that there is a pdlhyy g, (w,u) =
the number of triangle regions in each congl/is-2. Remember ¢iqs - - - ¢, from w to w in EY Gy (MG), whereq; = w and
that 2"=2 < 4, < 2"=1, which impliesh = 1 + [logy7,]. ¢m = u. Additionally, we can show that each limkg; 1, 1 <
Thus, considering the cap region also, the in-degree of nagle i < m, has a smaller rank thanu, which is at most. Here
at most(3[logy v, | + 2)k. Bogank(qiq2 = wqz) < rank(w,u) because the selection method




in Algorithm 3. Andrank(g;qi+1) < rank(w,u),1 <i <m, 2. Otherwise, partition the disk centereduaby & equal-sized

because cones:Cy (u), Ca(u), - - -, C(u).
3. Find the nodew; € Sq(u) N C;(u), 1 < i < k, with
lgigirill < llgiul < llgi—rul| < - < lquul| = |Jwul]. the smallest/ D(w;u), if there is any. Linkw;u is added to

_ _ _ _ T'(u, Sq(u)) and nodew; is removed fromSg (u).
Then, by induction, for each link;g; 1, there is a patly; ~~ 4. For each node;, call Tree(w;, Sq(u) N C;(u)) and add the
qi+1 survived inEY'Y (M G) after Algorithm 4. The concate- created edges tB(u, Sq(u)).
nation of all such pathg «~ gi11,1 < i <m, and the linkwv Notice that the above Algorithm 6 is only performed by
forms a path fromu tov in EYY (M G). B 3 nodev. We then prove that the constructed structure

Although EYY';(MG) is a connected structure, it is Un-gy-c" (17 indeed has bounded degree (thus sparse), and is
known whether it is a power or length spanner. We leave it a?)é‘wer efficient.

future work.

Theorem 9:The maximum node degree of the graph
o _
D. Extended Yao-Sink Graph EY G, (MG) is at mostk® + 3k + 3k - [logy 7].

i ) ) Proof: Initially, each node has at moktout-degrees after
In [3], [4], the authors applied the technique in [16] t0 CONgonstructing graptEy Gy, (MG). In the algorithm, each node
struct a sparse network topology in UD&g0 and sink graph , initiates only one sink structure, which will introduce at most
which has a bounded degree and a bounded stretch factor. g, 7] + 2) - k in-degrees. Additionally, each nodewill
technique is to replace the directed star consisting of all links, involved in Algorithm 6 for at most sink trees (once for
towar_d anode by a directt_ad tre& (v) with v as the s_ink. Tree aach directed linky € EYG,(MG)). For each sink tree in-
T'(v) is constructed recursively. To apply this technique on MQ?olvement, Algorithm 6 assigns at mdstinks incident onz.

we need extend it by a more sophisticated way. In the remainqtqa{us, at mosk? new degrees could be introduced here. Then
of this section, we discuss how to locally construct a boundgeh theorem follows. m

degree s_tructure with bounded power stretch factor for heterogeSince the total number of edges is at mgst + 3k + 3k -
neous wireless ad hoc networks. Our method works as foIIOW[qOg2 ~1) - n, the total communication cost of our method is
Algorithm 5: Constructing-EYG* O(log, 7y - n). Here each message haglog n) bit*s.
1. Each node finds the incident edges in the Extended Yao grapii "€orem 10:-”1'9 Iength stretch factor dfY G, (MG), k >
E—Yka(MG), as described in Algorithm 3. Each nodewill 6, 1s at most(l_wn(%)) ’
have a set of incoming nodév) — {u | 76 € mk(MG)}. Proof: We have plroved thabY G (MG@G) has length
2. Each node» partitions thek cones centered at using the stretch factor at mos%—%in(%)' We thus have only to prove
partitioning method described in Method 1. Notice that for pafbat, for each linkw € EY G, (MG), there is a path connect-
titioning, nodev uses parametey, in Method 1, which can be iNg them inEY G (MG) with length at most—y - ||vw||.
easily calculated from local information. Figure 5(a) illustratel§ link vw is kept in EY G5 (MG), then this is obvious. Oth-
such a partition. erwise, assume,, < r,, then directed linkwv belongs to
3. Each node chooses a nodefrom each regiof). LetQ,(v) EY G, (MG). Then, there must exist a nodein the same re-
be the region partitioned by node with nodeu inside, so that gion (partitioned by node) as nodew. Using the same argu-
the link uv has the smallestD(uv) among all links computed ment as Theorem 4, we can prove that there is a path connecting

in the first step in the regioft, (v). In other words, in this step, v andw in T'(u) with length at mostm\\vw||. It im-

. e k

it constructsE Y'Y, (MG). plies that the length stretch factor &Y G;,(MG) is at most

4. For each regiof, (v) and the selected node let Sq(u) = (ﬁ)? |
sSin x

{w | w # u, w e Q,(v)NI(v)} ie., the set of incoming Similarly, we have:

neighbors of (other tharw) in the same region as. For each  Theorem 11:The power stretch factor of the grapit’ G} (MG),
nodeu, nodev uses the following functiofiree(u,Sq (u)) (de- ;. < ¢ is at mos{( 1 )2

scribed in Algorithm 6) to build a tre®(u) rooted at:. We call ' 1=(2sin £)°

T'(u) asink treeand call the union of all links chosen by node
v the sink structureatv. Figure 5(c) illustrates a sink structure
atwv, which is composed of all treéB(u) for u selected in the  In this section we measure the performance of the pro-

VII. SIMULATIONS

previous step. posed heterogeneous network topologies by conducting exten-
5. Finally, nodev informs nodes: andy for each selected link Sive simulations. In our simulations, we randomly generate a
zy in the sink structure rooted at setV of n wireless nodes with random transmission range for

The union of all chosen links is the final network topology, dé2ach node. We then construct the mutual inclusion commu-
noted byEY G (MG). We call such structure as tiixtended Nication graphM/G(V), and test the connectivity aF/G(V/).
Yao-Sinkgraph. Notice that, sink node notu, constructs the If it is connected, we construct different localized topolo-
treeT'(u) and then informs the end-nodes of the selected linRi€S: GG(MG), EGG(MG), RNG(MG), ERNG(MG),

to keep such links if already exist or add such links otherwise ZY Gr(MG), EYY;(MG) and EY G} (MG). Then we mea-
sure the sparseness (the average node degree), the power effi-

Algorithm 6: Constructing-Tree Tree(u,Sq(u)) ciency and the communication cost of building these topologies.
1. If Sq(u) is empty, then return. 291N the simulation results presented here, the wireless nodes are



distributed in al00m x 400m square field. Each wireless node Figure 6 (c) illustrates the length spanning ratio of these
has a transmission radius randomly selected figm, 260m]. structures. As the theoretical results suggest, we found that
The number of wireless nodes38i, wherei is varied froml RNG(MG) has a much larger length spanning ratio compared
to 10. For eachl < ¢ < 10, we randomly generate00 sets with other structures. It is surprising to see tFERNG (M G)

of 30i nodes. All structures proposed in this paper are genaiso has a much smaller spanning ratio tiRaNG (M G). We

ated for each set of nodes. The number of cones is sefdo know that ERNG(MG) has a smaller spanning ratio than

EYGr(MG), EYY,(MG) andEY GL(MG). RNG(MG) since ERNG(MG) 2 RNG(MG). Also no-
tice thatEY G (M G), as the theoretical results suggest, has the
A. Node Degree smallest spanning ratio among all structures proposed here.

First of all, we want to test the sparseness of each network':Or wireless ad hoc networks, we want to keep as less links

topology proposed in this paper. Notice that, we have theoret possible while still keep relatively power efficient paths for

cally proved thatt VG (MG) and ERNG(MG) have acmost. (5 BEF 1 1CCe, | © 0 IECes o oer
6n links; EY G (MG) has at mosk - n links, wherek > 7 N ' b

: o needed to support a linkv is |luv|?. As we expected, struc-
is the number of cones divided;Y'Y, (M G) also has at most "
k- n links SINCREY Y (MG) € EY Gy(MG); EYGL(MG) turesGG(M G) andEGG(M G) keep the most power efficient

also has at most- n links since the sink structure for each nodéJath for every pair of nodes, i.e., their power spanning ratios are

« has exactly the number of links as the links towatid the di- éxactly one. We found that all structures have power spanning
Y . ratio almost one, and agalRNG(MG) andERNG(MG) do

rected structuré&Y G (M G). We do not know how many links ) o ) )

GG(MG) and EGG(M@) could have. have the largest power spanning ratios in our simulations.

Although almost all proposed structures are sparse theoret—
ically, all of them could have unbounded node degree. Thé
node degree of the wireless networks should not be too largeit is not difficult to see thatGG(MG), RNG(MG), and
Otherwise a node with a large degree has to communicate Wity G, (M G) can be constructed using onlymessages by as-
many nodes directly. This potentially increases the signal intgiaming that each node can tell its neighbors its maximum trans-
ference and the overhead at this node. Figure 6 (a) illustraiasion range, and its geometry position information in one sin-
the average node degree of different topologies. Notice thifié message. Each nodecan uniquely determine all the links
graph RNG(MG) always has the smallest average node dgv in these three structures after knowing all its one hop neigh-
gree in our simulations and structuk&” G (M G) always has bors in MG. StructuresEY Gi(MG), and EY G} (MG) can
the largest average node degree. We also found that the aveggeonstructed using only - » + n messages since the final
node degree becomes almost stable when the number of nagiesctures have at mogt: links. Similarly, ERNG(MG) can
increases, i.e., the network becomes denser. be constructed using at madst messages. We do not know any

Figure 6 (b), as proved in Theorem 9, confirms that thteoretical bound about the number of messages needed to con-
maximum node degree of Yao-based structliléG; (M G) is  structEGG(MG) since each node has to inform its neighbors
bounded bysk - log, v + k2 + 3k, wherey = max,,enra . the links selected by for EGG(MG). We measured the actual
The most upper curve in Figure 6 (b) represents the ma&imumerage number of messages needed to construct these struc-
3k - log, 7. This figure also shows th#Y G (M G) generally tures. We only measure the average number of messages per
will have a larger maximum node degree tHal G (M G) and  wireless node foEGG(MG), ERNG(MG), EYG(MG),
EYY,(MG). Itis interesting to see that the maximum degreend EY G (MG) (since every node only has to spend one
of EYG;(MG) and EY'Y;,(MG) almost have the same curvemessage for other three structu@6(MG), RNG(MG, and
when network density changes. Given the size of the netwaik” G (M G)). Figure 7 illustrates the communication cost. We
n = 30i, we take the average of the maximums of1al) ran-
dom networks withh nodes we generated as the final maximum
value forn plotted here.

Communication Cost of Construction

B. Spanning ratio

We proved thaGG (M G) andEGG(MG) have power span-
ning ratio exactly oneEY G,(MG) and EY G} (MG) both
have bounded length and power spanning ratios. Notice that
RNG(MG) and ERNG(M Q@) could have power and length
spanning ratios as large as— 1 for a network ofn nodes;
and the length spanning ratios 6fG(MG) and EGG(MG) Fig. 7. Average communication cost of building different topologies.
could bey/n — 1 even when all nodes have the same transmis-
sion range. It is unknown whethérY'Y;, (M G) has a bounded found that structurd’Y G (M G) is the most expensive one to
length or power spanning ratio even for wireless networks moehnstruct although it has the most favorable properties theoreti-
elled by UDG. We then conduct extensive simulations to studglly (bounded length, power spanning ratio and bounded node
how good these structures are for heterogeneous networks wtiegree). Constructingy G (M G) is almost as expensive as
the nodes’ transmission ranges are randomly set. oggonstructinglY G (M G).




(@) (b)

Fig. 6. (a) Average node degree of different topologies. (b) Maximum node degree of Yao-based structures. (c) Average length spanning ratio of different
topologies. (d) Average power spanning ratio of different topologies.
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mum. Our algorithms are all localized and have communication” energy efficient topology in wireless ad hoc networks, ABM MobiHog
cost at mosO(n), where each message hadog n) bits. 2004. . , o i
It remains an open problem whether graBh’Y ,(MG) is [19] S. Kapoor and X.-Y. Li, “Geometric proximity graphs,” WADS 2003.
a length or power spanner. It is also unknown how many links
GG(MG) could have in the worst case although we knew that it
is definitely less tha®(n%/5 log, 7). Some other future works
are what are the conditions that we can build a structure with
some other properties for MG, such as planar or low weight.
Notice that it is easy to show we cannot build a planar topology
for an arbitrary heterogeneous wireless ad hoc network.
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